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Purpose: To show feasibility of computerized techniques for ocular redness
quantification in clinical studies, and to propose an automatic, objective method.

Methods: Software for quantification of redness of the bulbar conjunctiva was
developed. It provides an interface for manual and automatic sclera segmentation
along with automated alignment of region of interest to enable estimation of changes
in redness. The software also includes the redness scoring methods: (1) contrast-
limited adaptive histogram equalization (CLAHE) in red-green-blue (RGB) color model,
(2) product of saturation and hue in hue-saturation-value (HSV), and (3) average of
angular sections in HSV. Our validation pipeline compares the scoring outcomes from
the perspectives of segmentation reliability, segmentation precision, segmentation
automation, and the choice of redness scoring methods.

Results: Ninety-two photographs of eyes before and after provoked redness were
evaluated. Redness in manually segmented images was significantly different within
human observers (interobserver, P ¼ 0.04) and two scoring sessions (intraobserver, P
, 0.001). Automated segmentation showed the smallest variability, and can therefore
be seen as a robust segmentation method. The RGB-based scoring method was less
sensitive in redness assessment.

Conclusions: Computation of ocular redness depends heavily on sclera segmenta-
tion. Manual segmentation appears to be subjective, resulting in systematic errors in
intraobserver and interobserver settings. At the same time, automatic segmentation
seems to be consistent. The scoring methods relying on HSV color space appeared to
be more consistent.

Translational Relevance: Computerized quantification of ocular redness holds great
promise to objectify ocular redness in the standard clinical care and, in particular, in
clinical trials.

Introduction

A wide range of ocular conditions are character-
ized by bulbar redness including dry eye disease,
(allergic) conjunctivitis, blepharitis, corneal abrasion,
foreign body, subconjunctival hemorrhage, keratitis,
iritis, glaucoma, chemical burn, and scleritis.1 In
addition, ocular redness is often observed in contact
lens wearers.2 Ocular redness is a sign of ocular
inflammation and is generally associated with pain or

discomfort and often accompanied with vision

problems.

Ocular redness is an important diagnostic feature

to detect diseases and to monitor disease progression

and treatment. In clinical practice, the most common

way to grade eye redness relies on the usage of special

reference scales. The most known grading scales are

the McMonnies/Chapman-Davies scale,2 Efron

scale,3 the Institute for Eye Research scale (also

known as CCLRU),4 and the validated bulbar redness
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scale.5 Using such techniques, a clinician grades the
patient’s condition using photographic2,4,5 or artist-
rendered3 reference images. This method is very
simple, and a trained clinician would need approxi-
mately 10 seconds in order to accomplish grading.
However, these methods also have several major
drawbacks. First, the grading is highly subjective
because it depends on the knowledge and experience
of the clinician. Secondly, due to the limited set of
grading states, it cannot provide continuous linear
quantitative evaluation, which makes these methods
not very sensitive to small changes in ocular redness in
early stages of disease. However, this sensitivity is of
high importance for early diagnosis and in clinical
trials,6 which evaluate the safety of new ophthalmic
drugs, drug formulations, or drug delivery devices.7

Furthermore, because of the lack of photographic
documentation, grading by this method is not
reproducible and does not allow for a second
observer. Hence, despite a relatively high number of
existing approaches, none of them is regarded as a
gold standard.

In the present study, we investigated the reliability
of computerized techniques for ocular redness quan-
tification. In particular, we are interested in estab-
lishing the reliability of the redness score depending
on region of interest (ROI) segmentation and a
chosen scoring method. Furthermore, we propose a
processing pipeline designed to avoid subjectivity by
replacing all human interactions with automated
algorithms.

Materials and Methods

In order to extract data from ocular photographs,
we developed a software tool featuring a graphical
user interface (GUI) for sclera selection and segmen-
tation. After image acquisition, we implemented a
machine learning method for automatic sclera seg-
mentation, which is independent of image size, eye
pose, and illumination. Based on the concept of
Sárándi et al.,6 a method was developed for the
selection of the ROI. ROI registration and intersec-
tion was performed in corresponding images using
feature matching,8 assuring that exactly the same part
of the eye is considered for the computation of
redness scores over the time. For redness scores, we
implemented and compared the approaches of Park et
al.,9 Amparo et al.,10 and Sárándi et al.6 Figure 1
illustrates our processing pipeline.

Image Acquisition

For software development (training of a machine
learning classifier) and preliminary testing, a total of
97 photographs of 18 volunteers were taken at the
University Eye Clinic Maastricht (Maastricht, the
Netherlands). The protocol was approved by the local
ethics committee and the national authorities. The
study procedures were performed in accordance with
the tenets of the Declaration of Helsinki. All
participants signed written informed consent before
inclusion. Three photographs were taken per eye at
6.33 times magnification using a calibrated Haag-
Streit BX900 slit-lamp bio-microscope (Haag Streit
AG, Bern, Switzerland) in combination with a
computer-operated digital camera (Nikon D7100;
Nikon, Tokyo, Japan). The volunteers were asked
to look left, right, and up. Images were exported as
JPG files (2992 3 2000 pixels, 150 dpi). Background
illumination was used on full intensity (100% open),
and grey-filter settings were set to 100% open. Slit
beam illumination was used with a diffusion filter, a
width of 15 and 8 mm height of the beam at a 458

oblique angle.
For evaluation, the data set from the conjunctival

provocation test6 was used. The data set contains 92
images of 23 patients. The images were taken in pairs:
before (called ‘‘reference image’’) and after (called
‘‘response image’’) the application of an inducing

Figure 1. Organizational chart of the experiment.
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redness allergen. For each patient, the procedure was
performed twice in separate visits (visit 1 and visit 2).
The data set used was recorded in the controlled
environment with the same equipment (see Supple-
mentary Fig. S1).

Automatic ROI Detection

For ROI segmentation, nonparametric models
(i.e., random decision forest) were used.11 For
training, we used the open-source machine learning
software Weka12 and the Trainable Weka Segmenta-
tion (TWS) toolkit.13 It utilized a fast (i.e., multi-
threaded) version of Breiman’s random forest
algorithm.14 We initialize with 512 ‘‘trees’’ and eight
random features per node. These parameters were
derived empirically. Images of eight different subjects
were used for training: the subjects feature different
eye color and skin tone, and level of redness and
prominence of vascular structure vary within selected
samples. Therefore, two classes of regions were
selected manually: sclera and background (Fig. 2).
Approximate training time was 10 seconds per image
on the used hardware (Intel Core i7-2620m processor,
8 GB RAM).

Classification is integrated in our custom software
written in Java. Using a trained model, grayscale
probability maps are created for new images where
higher intensities correspond to the regions that most
likely belong to the sclera (Fig. 3A). Simple post-
processing involving binary threshold and morpho-
logical operators is applied to the probabilistic maps
such that the largest area with the highest probability
score is identified as the ROI (Fig. 3B). The outer
contour of the detected ROI is then processed with
Bresenham’s line algorithm,15 which smoothens the
contour and provides adjustment points, which can be
used in the GUI in order to correct the detected ROI
manually if necessary (Fig. 3C).

Manual ROI Detection

Five human observers performed manual segmen-
tation using the GUI interface running on the same
machine. Four of the human observers performed the
segmentation of each image twice. In each manually
segmented image pair consisting of the images of the
same eye before application of the allergen and after,
redness scores were estimated both before and after
applying ROI matching.

ROI Matching

If we want to achieve the most precise comparison
between different stages of redness in the same eye,
the same parts of the sclera on the photographs need
to be measured. It is incorrect to compare redness in
two ROIs just after ROI detection because of
possible differences in eyelid openness, differences
in gaze direction, and also different scales and image
resolutions associated with nonstandardized acqui-
sition settings. Therefore, we implemented the
registration of two or more sequential ROIs to find
a common ROI that shall be used for redness
computation. The method is based on detection of
landmarks, or points of interest, which are robust to
rotation, translation, and scale. Scale invariant
feature transform (SIFT) points of interest are
detected in all ROIs, and point correspondences
are estimated by feature similarity.8 Random sample
consensus (RANSAC) is used for robustness refine-
ment.15 Using these correspondences (Fig. 4A),
transformation between the reference and the
matched ROIs can be derived and applied to
matched ROI. The transformed ROI is laid over
the reference ROI, and the intersection of both is
used as the common ROI for redness estimation
(Fig. 4B). This is also beneficial for removal of false
positives in ROIs.

Figure 2. Training patches. (A) Example sclera patches. (B) Example nonsclera (background) patches.
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Redness Quantification

For redness scores, we implemented the ap-
proaches of three different studies: Park et al.,9

Amparo et al.,10 and Sárándi et al.6 (Fig. 5). Park et
al.9 have used the contrast-limited adaptive histo-
gram equalization (CLAHE) for blood vessels
enhancement.16 The vessels are segmented using
thresholding, and the redness score is calculated as
a ratio of number of pixels corresponding to the
blood vessels to the total number of pixels in the
ROI. Amparo et al.10 use hue-saturation-value
(HSV) color space for redness estimation and use
the product of saturation and hue mapped to 0; 1½ �
interval as the redness score. Sárándi et al.6 also rely

on HSV color space and compute the redness score

as an average of maximal values max 0;S; cos 2pHð Þf g
computed for each pixel in the ROI, where S and H

are saturation and hue components of the pixel,

respectively.

Clinical Cases

To test the final version of the program, three

clinical cases of ocular redness were assessed in the

University Eye Clinic Maastricht. Patients signed

written informed consent before photos were taken.

From both eyes three photos were taken using slit-

lamp settings as described in Image Acquisition.

Patients were asked to glare up, left, and right.

Figure 4. (A) Corresponding points of interest are connected with straight lines. Photo on the left was taken before the allergen was
applied, and on the right — after. (B) Overlay of registered ROIs: only the overlapping area is considered as ROI for redness computation.

Figure 3. Segmentation steps applied to three different subjects: (A) Generated probability map of sclera segmentation: higher
intensities correspond to the areas, which most likely belong to the sclera region. (B) ROI derived out of the probability map using simple
thresholding and refinement with morphological operations of erosion and dilation. (C) ROI with adjustment points laid over the original
image.
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Statistical Analysis

The described system was utilized to determine
redness scores computed using three different meth-
ods (Park et al.,9 Amparo et al.,10 and Sárándi et al.6).
First, segmentation reliability, defined as the ability of
the observer to produce similar results time after time,
also known as intraobserver difference, was evaluated
using a test-retest fashion (Bland and Altman plot).
To estimate the significance level of difference in
redness scores within test and retest segmentations,
mean reference and response redness values of both
visits were compared using a paired t-test and a
general linear model repeated measures test. To
exclude the effect of other features, no ROI matching
was performed, and the score was computed.6 Second,
segmentation precision was defined as interobserver
difference. For that, the mean redness values of the
reference recordings in the first visit, using test only
(the first segmentation by five human observers), were
compared using a general linear model repeated
measures test. Again, no ROI matching was per-
formed, and the score was computed.

To estimate the robustness of a computer-based
method, we evaluated the effect of segmentation
automation by comparing the differences between
visit 1 and visit 2 of the reference images between
values computed with and without ROI matching
using analysis of variance (ANOVA). In addition, to
prove the assumption that if we include ROI
registration, the absolute redness values indicating
changes in redness are supposed to be more robust,
we computed the scores with and without applying
the proposed technique.

We implemented three redness scoring methods
and, based on the assumption that a large difference
in redness between reference and response shall
indicate higher sensitivity, we compared redness
differences between reference and response values
estimated by all three methods (Park et al.,9 Amparo
et al.,10 and Sárándi et al.6) using automatic

segmentations provided by our machine learning
method (without ROI matching).

In order to illustrate the clinical applicability by
case, we selected three trial subjects from the
conjunctival provocation test panel. Based on the
subjective assessment on visual differences between
the reference image and response image, these subjects
were labelled as strong, mild, or no responders to the
provocation test.

All data are analyzed using SPSS (version 25 IBM,
Armonk, NY), and data are shown as mean 6

standard deviation (SD).

Results

Segmentation Reproducibility

There was a significant difference (P , 0.001)
between the test and retest for three out of four
human observers (Fig. 6A), meaning that there was a
systematic error for the three observers. Further,
these systematic errors differed between the observers
(P , 0.001). Frequency distributions of differences in
redness scores between test and retest observations
(Fig. 6B) indicate that segmentation by observers 1
and 4 systematically results in larger redness values
during the retest (‘‘oversegmentation’’), while segmen-
tation by observer 2 systematically provides smaller
redness values (‘‘undersegmentation’’). Observer 3 is
consistent in his manual segmentation. Additionally,
observers 2 and 4 display a broad variability in
redness values in contrast to observers 1 and 3. These
trends are illustrated by two case examples of
oversegmentation and undersegmentation and by
their mean values of redness difference. Figure 7
shows the differences between test and retest versus
the mean grading estimate. There is no general
relation between the differences and the means,
indicating that segmentation reliability is unaffected
by the redness score itself. Again, observer 3 shows
the best segmentation reliability as a tighter cluster of
redness differences around zero can be recognized,

Figure 5. (A) ROI selected in the original image. Pixels classified as red using the methods of (B) Park et al.,9 (C) Amparo et al.,10 (D)
Sárándi et al.6
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Figure 6. (A) Frequency distributions of redness differences between test and retest observations for four human observers. (B)
Example of test and retest with an overlay from an oversegmentation and an undersegmentation. The table shows an overview of the
general trend from the observers.

Figure 7. Redness difference versus mean redness of test and retest redness values for four human observers. The thick solid line
represents the mean value of test-retest discrepancies, and the dotted lines represent the mean 6 SD.
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while more values falling far from the mean are seen

for observers 1, 2, and 4.

Segmentation Accuracy

The interobserver difference, that is, the difference

between multiple human observers for the reference

images, was significantly different between the five

observers (P¼ 0.040) (Fig. 8A) meaning that manual

segmentation is easily affected by subjective factors

(Fig. 8B).

Segmentation Automation

The overall mean redness difference of the human

observers showed an increase by implementing ROI

matching, however insignificant (Figs. 9A, 10). This

is illustrated by two case examples segmented by

observer 4 that shows an increase in redness

difference after implementation of ROI matching

(Fig. 9B). With the machine learning approach, ROI

matching improved the results as the mean redness

difference became smaller, though insignificant as

well.

Redness Scoring Method

Figure 11 shows that the redness values calculated
by the method of Park et al.9 largely overlap and,
thus, is insufficiently able to detect differences in
redness. In contrast, little overlap can be observed at
the methods by Amparo et al.10 and Sárándi et al.6

The sensitivities of these two methods are similar.
Three case examples illustrate that the method of
Park et al.9 is insensitive to detect differences in
redness for the strong and mild responder, while the
sensitivities of Amparo et al.10 and Sárándi et al.6 are
comparable (Fig. 12).

Clinical Application by Case

Our automated tool generated nominal values of
redness difference between the reference (before) and
response (after) images (Fig. 13). Although the
subjective assessment in these simplistic examples is
straightforward, one can appreciate the sensitivity of
our automated tool, with up to nine-fold differences
in redness difference between two cases of the same
participant.

When no follow-up visit is available, redness can

Figure 8. (A) Mean redness values (6 SD) of the reference recordings in the first visit, using test only, without ROI matching, computed
using the method of Sárándi et al.6 for five observers. (B) Differences between observers related to the conjunctival border (left column)
and the semilunar conjunctival fold (right column).
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be scored using the contralateral eye as shown in

Figure 14A. Three clinical cases are tested using the

methods by Park et al.,9 Amparo et al.,10 and Sárándi

et al.6 (Fig. 14B). In all methods, the affected eye

provides a higher redness value compared with the

contralateral eye. The values generated by the

methods of Amparo et al.10 and Sárándi et al.6 are

almost two times higher in intensity compared with

the values generated by the method of Park et al.9

Discussion

Ocular redness is an observable clinical response of
the ocular surface in pathological conditions. To
some extent, the degree of redness may reflect the
severity of the disease. In this context, quantification
of ocular redness can be of use in both clinical and
research settings. Examples of conditions that are
often associated with ocular redness are dry eyes

Figure 10. Frequency distribution of the redness differences between visit 1 and visit 2 for all human observers and the machine-
learning approach, both without and with ROI matching.

Figure 9. (A) Mean redness differences between visit 1 and visit 2 of the reference images for all human observers and the machine-
learning approach, both with and without ROI matching. (B) Example of redness difference with or without ROI matching.
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disease, contact lens complications, and allergic
conjunctivitis. In clinical practice, sensitive quantifi-
cation of ocular redness would allow to stage the
(subclinical) disease, to monitor progression of the
disease and to control and regulate treatment efficacy.

Another application for computerized quantifica-
tion of ocular redness would be in a setting of
multicenter clinical trial to investigate the safety of
new topical drugs or devices with regards to undesired
side effects such as eye itching, reddening, or tearing.
Self-assessment questionnaires are usually filled in by

study subjects in order to evaluate the level of
discomfort, while redness and changes in its level
are assessed by clinicians using the reference scales
like the Efron scale or VBR. We believe that using an
automated tool would increase the objectivity of such
a study due to elimination of interobserver and
intraobserver variability.

At the end of the last century, several researchers
tried to objectivize ocular redness grading using
photographic documentation. In 1990, Kjærgaard et
al.17 presented an experimental pipeline, in which five

Figure 11. Comparison of redness scores for the machine-learning approach of three different redness scoring methods without ROI
matching. The solid line shows the equality.

Figure 12. (A) Frequency distribution of the redness differences between the reference and response through three different redness
scoring methods. (B) Illustrated example between a strong responder, mild responder, and a no responder and the values provided
through the three different redness scoring methods.
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physicians used a descriptive scale in order to evaluate

changes in ocular redness stimulated by the conjunc-

tival provocation test. The final redness values were

derived using statistics. The authors claimed a better

sensitivity of their method as compared with tradi-

tional clinical observations. However, their method

still is subjective, requires more resources (man-

power), and does not support absolute measurements.

A further step toward objective quantification of

ocular redness was the application of image process-

ing to the photographic images. Such methods rely on

machine-based quantification of integral redness of

Figure 13. Clinical application of the automated software by case examples in a conjunctival provocation test.

Figure 14. Three cases of ocular redness from the clinic. (A) A hyposphagma, postsurgical redness, and a mild form of conjunctivitis. (B)
The table shows the numeric redness values of three pictures, averaged 6 SD with visualization as bar graphs below the table.
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the scleral region,6,10,18–25 blood vessels dila-
tion,9,18,20–23,26–30 and degree of vascular branch-
ing,31,32 or combination of these features. Integral
redness is usually quantified as a ratio of pixels
classified as red to the selected ROI18,19,22,23 or as a
result of arithmetical operations on color channels in
different color models.6,10,20,21,24,25 Blood vessels are
usually segmented using edge detection,9,21–23,25,26

thresholding with a prior enhancement,9,18,20,28–30 or
clustering9 and are described in terms of percentage of
vessel coverage,9,18,20,21,23,25,27,29 vessel width,20,27,30

relative redness of vessels,20 and number of vessel
segments.20,30 Vascular branching is described using
fractal analysis.31,32

Diseases and conditions may affect different
regions of sclera30; it is beneficial to include in the
ROI as much of sclera as possible. Fieguth and
Simpson21 postulated that automatic detection of
sclera shall be straightforward, because its color is
distinct from its surroundings. However, simple color
thresholding fails in most of our images. The presence
of shadows, light reflections, or excessively dilated
blood vessels make it hard to distinguish between the
sclera and surrounding regions. In contrast to the
approaches using manual interaction for ROI detec-
tion9,10,20,21,25,31 or color-based segmentation,6 we
therefore use texture information for automated
sclera detection.

Sárándi et al.6 proposed a fully automated scleral
segmentation involving circular Hough transform33

for iris subtraction and a combination of edge
detection and thresholding in YUV color space for
sclera localization. A common definition of a color
space uses one luma component (Y 0) and two
chrominance components, called U and V. Their
method works well if the sclera is evenly illuminated
and highly distinguishable from the eyelid, but
shadows or light reflections on the eyelid or the
surrounding skin make the detection error prone.
Furthermore, a high concentration of red blood
vessels in the sclera often yields a segmentation
failure.

It is still worth mentioning that according to visual
inspection, there are outliers in our segmentation
results that may undermine the stability of the general
segmentation score. Erroneous ROI detections can be
caused by a low quality of a photograph (nonsharp
focus, uneven light, reflections) or by a similarity in
textures. Blurred edges lead to loss of texture, which
makes the detection of ROI and blood vessels not
straightforward. The best way to deal with this
problem is to control acquisition settings, that is,

choosing the smallest aperture. In addition, we
provided a customary tool for manual correction of
the detected ROI, which still allows usage of images
of lesser quality.

Another interesting observation was made with the
respect to the provocation test: as it can be seen in
Figure 10 for the response case, the redness in the
second visit is lower than the redness in the first visit.
We believe that this indicates that the provocation is
better tolerated by the study subjects upon the second
visit.

When we used clinical cases, the methods from
Amparo et al.10 and Sárándi et al.6 provided a higher
redness value for red eyes compared with the method
of Park et al.9 However, in all cases the methods
showed higher signal for the affected eye. This
indicates that using the contralateral eye as reference
could be a proper solution when no follow-up visits
are planned.

Almost all of the existing methods depend on a
particular acquisition setup: all images shall be
recorded with the same camera and illumination
settings. However, this is not always possible,
especially when comparing and analyzing a large
amount of photographs taken in different laborato-
ries (multicenter studies) or over various periods of
time. Amparo et al.10 introduced semiautomatic white
balance correction using the Von Kries approach.34

However, to our knowledge, full color normalization
was not used before for ocular redness assessment.
We will investigate this in the future.

In recent years, deep convolutional neural net-
works (CNN)35 have gained their popularity in tasks
of semantic image segmentation. Such techniques are
able to classify the regions not only on a pixel level,
but also on the object’s shape as contextual informa-
tion. Because the visible part of human sclera has a
distinctive shape, we believe that it is possible to train
such a classifier, which would enable recognition of
human sclera with a considerably higher accuracy.
We are planning to address this in our future work.

In summary, our study demonstrates that interac-
tive user-guided segmentation leads to inconsistency
in ocular redness scores driven by both intraobserver
and interobserver variability. As an approach to this
problem, automatic segmentation can be used. In the
current study, we trained a simple random decision
forest classifier, which in combination with an
automatic ROI matching provided consistent results.
Furthermore, our study has shown that the HSV
color space resembling human color perception is
better suited for redness scoring as it does not depend
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on illumination and hand-crafted parameters. The
outcomes of our proof of concept study are helpful
for performing clinical trials targeted to assess ocular
redness quantification over time.
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