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Abstract
Cancer-associated fibroblasts (CAFs) exert multiple tumor-promoting functions and are key contributors to drug 
resistance. The mechanisms by which specific subsets of CAFs facilitate oxaliplatin resistance in colorectal cancer 
(CRC) have not been fully explored. This study found that THBS2 is positively associated with CAF activation, 
epithelial-mesenchymal transition (EMT), and chemoresistance at the pan-cancer level. Together with single-cell 
RNA sequencing and spatial transcriptomics analyses, we identified THBS2 specifically derived from subsets of 
CAFs, termed THBS2 + CAFs, which could promote oxaliplatin resistance by interacting with malignant cells via the 
collagen pathway in CRC. Mechanistically, COL8A1 specifically secreted from THBS2 + CAFs directly interacts with 
the ITGB1 receptor on resistant malignant cells, activating the PI3K-AKT signaling pathway and promoting EMT, 
ultimately leading to oxaliplatin resistance in CRC. Moreover, elevated COL8A1 promotes EMT and contributes to 
CRC oxaliplatin resistance, which can be mitigated by ITGB1 knockdown or AKT inhibitor. Collectively, these results 
highlight the crucial role of THBS2 + CAFs in promoting oxaliplatin resistance of CRC by activating EMT and provide 
a rationale for a novel strategy to overcome oxaliplatin resistance in CRC.

Keywords Colorectal cancer, Oxaliplatin resistance, Cancer-associated fibroblasts, COL8A1, EMT

THBS2 + cancer-associated fibroblasts 
promote EMT leading to oxaliplatin resistance 
via COL8A1-mediated PI3K/AKT activation 
in colorectal cancer
Xing Zhou1,2,3,4†, Jiashu Han5†, Anning Zuo1†, Yuhao Ba1†, Shutong Liu1†, Hui Xu1, Yuyuan Zhang1, Siyuan Weng1, 
Zhaokai Zhou6, Long Liu7, Peng Luo8, Quan Cheng9, Chuhan Zhang10, Yukang Chen1, Dan Shan11, Benyu Liu12, 
Shuaixi Yang13, Xinwei Han1,2,3*, Jinhai Deng14* and Zaoqu Liu1,2,3,15*

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12943-024-02180-y&domain=pdf&date_stamp=2024-12-26


Page 2 of 19Zhou et al. Molecular Cancer          (2024) 23:282 

Introduction
Colorectal cancer (CRC) is the third most common 
cancer worldwide, with an annual incidence exceeding 
1.9  million cases [1]. Beyond surgical intervention, che-
motherapy remains a cornerstone in CRC management, 
aiming to shrink tumors and prevent future growth and 
spread [2]. Oxaliplatin, a platinum-based chemothera-
peutic agent, is extensively utilized in the treatment of 
various cancers, notably CRC, ovarian cancer (OV), 
gastric cancer (STAD), and pancreatic cancer (PAAD) 
[3–6]. Oxaliplatin together with extra chemotherapeu-
tic agents, such as fluorouracil and/or irinotecan, con-
stitute FOLFOX or FOLFIRINOX protocols, which are 
approved as first-line treatment for advanced and meta-
static CRC [7, 8]. Tragically, drug resistance remains a 
significant global challenge in the clinical management of 
CRC with oxaliplatin-based chemotherapy [9, 10]. There-
fore, it is fundamentally important to figure out effective 
ways to overcome this resistance and enhance treatment 
outcomes.

In the tumor microenvironment (TME), various cells 
crosstalk with each other is critical for cancer progres-
sion. Cancer-associated fibroblasts (CAFs), a princi-
pal component of the TME, constitute a heterogeneous 
group of stromal cells with diverse origins, phenotypes, 
functions, and abundances across various cancer types 
[11]. CAFs have a far-reaching impact on tumor-pro-
moting functions and play crucial roles in drug resis-
tance through multiple mechanisms, such as extracellular 
matrix (ECM) remodeling and the promotion of epithe-
lial-mesenchymal transition (EMT), highlighting their 
potential values as prognostic factors and therapeutic tar-
gets [12–14]. More importantly, contrary to the general 
belief that CAFs invariably promote tumor progression, 
targeting CAFs has been shown to exacerbate the dis-
ease in PAAD and mouse models [15, 16], implying that 
different CAFs subsets may perform opposing roles in 
disease progression. Therefore, precisely identifying the 
cancer-promoting CAFs subsets requires the discovery 
of specific biomarkers to distinguish CAFs subpopula-
tions and to understand their activities and mechanisms. 
Recent studies have demonstrated that cell-cell interac-
tions between CAFs and malignant cells give rise to che-
motherapy resistance in various cancer types, including 
CRC [17]. Nevertheless, the mechanisms of action of the 
CAFs subgroups correlated with oxaliplatin resistance in 
CRC have not yet been fully elucidated.

Here, by integrating with multi-omics data, we pro-
vided evidence that THBS2 derived from specific sub-
sets of CAFs, defined as THBS2 + CAFs, correlated with 
dismal prognosis and EMT activity across various cancer 
types. Functionally, THBS2 + CAFs remarkably positively 
correlated with the aggressive phenotype and oxali-
platin resistance in CRC. Single-cell RNA sequencing 

(scRNA-seq) and spatial transcriptomics (ST) revealed 
that THBS2 + CAFs had more interactions and closer 
distance with resistant cells, respectively. Mechanisti-
cally, COL8A1, specifically secreted from THBS2 + CAFs, 
directly interacted with the ITGB1 receptor expressed 
on malignant cells, thereby activating EMT and promot-
ing oxaliplatin resistance via the phosphatidylinositol 
3-kinase (PI3K)-AKT pathway. Additionally, in vitro and 
in vivo experiments confirmed that COL8A1 contrib-
uted to cancer progression and resistance in CRC, which 
could be mitigated by ITGB1 knockdown or AKT inhibi-
tor. Therefore, our study uncovered the crucial role of 
THBS2 + CAFs in oxaliplatin resistance and highlighted 
its potential as a predictive biomarker and therapeutic 
target to overcome oxaliplatin resistance in CRC.

Materials and methods
Pan-cancer bulk expression and phenotype data collection
The pan-cancer multi-omics, encompassing transcrip-
tomic, copy number variations (CNV), and correspond-
ing clinical information, from The Cancer Genome Atlas 
(TCGA) and Genotype-Tissue Expression (GTEx) were 
collected from UCSC Xena  (   h t  t p s  : / / x  e n  a b r o w s e r . n e t / d a t 
a p a g e s /     ) . The single nucleotide variant (SNV) and meth-
ylation data were obtained from Genomic Data Com-
mons (GDC) (https://gdc.cancer.gov/) [18].  A d d i t i o n a l 
l y , four tumor microenvironment (TME) subtypes, six 
immune subtypes, and the TCGA subtypes of OV and 
head and neck squamous cell carcinoma (HNSC) were 
downloaded from the corresponding literature [19]. 
The consensus molecular subtypes (CMS) of CRC were 
defined by the CMScaller R package [20].

Pan-cancer protein data collection
The Clinical Proteomic Tumor Analysis Consortium 
(CPTAC) contained more than 1,000 untreated primary 
samples across 10 cancer types, including matched nor-
mal samples. LinkedOmicsKB  (   h t t p s : / / k b . l i n k e d o m i c s . o 
r g /     ) [21] allows to more readily download CPTAC data, 
including protein expression data, clinical information, 
and phenotype data. Among others, there were no nor-
mal samples for breast invasive carcinoma (BRCA) and 
glioblastoma multiforme (GBM).

Collection and analysis of expression data and drug 
sensitivity data of pan-cancer cell lines
Pan-cancer cell line expression data and cell line annota-
tions were downloaded from the Cancer Cell Line Ency-
clopedia (CCLE). The drug sensitivity data of cancer cell 
lines were collected from Genomics of Drug Sensitivity in 
Cancer (GDSC) and Cancer Therapeutics Response Por-
tal (CTRP). The gene expression profile data for cell lines 
and their corresponding drug sensitivity values could be 
downloaded from https://osf.io/temyk. The pRRophetic 

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://gdc.cancer.gov/
https://kb.linkedomics.org/
https://kb.linkedomics.org/
https://osf.io/temyk
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Fig. 1 (See legend on next page.)
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R package [22] was applied to predict the chemothera-
peutic response by integrating TCGA expression data, 
cancer cell line expression data and corresponding drug 
sensitivity data of cell lines. Simultaneously, CellMiner 
(http:// discove r.nci.n ih.g ov/cellminer/) [23] also offered 
two processed files, including mRNA expression and 
drug data, to research the correlation between expres-
sion and pharmacological data for cell lines. In GDSC, 
CRC cell lines were categorized as oxaliplatin-resistant or 
sensitive groups based on upper and lower one-quarter 
thresholds of oxaliplatin drug sensitivity value to pre-
dict the similarity between TCGA-CRC and cell line 
expression.

Pan-cancer scRNA-seq and ST data collection and 
preparation
The scRNA-seq data, encompassing CRC-EMTAB8107, 
BRCA-EMTAB8107, OV-EMTAB8107, PAAD-
CRA001160, and HNSC-GSE103322, were obtained 
from the TISCH website  (   h t  t p :  / / t i  s c  h . c o m p - g e n o m i c s . 
o r g /     ) [24]. The Seurat R package [25] was implemented 
to construct a Seurat object from the gene expression 
matrices. Cells with 500 ~ 4,000 UMI/cell, 500 ~ 6,000 
genes/cell, and < 10% mitochondrial genes were retained. 
Batch effect correction was executed utilizing the har-
mony R package [26]. We performed principal com-
ponent analysis (PCA) to reduce the dimensionality of 
scRNA-seq data and selected the top 30 principal com-
ponents (PCs) for uniform manifold approximation and 
projection (UMAP). Cell clusters were identified using 
the FindClusters function and annotated based on typi-
cal markers of different cell types collected from litera-
ture [27–29]. The inferCNV R package [30] was adopted 
to distinguish malignant and non-malignant cells with 
the parameters: “denoise”, default hidden Markov model 
(HMM) settings, cutoff = 1 for Smart-seq2 or cutoff = 0.1 
for 10x Genomics. The T, NK, B, and myeloid cells served 
as a normal reference. We conducted the FindAllMark-
ers and FindMarkers function to identify differentially 
expressed genes (DEGs).

The ST data of CRC were obtained from  h t t  p : / /  w w w  . c  a 
n c e r d i v e r s i t y . a s i a / s c C R L M /     [31] and  h t t p s : / / w w w . 1 0 x g e n 
o m i c s . c o m /     . The ST data of OV and BRCA were obtained 
from https://www.10xgenomics.com/. Reanalyzed 

publicly available ST data of PAAD and HNSC can be 
accessed from the GEO database under accession codes: 
GSE203612 and GSE181300, respectively [32, 33]. The 
publicly available ST datasets were loaded into a Seurat 
object by the Seurat R package. Subsequently, low-qual-
ity spots with gene counts below 300 and mitochondrial 
gene counts exceeding 30% were filtered out.

Statistics and reproducibility
Public data processing, visualization, and statistical anal-
ysis were carried out utilizing the R 4.3.0 software. Spear-
man’s correlation coefficient was applied to estimate the 
correlation between two continuous variables. For con-
tinuous variables, differences between two groups or 
among over two groups were examined utilizing the Wil-
coxon rank sum test or the Kruskal-Wallis test. For cate-
gorical variables, the Chi-square test was employed. False 
discovery rate (FDR) was applied to adjust the p-values. 
All p-values were two-sided. To confirm the results, we 
carried out the experiments in multiple replicates to con-
firm their reproducibility.

Additional methods applied in this study were available 
in Supplementary Methods.

Results
THBS gene family was generally upregulated and 
significantly associated with disease progression in pan-
cancer
To evaluate the expression difference and prognostic 
significance of THBS genes in pan-cancer, this study 
collected cancer sample data from multiple databases, 
encompassing transcriptomic, proteomic, and cell lines 
data (Fig. 1A-B). As illustrated in Fig. 1C, THBS mRNA 
expression levels varied in cancer types. Compared 
to normal tissues, THBS1 and THBS2 showed higher 
expression in brain cancers and PAAD, but lower expres-
sion in cervical squamous cell carcinoma and endo-
cervical adenocarcinoma (CESC), OV, uterine corpus 
endometrial carcinoma (UCEC) and uterine carcinosar-
coma (UCS). THBS3 and THBS4 expression exhibited 
the same trend in most cancer types, albeit with vari-
able degrees of significance in cancer types. THBS2 and 
THBS5 presented significantly different between tumor 
and normal samples in nearly all cancer types, with 

(See figure on previous page.)
Fig. 1 THBS gene family is generally upregulated and significantly associated with disease progression in pan-cancer. (A-B) The number of TCGA and 
GTEx samples applied in this study, respectively. (C) The mRNA expression differences between normal and tumor samples. (D-F) The mRNA expression 
differences in distinct stages of CRC, BLCA, and THCA, respectively. (G) The correlation of THBS family genes and OS in TCGA using the log-rank test. Genes 
with p < 0.05 and HR > 1 were considered risky, while those with p < 0.05 and HR < 1 were considered protective. (H) The number of normal and tumor 
samples in CPTAC applied in this study. (I) The protein expression differences between normal and cancer samples. (J) The protein expression differences 
in distinct stages of COAD. (K-L) The Spearman correlation between mRNA expression and methylation and CNV, respectively. Blue points represent nega-
tive correlation and red points represent positive correlation. (M) Mutation frequency of THBS family genes in 32 cancers. Numbers represent the number 
of samples with the corresponding mutated gene for a given cancer. ‘0’ indicates no mutation in the gene coding region, and the absence of a number 
indicates no mutation in any region of the gene. (N) SNV oncoplot showing the mutation distribution of THBS family genes and the classification of SNV 
types. ns, not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001

http://discover.nci.nih.gov/cellminer/
http://tisch.comp-genomics.org/
http://tisch.comp-genomics.org/
http://www.cancerdiversity.asia/scCRLM/
http://www.cancerdiversity.asia/scCRLM/
https://www.10xgenomics.com/
https://www.10xgenomics.com/
https://www.10xgenomics.com/
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THBS2 being significantly higher in kidney cancers and 
brain cancers compared to normal tissues, while THBS5 
exhibited the opposite trend. Of note, both THBS2 and 
THBS5 had particularly high expression in lymphoid 

neoplasm diffuse large B-cell lymphoma (DLBC), thy-
moma (THYM) and gastrointestinal tumors, including 
cholangiocarcinoma (CHOL), CRC, PAAD, and STAD. 
Additionally, these genes showed higher expression in 

Fig. 2 (See legend on next page.)
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stage III/IV compared to stage I/II in several cancer types, 
including CRC, bladder urothelial carcinoma (BLCA), 
and thyroid carcinoma (THCA) (Fig. 1D-F). Most THBS 
family genes were associated with poor overall survival 
(OS) in cancers (Fig.  1G). In six cancers, BLCA, kidney 
renal papillary cell carcinoma (KIRP), lower grade glioma 
(LGG), mesothelioma (MESO), STAD, and THCA, all 
genes were associated with dismal prognosis. However, 
some genes were linked to favorable prognoses in specific 
cancers, suggesting discrepancies in the impact of indi-
vidual genes on cancer outcomes in distinct cancer types. 
Subsequently, the protein data was utilized to investigate 
the relationship between gene expression and clinical 
outcomes at the protein level (Fig. 1H). THBS1, THBS2 
and THBS5 proteins exhibited relatively high expression 
in six cancer types compared to normal samples, except 
for THBS5 in clear cell renal cell carcinoma (CCRCC), 
while THBS3 and THBS4 proteins showed lower levels 
in colon adenocarcinoma (COAD) and HNSC (Fig.  1I). 
For UCEC, THBS gene family proteins were not notably 
different. Moreover, THBS1 and THBS2 protein levels 
showed slightly higher in stage III/IV compared to stage 
I/II in COAD (Fig. 1J).

Next, the methylation profiles of THBS family genes 
were portrayed. Interestingly, the methylation level of 
THBS3 was generally inversely correlated with its mRNA 
level, whereas others did not exhibit a significant cor-
relation in most cancers (Fig.  1K). Copy number vari-
ants (CNVs) level of THBS3 was significantly positively 
correlated with its mRNA level in 24 of 32 cancer types 
(Fig.  1L). Additionally, single nucleotide polymorphism 
(SNP) data was summarized to profile the frequency and 
variant types in each cancer (Fig.  1M-N). UCEC, skin 
cutaneous melanoma (SKCM), and CRC had high sin-
gle nucleotide variant (SNV) frequencies ranging from 
12% to 50%. The frequency of THBS2 was beyond 30% 
in CRC, lung adenocarcinoma (LUAD), lung squamous 
cell carcinoma (LUSC), SKCM, and UCEC. THBS2 had 
the highest mutation rate, followed by THBS1, THBS4, 

THBS3, and THBS5, with mutation percentages of 29%, 
22%, 15%, 14% and 11%, respectively. In summary, most 
THBS family genes were upregulated in cancer samples 
and high stages and were associated with poor outcomes, 
with a weaker correlation with genomic alterations.

THBS2 facilitated the CAF activation and EMT phenotype
Furthermore, THBS genes exhibited low expression in 
several cell lines, such as CRC, STAD, PAAD, BRCA, 
and OV, suggesting that these genes are predominantly 
expressed in non-malignant cells of the TME (Figure 
S1A-E). Consistently, THBS family genes were positively 
correlated with the stromal score, especially THBS2, with 
no or weak correlation with the immune score or tumor 
purity (Fig. 2A and FigureS1F-G). Subsequently, correla-
tion with immune and stromal cells defined by the MCP-
counter and EPIC algorithms [34, 35] revealed that CAF 
population was most dramatically associated with THBS2 
(Fig. 2B and Figure S1H). Meanwhile, TME classification 
as proposed by Bagaev et al. [19] displayed that THBS2 
varied among four subtypes, with immune-enriched/
fibrotic (IE/F) and fibrotic (F) characterized by CAF acti-
vation, TGF-β pathway and EMT transition, having the 
highest THBS2 expression (Fig. 2C). Recent studies have 
proposed multiple molecular subtyping systems to pro-
file complex heterogeneity, such as the consensus molec-
ular subtypes (CMS) of CRC [36]. THBS2 expression was 
the highest in the CMS4 of CRC, mesenchymal subtypes 
of OV, and HNSC, with CMS4 and mesenchymal subtype 
characterized by EMT upregulation [36–38] (Figure S1I-
K). Consistently, high THBS2 levels were more prevalent 
in the TGF-β dominant subtype associated with immuno-
suppressed TME [39] (Fig. 2D). To further elucidate their 
potential function in cancer progression, the correlation 
between THBS genes and Hallmark pathway activity was 
analyzed. The results revealed a positive correlation with 
EMT, particularly notable for THBS2 (Fig. 2E-F). Similar 
patterns were discovered at the protein level, reinforcing 

(See figure on previous page.)
Fig. 2 THBS2 facilitated CAF activation and EMT phenotype. (A) The Spearman correlation of THBS family mRNA expression and stromal score calculated 
by ESTIMATE algorithm in TCGA. (B) The Spearman correlation of THBS family mRNA expression and CAFs abundance deconvoluted by EPIC and MCP-
counter algorithms in TCGA. (C) The difference in THBS2 mRNA expression among distinct TME subtypes derived from Bagaev et al. (D) The six immune 
subtypes derived from Bagaev et al. distribution in the high-THBS2 group and low-THBS2 group. The Chi-square test was used and the samples were di-
vided into a high-THBS2 group and a low-THBS2 group based on the median THBS2 mRNA expression. (E) The Spearman correlation of THBS family mRNA 
expression and Hallmark pathway activity calculated by the gene set variation analysis (GSVA) algorithm in TCGA. (F) The Pearson correlation of THBS 
family mRNA expression and EMT score calculated by GSVA algorithm in TCGA. (G) The Spearman correlation of THBS2 protein expression and CAFs and 
EMT scores derived from the CPTAC database. (H) UMAP plot of the identified cell types. Different colors represented the different cell types. (I-J) UMAP 
plot of the identified cells colored by THBS2 expression and the EMT score calculated by AddMouduleScore function, respectively. (K) Assignment of cell 
subtypes and their spatial distributions inferred by the CellTrek algorithm in CRC ST sample. (L-M) The expression of THBS2 and EMT score calculated by 
AddMouduleScore function based on ST of CRC, respectively. (N) The Spearman correlation of THBS2 mRNA expression and EMT score calculated by GSVA 
algorithm for each cancer type in TCGA. (O) The Spearman correlation of THBS2 mRNA expression and drug AUC derived from GDSC and CTRP for each 
cancer type in TCGA. The chemotherapeutic drug AUC values for each sample were predicted by pRRophetic algorithm. (P) The Spearman correlation of 
median THBS2 mRNA expression and median AUC of oxaliplatin across the cancer types in TCGA. The oxaliplatin AUC value for each sample was predicted 
by pRRophetic algorithm. (Q) The Spearman correlation of THBS2 mRNA expression and AUC of oxaliplatin for each cancer type. The oxaliplatin AUC value 
for each sample was predicted by pRRophetic algorithm. Points colored by red represented p < 2.2e-16
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Fig. 3 (See legend on next page.)
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the consistency and reliability of THBS2 associated with 
CAFs and EMT (Fig. 2G).

Simultaneously, multiple scRNA-seq datasets revealed 
that THBS2 was predominantly expressed in CAFs 
(Fig. 2H-I). CAFs displayed the highest EMT score, sug-
gesting the strongest correlation with EMT among all cell 
types (Fig. 2J and Figure S2). Furthermore, leveraging the 
CellTrek tool [40], the scRNA-seq datasets were mapped 
to corresponding ST data to decipher their spatial orga-
nization to visualize expression levels on a spatial scale. 
Consistent with our single-cell findings, CAFs exhibited 
the highest THBS2 expression and EMT score (Fig. 2K-M 
and Figure S2).

Notably, the correlation between THBS2 expres-
sion and EMT activity varied in cancers (Fig. 2N). CRC 
showed the strongest, followed by OV and PAAD, both 
of which had abundant CAFs in the TME [41, 42]. Given 
that activated CAFs and EMT could facilitate drug resis-
tance [14, 43], the connection of THBS2 with the area 
under the curve (AUC) values of the drugs applied in 
clinical practice was analyzed. These results exhibited 
that THBS2 had a remarkable positive correlation with 
the drug AUC in BRCA, CRC, HNSC, and STAD, sug-
gesting THBS2 could serve as a biomarker for chemo-
resistance (Fig.  2O). Specifically, THBS2 was positively 
correlated with the AUC of oxaliplatin, especially in 
CRC, implying it might contribute to CRC resistance to 
oxaliplatin (Fig.  2P-Q). However, 5-fluorouracil and iri-
notecan, commonly used chemotherapeutic agents for 
CRC treatment [44], showed no or weak correlation with 
THBS2 (Figure S1L-O). Collectively, these results sug-
gested that THBS2 was correlated with the CAFs, EMT, 
and chemoresistance, and potentially facilitated oxalipla-
tin resistance in CRC.

THBS2 + CAFs were associated with oxaliplatin resistance 
in CRC
The immunohistochemistry (IHC) and multiplex 
immunofluorescence (mIF) of pre-treatment human 
CRC samples further validated that THBS2 was pre-
dominantly located at the CAFs areas and consistently 
higher in non-responders, irrespective of chemother-
apy application, suggesting that THBS2 may contribute 
to primary therapeutic resistance (Fig.  3A-B and Fig-
ure S3A-C). Meanwhile, THBS2 failed to correlate with 
CRC mutation profiles, such as KRAS, BRAS and mic-
rosatellite status, as well as anatomical location (Figure 
S3D-G). Subsequently, we re-categorized the CAFs into 
THBS2 + CAFs and THBS2- CAFs to illustrate the impact 
of THBS2 + CAFs on malignant cells. THBS2 was pre-
dominantly expressed in CAFs subclusters 0, 1, 2, 7, and 
8, and thus these clusters were termed THBS2 + CAFs, 
while the remaining clusters were labeled as THBS2- 
CAFs (Fig.  3C-D and Figure S4A-B). Firstly, deconvolu-
tion of scRNA-seq of CRC utilizing the CIBERSORTx 
algorithm [45] revealed that patients with a higher pro-
portion of THBS2 + CAFs had shorter OS, disease-free 
survival (DSS), and progression-free survival (PFS), and 
were highly enriched in the EMT pathway (Fig.  3E-F 
and Figure S4C-D). Additionally, THBS2 + CAFs abun-
dance was positively associated with the AUC of oxali-
platin (Fig. 3G). A subsequent analysis utilizing Subclass 
mapping (SubMap) [46] confirmed these above results, 
indicating that THBS2 + CAFs facilitated oxaliplatin 
resistance (Fig. 3H). The reciprocal interactions between 
THBS2 + CAFs and the TME further displayed that 
THBS2 + CAFs exhibited more interactions with malig-
nant cells, primarily involving ECM, including collagen, 
laminin, FN1, and THBS pathways (Fig.  3I-J and Figure 
S4E-F). Notably, the collagen pathway constituted the 
major part of these interactions and enriched highly in 
THBS2 + CAFs, implying the collagen pathway served a 
fundamental role in chemotherapy resistance (Fig. 3J-K).

(See figure on previous page.)
Fig. 3 THBS2 + CAFs were associated with oxaliplatin resistance in CRC. (A) Representative images of IHC staining for THBS2, α-SMA and FAP in responder 
(R) group and non-responder (NR) group. (B) Representative images of mIF for THBS2 and α-SMA. (C) UMAP plot of the distinct CAFs subtypes identified 
by THBS2 expression level. Different colors represented the different subtypes. (D) UMAP plot showing THBS2 expression across different CAFs subtypes. 
(E) Kaplan–Meier curve of OS between high and low THBS2 + CAFs abundance deconvoluted by CIBERSORTx algorithm in TGCA-CRC. (F) Gene set en-
richment analysis (GSEA) analysis showing EMT pathway was upregulated in high THBS2 + CAFs abundance subgroup. (G) The Spearman correlation of 
THBS2 + CAFs abundance and AUC of oxaliplatin in TCGA-CRC. The oxaliplatin AUC value for each sample in TCGA-CRC was predicted by pRRophetic 
algorithm. (H) SubMap algorithm evaluated the expression similarity and the chemotherapy response between TCGA-CRC and GSE19860 treated with 
mFOLFOX6 and GDSC CRC cell lines treated with oxaliplatin. (I) Number of interactions from THBS2 + CAFs to other cells inferred by CellChat algorithm. 
(J) Chord diagram showing the cell-cell interaction pathways among THBS2 + CAFs, THBS2- CAFs, and malignant cells inferred by CellChat algorithm. 
(K) The difference in collagen formation score calculated by AddMouduleScore function between THBS2 + CAFs and THBS2- CAFs. (L) UMAP plot of the 
distinct malignant cell subtypes identified via the Scissor algorithm. Different colors represented the different subtypes. (M) The counts of ligand-receptor 
interactions from CAFs subtypes to malignant cell subtypes inferred by CellChat algorithm. (N) Number of interactions from CAFs subtypes to malignant 
cell subtypes inferred by CellChat algorithm. (O) Chord diagram showing the cell-cell interaction pathways among CAFs subtypes and malignant cell 
subtypes inferred by CellChat algorithm. (P) The difference in integrin cell surface interaction score calculated by AddMouduleScore function between 
the resistant and sensitive subtype. (Q) Spatial cell charting of resistant malignant cells and THBS2 + CAFs using CellTrek algorithm. (R-T) Representative 
images of subcutaneous xenografts from SW480 cells mixed with CAF-THBS2 or combined with oxaliplatin treatment. Tumor weight and tumor volume 
were measured after implantation. **p < 0.01, ***p < 0.001, ****p < 0.0001
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Fig. 4 (See legend on next page.)
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Using the oxaliplatin-based chemotherapy RNA-seq 
data containing 20 non-responders and 9 responders, 
we conducted the Scissor algorithm [47] to define the 
resistant malignant cells (Fig.  3L). The Beyondcell [48] 
and pRRophetic [22], drug sensitivity prediction tools 
at the single-cell and bulk level, respectively, collectively 
corroborated the accuracy and reliability of Scissor in 
defining resistant cells, which had a lower Beyondcell 
score (BCS) and higher AUC value of oxaliplatin (Figure 
S4G-J). Resistant cells exhibited more communications 
with THBS2 + CAFs, which were predominantly the col-
lagen pathway (Fig.  3M-O and Figure S4K). Meanwhile, 
resistant cells had a high integrin cell surface interaction 
score, implying resistant cells had more collagen recep-
tors involved in interacting with THBS2 + CAFs (Fig. 3P). 
ST further revealed that THBS2 + CAFs were closer to 
resistant cells on a spatial scale (Fig. 3Q and Figure S4L-
M). It is noteworthy that ST3 and ST4 showed fewer 
interactions and more distance between THBS2 + CAFs 
and resistant cells, which may be attributed to the fact 
that they were from patients with partial response (PR) 
after neoadjuvant chemotherapy [31]. Furthermore, we 
explored the effects of THBS2 + CAFs on CRC resistance 
in subcutaneous xenograft model and Thbs2 conditional 
knockout mouse model. Initially, primary CAFs were 
isolated from fresh CRC tissues and stably transfected 
with THBS2 (CAF-THBS2) using lentiviral transduction. 
Then, each mouse received a subcutaneous injection 
into the right axilla of a mixture containing CRC cells 
combined with CAF-NC or CAF-THBS2 cells to subcu-
taneous xenograft model. For fibroblast-specific Thbs2 
knockout mice (Thbs2flox/flox; Col1a2-CreER), wildtype 
and floxed alleles of the Thbs2 gene are targeted by Cre 
recombinase. Western blotting validated that THBS2 was 
stably overexpressed or knocked out in CAF-THBS2 and 
Thbs2 knockout mice (CKO), respectively (Figure S5A-
B). In vivo experiments showed that CAF-THBS2 group 
had significantly larger tumor volume and weight than 
CAF-NC, while the CKO group had significantly smaller 

volume and weight than control (Thbs2flox/flox) (Fig. 3R-T 
and Figure S5C-D). Collectively, THBS2 + CAFs exhibited 
extensive interactions with malignant cells and facilitated 
CRC oxaliplatin resistance.

COL8A1 derived from THBS2 + CAFs facilitated oxaliplatin 
resistance in CRC
To provide further insight into the underlying resis-
tance mechanism, the differential gene analysis between 
oxaliplatin-resistant and sensitive CRC cells was con-
ducted [49] and displayed that the resistant cells 
exhibited up-regulated genes involved in ECM and col-
lagen pathways, such as COL8A1, COL9A3, and TGFB2 
(Fig.  4A and Figure S6A). In particular, COL8A1 and 
IGFBP6 were shared by the upregulated DEGs in resis-
tant cells and THBS2 + CAFs marker genes, suggesting 
they might contribute to resistance (Fig.  4B). Following 
in-depth analysis, COL8A1 exhibited specific expres-
sion in THBS2 + CAFs and significantly higher expres-
sion in the non-responder group, while IGFBP6 did not 
(Fig.  4C-D and Figure S6B-C). Additionally, COL8A1 
RNA and protein levels were positively correlated with 
CAFs abundance, particularly THBS2 + CAFs (Fig.  4E 
and Figure S6D-F). ST further revealed COL8A1 was 
highly expressed in the THBS2 + CAFs areas (Fig.  4F-G 
and Figure S6G-H). qPCR and ELISA confirmed that 
COL8A1 exhibited remarkable higher expression in 
CAF-THBS2, while remarkable lower expression level in 
CAFs from the fibroblast-specific Thbs2 knockout mice 
(Fig.  4H-I and Figure S6I-J). Meanwhile, we wondered 
whether COL8A1 could be secreted by CRC cells leading 
to drug resistance by autocrine fashion. qPCR and ELISA 
detected the level of COL8A1 in different CRC cell lines 
[50–52]. Compared to CAF-THBS2, COL8A1 was poorly 
expressed or even not expressed in CRC cells, which 
was supported by scRNA-seq analysis showing COL8A1 
derived from THBS2 + CAFs rather than malignant cells 
(Figure S6K-M). Therefore, these findings revealed that 
COL8A1 was mainly secreted from THBS2 + CAFs.

(See figure on previous page.)
Fig. 4 COL8A1 derived from THBS2 + CAFs facilitated oxaliplatin resistance in CRC. (A) Volcano plot showing the DEGs between resistant and sensitive 
cells in GSE42387. Those with log2FC > 1 and FDR < 0.05 were considered upregulated colored by red, while those with log2FC < -1 and FDR < 0.05 were 
considered downregulated colored by blue. (B) Venn-diagram intersected THBS2 + CAFs marker genes calculated by FindMarkers function and upregu-
lated DEGs in oxaliplatin-resistant CRC cells. Genes with FDR < 0.05 and log2FC > 1 in THBS2 + CAFs were considered marker genes. (C) Violin plot showing 
COL8A1 expression level across different CAF subtypes. (D) The difference in COL8A1 expression between non-response (NR) and response (R) group in 
GSE19860. (E) The Spearman correlation of COL8A1 expression and THBS2 + CAFs abundance deconvoluted by CIBERSORTx algorithm in TCGA-CRC. (F-
G) The expression level of COL8A1 based on ST analysis. (H) qPCR analysis of COL8A1 mRNA levels in CAF-THBS2 and CAF-NC. (I) ELISA quantification of 
COL8A1 levels in the supernatant of CAF-THBS2 and CAF-NC cultures. (J) The Spearman correlation of COL8A1 expression and AUC of oxaliplatin in TCGA-
CRC. The oxaliplatin AUC value for each sample in TCGA-CRC was predicted by pRRophetic algorithm. (K) SubMap algorithm evaluated the expression 
similarity and the chemotherapy response between TCGA-CRC and GSE19860 treated with mFOLFOX6, and GDSC CRC cell lines treated with oxaliplatin. 
(L) ROC curve showing COL8A1 expression level predicting response efficiency to oxaliplatin-based chemotherapy. (M) Representative images of IHC 
staining for COL8A1 in responder (R) and non-responder (NR) groups. (N-O) The CCK8 assay compared the proliferation rates of CRC cells treated with ox-
aliplatin alone or combined with rhCOL8A1. (P-Q) Representative images of subcutaneous xenografts from SW480 cells treated with rhCOL8A1 alone or 
combined with oxaliplatin. Tumor weight and tumor volume were measured after implantation. (R-S) Representative images of subcutaneous xenografts 
from HCT116 cells treated with rhCOL8A1 alone or combined with oxaliplatin. Tumor weight and tumor volume were measured after implantation. ns, 
not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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To fully illustrate whether COL8A1 could facilitate 
oxaliplatin resistance, further analyses from multiple 
standpoints were carried out. Firstly, transcriptomic 
analysis found that COL8A1 was strongly correlated 
with the AUC of oxaliplatin and resistance group in CRC 
(Fig.  4J-K). The area under the receiver operating char-
acteristic (ROC) curve indicated that the powerful ability 
of COL8A1 expression level predicted oxaliplatin-based 
chemotherapy resistance (Fig. 4L). Next, IHC staining of 
CRC human samples validated that COL8A1 was highly 
expressed in non-responders (Fig.  4M). Then, CCK8 
assays further revealed that oxaliplatin could inhibit 
CRC cells, while the inhibitory effect was antagonized 
by elevating COL8A1 (Fig.  4N-O). Lastly, subcutaneous 
xenografts models were established by subcutaneously 
implanting CRC cells and treated with oxaliplatin alone 
or combined with recombinant human COL8A1 (rhC-
OL8A1). Oxaliplatin significantly reduced tumor weight 
and volume in the xenograft models, however, the com-
bination with rhCOL8A1 antagonized the anti-tumor 
effort (Fig. 4P-S). In summary, these data indicated that 
COL8A1 could facilitate oxaliplatin resistance in CRC.

COL8A1 activated EMT leading to oxaliplatin resistance in 
CRC
Transcriptome analysis further revealed that COL8A1 
was highly expressed in tumor samples and stage III/IV, 
as well as closely correlated with shorter survival time, 
underscoring its highly malignant behavior (Fig.  5A-B 
and Figure S7A), which was validated by clinical CRC 
samples (Fig.  5C-D). Gene set enrichment analysis 
(GSEA) revealed that high COL8A1 group showed 
higher EMT activity and its RNA and protein levels were 
remarkably associated with the EMT score (Fig.  5E-F 
and Figure S7B). EMT exerts a crucial function in regu-
lating the invasive and migratory abilities of malignant 
cells [53]. As expected, exposure to rhCOL8A1 resulted 
in a marked increase in the invasive and migratory capa-
bilities of CRC cells, while no difference was observed 
in cell proliferation (Fig. 5G-I and Figure S7C-G). Nota-
bly, scRNA-seq analysis found that the resistant cells 
had higher EMT score than sensitive cells (Fig.  5J-K). 
GSEA of oxaliplatin-based chemotherapy RNA-seq and 
GDSC CRC cell lines data revealed that non-responders 
and resistant CRC cell lines had higher EMT activity, 
underscoring that EMT may facilitate CRC oxaliplatin 
resistance (Fig.  5L-M). Considering the pivotal role of 
transcription factors (TFs) in regulating gene expression, 
SCENIC decoded the uniquely activated TFs in oxalipl-
atin-resistant cells to uncover the mechanism [54]. The 
JUN family and FOS family activities were up-regulated 
in the resistant cells (Fig. 5N and Figure S8A), which had 
been proven to regulate E-cadherin (CDH1), N-cadherin 
(CDH2), and SNAIL2 expression in cancers [55–57]. 

Concomitantly, differential expression analysis at the sin-
gle-cell level revealed that the JUN and FOS gene expres-
sion levels were up-regulated in resistant cells (Fig.  5O 
and Figure S8B). To discover the process of switch-
ing from sensitive to resistant cells, Monocle 2 R pack-
age [58] was conducted to explore the pseudo-temporal 
developmental trajectory. The oxaliplatin-resistant cells 
occupied the terminal phase of the trajectory (Fig. 5P-Q). 
Further analysis revealed that the gradual generation of 
EMT phenotype during transition, and the expression 
of identified EMT TFs and markers exhibited a progres-
sively increasing trend (Fig. 5R-S). Meanwhile, COL8A1 
showed a remarkable positive correlation with EMT 
markers, except CDH1, implying COL8A1 may regulate 
their expression to promote EMT (Figure S8C). Consis-
tently, IHC staining of clinical samples further displayed 
that non-responder group had higher expression level of 
N-cadherin, VIM, ZEB1 and SNAIL, while lower level of 
E-cadherin (Fig.  5T and Figure S8D). Briefly, COL8A1 
may activate the EMT phenotype, thereby leading to 
oxaliplatin resistance in CRC.

COL8A1 interacting with ITGB1 contributed to oxaliplatin 
resistance
To gain more insight into the biological functions of how 
COL8A1 derived from THBS2 + CAFs facilitating oxalipl-
atin resistance, CellChat program was applied to analyze 
and identify specific cell-cell interaction (CCI) [59]. CCI 
displayed THBS2 + CAFs exerted more interactions with 
resistant malignant cells via COL8A1-ITGB1 (Fig.  6A). 
The ST revealed that COL8A1 had more colocalization 
with ITGB1 than ITGB8, thereby ITGB1 may play a par-
ticularly vital role in communication (Fig. 6B and Figure 
S9A). Meanwhile, ITGB1 was highly expressed in resis-
tant cells, positively correlated with resistant cells abun-
dance, oxaliplatin AUC value, and COL8A1 expression, 
and negatively correlated with oxaliplatin activity, fur-
ther indicating the potential impact of ITGB1 on resis-
tance (Fig.  6C-G). Notably, IHC validated that ITGB1 
showed higher expression level in non-responder group 
(Fig. 6H), indicating that ITGB1 may act as a crucial role 
in resistance.

To investigate the potential interaction ability of the 
COL8A1-ITGB1, we conducted molecular docking anal-
ysis to confirm the binding activity between COL8A1 and 
ITGB1. Structural visualization revealed specific interac-
tions at the amino acid level contribute to the complex 
stability of COL8A1-ITGB1 complex (Fig.  6I). The sta-
bility of the COL8A1-ITGB1 complex was supported 
by quantitative metrics over a 100-nanosecond simula-
tion (Fig. 6J). The Root Mean Square Deviation (RMSD) 
showed a rapid initial rise followed by a stabilization, 
indicating that the complex achieved a stable conforma-
tion early in the simulation. Additionally, the Radius of 
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Fig. 5 COL8A1 activated EMT leading to oxaliplatin resistance in CRC. (A) The difference in COL8A1 expression between tumor and normal samples in 
TCGA-CRC. (B) The difference in COL8A1 expression across distinct stages in TCGA-CRC. (C) Kaplan-Meier curve of OS between high and low COL8A1 
expression using clinical samples. (D) Representative images of IHC staining for COL8A1 in high COL8A1 group and low COL8A1 group. (E) GSEA showing 
pathway activity in high and low COL8A1 groups in TCGA-CRC. (F) The Spearman correlation of COL8A1 expression and EMT score calculated by GSVA in 
TCGA-CRC. (G-I) Representative data from invasion and migration assays performed in SW480 cells treated with rhCOL8A1 or NC. (J) UMAP plot of EMT 
score calculated by AddMouduleScore function in malignant cells. (K) The difference in EMT score calculated by AddMouduleScore function between ox-
aliplatin-resistant and sensitive cells at the single cell level. (L-M) GSEA showing the EMT signaling pathway was upregulated in the NR group of GSE19860 
and oxaliplatin-resistant CRC cell lines of GDSC, respectively. (N) Identification of activated TFs in oxaliplatin-resistant cells using the SCENIC algorithm. (O) 
DEGs between oxaliplatin-resistant and sensitive cells at the single-cell level. Genes with FDR < 0.05 were considered significant. Those with log2FC > 0.5 
were considered upregulated genes colored by red, while Those with log2FC < -0.5 were considered downregulated genes colored by blue. (P-R) Tempo-
ral analysis of the acquired resistance in malignant cells colored by Pseudotime, malignant cell subclusters, and EMT score using Monocle 2 algorithm. (S) 
Temporal increase in the expression of TFs and other genes associated with the EMT using Monocle 2 algorithm. (T) Representative images of IHC staining 
for E-cadherin, N-cadherin, VIM, ZEB1 and SNAIL in responder (R) group and non-responder (NR) group. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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Fig. 6 (See legend on next page.)
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Gyration (Rg) and Buried Surface Area (SASA) analyses 
confirmed a compact and stable interaction interface 
between COL8A1 and ITGB1 (Fig.  6J). These results 
collectively demonstrate the robust binding affinity and 
structural integrity of the COL8A1-ITGB1 complex. 
Moreover, experimental Co-IP confirmed that COL8A1 
could directly interact with ITGB1, thereby collectively 
leading to the development of resistance (Fig. 6K). Like-
wise, SubMap also revealed patients with high COL8A1-
ITGB1 score were more likely to be non-sensitive to 
chemotherapy (Fig.  6L). To experimentally validate our 
observations, in vitro culture of CRC cells with COL8A1 
or siITGB1 revealed siITGB1 could weaken the effect of 
rhCOL8A1 in facilitating oxaliplatin resistance (Fig. 6M-
N). Consistently, in in vivo experiment, adding siITGB1 
could significantly reduce tumor volume and weight 
(Fig. 6O-Q). Moreover, wound healing and transwell dis-
covered the migratory and invasive capabilities of CRC 
cells declined after exposure to siITGB1 (Figure S9B-I). 
Western blotting validated that elevated COL8A1 could 
upregulate N-cadherin, SNAIL, and Vimentin, and down-
regulate E-cadherin, while combination with siITGB1 
reduced EMT markers levels (Fig. 6R-S). Together, these 
results suggested the COL8A1 could directly interact 
with malignant cells via COL8A1-ITGB1, which stimu-
lated malignant cells to acquire resistance to oxaliplatin.

COL8A1 interfered with PI3K-AKT signaling promoting 
oxaliplatin resistance
For a deeper mechanistic understanding, KEGG analy-
sis of DEGs between resistant and sensitive malignant 
cells at the single-cell level revealed resistant cells highly 
enriched in the PI3K-AKT pathway (Fig.  7A-B). The 
PI3K-AKT pathway score exhibited a positive correlation 
with the AUC of oxaliplatin, suggesting that PI3K-AKT 
played a potential role in oxaliplatin resistance (Fig. 7C). 
Additionally, GSEA displayed patients with high COL8A1 
exhibited activated PI3K-AKT activity and the shared 
gene significantly enriched in the PI3K-AKT pathway 
(Fig.  7D-F). COL8A1 was robustly positively correlated 
with PI3K-AKT pathway score and downstream gene 

expression (Fig.  7G and Figure S10A-B). These results 
provided us insight into the possibility that COL8A1 may 
potentially activate the PI3K-AKT leading to oxaliplatin 
resistance. These in silico findings were supported by 
Western blotting, which indicated elevated expression of 
p-AKT upon rhCOL8A1, while deceased level of p-AKT 
upon siITGB1 (Fig.  7H-I). Similarly, Western blotting 
also showed that rhCOL8A1 activated PI3K but could be 
antagonized by siITGB in the mice (Fig. 7J).

Furthermore, Beyondcell was employed to screen 
out potential compounds for oxaliplatin-resistant cells 
[48]. Four PI3K-AKT signaling inhibitors, tabelisib, 
KU-0063794, AZD8055, and BYL-719 were observed, 
suggesting PI3K-AKT inhibitors could mitigate oxali-
platin resistance (Figure S10C-D). In vitro AKT inhibitor 
Ipatasertib was used to confirm the drug-resistant effect 
of the PI3K-AKT pathway. The CCK8 and subcutaneous 
xenograft mouse model displayed that Ipatasertib could 
reverse the contribution of COL8A1 to oxaliplatin resis-
tance and remarkably reduce tumor volume and weight 
(Fig.  7K-O). The migratory and invasive capabilities of 
CRC cells declined after treatment with Ipatasertib (Fig-
ure S10E-L). Western blotting confirmed that PI3K-AKT 
pathway and EMT phenotype were reduced after expo-
sure to siAKT in CRC cells (Fig.  7P-S). Together, these 
results proposed that COL8A1 directly interacting with 
ITGB1 could activate the PI3K-AKT pathway and pro-
mote EMT, thereby leading to CRC resistance to oxali-
platin (Fig. 7T).

Discussion
Although oxaliplatin-based chemotherapy is a stan-
dard treatment approach for CRC, the management of 
oxaliplatin resistance remains an ongoing obstacle [3, 
60]. Comprehending the interplay between cancer cells 
and TME components was pivotal for devising effec-
tive cancer treatment strategies [11]. Mounting evi-
dence highlights highly heterogeneous CAFs play crucial 
roles in cancer progression and therapy resistance [14]. 
However, the specific CAFs subgroups facilitating CRC 
oxaliplatin resistance remain elusive, thus underscoring 

(See figure on previous page.)
Fig. 6 COL8A1 interacting with ITGB1 contributed to oxaliplatin resistance. (A) Interactions between THBS2 + CAFs and resistant malignant cells inferred 
by CellChat algorithm. (B) Visualization of COL8A1-ITGB1 interaction for ST data. (C) The difference in ITGB1 expression between resistant and sensitive 
malignant cells at the single-cell level. (D-E) The Spearman correlation of ITGB1 expression and resistant cell abundance deconvoluted by CIBERSORTx 
and AUC of oxaliplatin in TCGA-CRC, respectively. The oxaliplatin AUC value for each sample in TCGA-CRC was predicted by pRRophetic algorithm. (F) 
The Spearman correlation of ITGB1 expression and activity of oxaliplatin in CellMiner database. (G) The Spearman correlation of COL8A1 expression and 
ITGB1 expression in TCGA-CRC. (H) Representative images of IHC staining for ITGB1 in responder (R) group and non-responder (NR) group. (I) Molecular 
dynamics simulation of the COL8A1-ITGB1 complex, with structural visualization of key interacting residues. (J) Quantitative analysis of the COL8A1-ITGB1 
complex stability over a 100-nanosecond simulation, showing Root Mean Square Deviation (RMSD), Radius of Gyration (Rg), and Buried Surface Area 
(SASA) values. (K) Co-IP demonstrated the protein interaction between COL8A1 and ITGB1 in CRC cells. (L) SubMap algorithm evaluated the similarity 
and the chemotherapy response between TCGA-CRC and GSE19860 treated with mFOLFOX6, and GDSC CRC cell lines treated with oxaliplatin. COL8A1-
ITGB1 score was calculated based on the average ligand and receptor expression. (M-N) The CCK8 assay compared the proliferation rates of CRC cells 
treated with oxaliplatin plus rhCOL8A1 or combined with siITGB1. (O-Q) Representative images of subcutaneous xenografts from CRC cells treated with 
rhCOL8A1 alone or combined with oxaliplatin. Tumor weight and tumor volume were measured after implantation. (R-S) Western blotting showing EMT 
markers levels in CRC cells treated with rhCOL8A1 or combined with siITGB1. **p < 0.01, ***p < 0.001, ****p < 0.0001
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the necessity for further investigation into CAFs het-
erogeneity. In this study, we comprehensively and thor-
oughly investigated the transcriptome characterizations 
of THBS family genes at the pan-cancer level, indicating 
that THBS2 was positively associated with CAFs, EMT, 
and chemoresistance. Together with scRNA-seq and ST, 
this study identified THBS2 + CAFs that could lead to 
EMT activation and oxaliplatin resistance via the colla-
gen pathway in CRC. Importantly, our study uncovered 
a previously unrecognized mechanism whereby COL8A1 
secreted from THBS2 + CAFs binds to ITGB1 expressed 
on resistant cells, leading to the PI3K-AKT and EMT 
activation, thereby leading to oxaliplatin resistance. Inhi-
bition of COL8A1 attenuated cancer progression and 
enhanced oxaliplatin sensitivity, highlighting the promis-
ing role of COL8A1 as a target for overcoming oxaliplatin 
resistance.

By mining multi-omics profiling data, we first depicted 
the expression, methylation, and mutation profiles of 
THBS family genes. These results revealed that gene 
expression was the predominant responsible for malig-
nant behaviors and cancer progression, rather than 
genetic and epigenetic alteration. THBS family genes are 
mainly expressed in stromal cells, especially in CAFs. 
In particular, THBS2 was remarkably positively corre-
lated with CAF activation and EMT at the pan-cancer 
level, confirmed by scRNA-seq and ST. THBS2 has been 
reported to act as a diagnostic and prognostic biomarker 
and be associated with cancer progression and recur-
rence in several cancer types [61–65]. Meanwhile, we dis-
covered the high expression of THBS2 strongly positively 
correlated with the AUC values of chemotherapy agents, 
thereby, THBS2 might serve as a biomarker predicting 
chemoresistance [66, 67].

A previous study found that high THBS2 + CAFs dis-
played a poor response to immunotherapy in LUAD 
[65], however, the potential impact of THBS2 + CAFs on 
clinical chemotherapy has not yet been unveiled. In this 
study, we integrated multi-omics data and observed that 
THBS2 + CAFs abundance was adversely correlated with 
chemotherapy response. Moreover, THBS2 + CAFs were 
closer to resistant malignant cells in spatial distance and 
had more interactions with resistant cells, suggesting that 
THBS2 + CAFs facilitated CRC oxaliplatin resistance. The 
collagen pathway played a crucial role in communica-
tions between THBS2 + CAFs and resistant cells, which 
has been reported to have an important impact on con-
trolling cancer growth, progression, and therapeutic 
response [68]. A collagen ligand, COL8A1, specifically 
secreted from THBS2 + CAFs facilitated oxaliplatin resis-
tance in CRC and could serve as a biomarker predict-
ing chemoresistance. ITGB1, one of the most common 
subunits in the integrin family, is widely overexpressed 
in cancers and plays a non-negligible role in mediating 

resistance to diverse anti-cancer drugs [69–72]. ITGB1, 
coupled with distinct integrin α subunits, serves as the 
receptor for a wide variety of collagens, like collagen I-IV, 
VI, and X [69]. A recent study found paracrine and auto-
crine COL8A1 could bind to ITGB1 promoting tumor 
progression and gemcitabine resistance in PAAD [73]. 
Consistently, COL8A1 and ITGB1 showed spatial co-
localizing and directly interact with each other in our 
study, suggesting they together contributed to the devel-
opment of oxaliplatin resistance.

The amount of data gathered showed that chemothera-
peutic resistance development is related to the EMT pro-
cess [43]. Consistent with previous studies, we revealed 
that EMT was involved in oxaliplatin resistance at bulk 
and single-cell levels. COL8A1 exhibited a strong asso-
ciation with the EMT phenotype and promoted invasion 
and migration, while ITGB1 knockdown attenuated the 
EMT phenotype, suggesting targeting the ligand-receptor 
interaction could be a potential novel strategy. Addition-
ally, JUN family and FOS family TFs were up-regulated in 
oxaliplatin-resistant cells, and gradually elevated expres-
sion during the transition from sensitive cells to resistant 
cells. JUN family and FOS family TFs have been reported 
to facilitate the EMT process by regulating E-cadherin, 
N-cadherin, and SNAI2 expression in cancers [55–57]. 
Moreover, the PI3K-AKT pathway was previously impli-
cated in CRC progression and chemoresistance [74, 75], 
which is demonstrated by our findings. These findings 
are compatible with the idea that the PI3K-AKT path-
way might trigger the EMT process by downregulat-
ing epithelial markers, while upregulating mesenchymal 
markers and EMT-specific transcription factors, thereby 
promoting CRC invasion, migration, and resistance [76, 
77]. Notably, we further discovered some PI3K-AKT 
inhibitors might be effective for oxaliplatin-resistant 
cells. In combination with chemotherapy, Ipatasertib, a 
pan-AKT inhibitor, could enhance anti-tumor activity 
and improve survival time in multiple cancers [78, 79]. 
These data suggested that a combination with PI3K-AKT 
inhibitors might overcome the mechanism of oxaliplatin 
resistance in CRC.

In conclusion, this study found that COL8A1 derived 
from THBS2 + CAFs interacting with ITGB1 enhances 
EMT activity via the PI3K-AKT pathway leading to oxali-
platin resistance in CRC.
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Fig. 7 (See legend on next page.)

 



Page 17 of 19Zhou et al. Molecular Cancer          (2024) 23:282 

Abbreviations
AUC  Area under the curve
BCS  Beyondcell score
CAFs  Cancer-associated fibroblasts
CCI  Cell-cell interaction
CCLE  Cancer Cell Line Encyclopedia
CMS  Consensus molecular subtypes
CNVs  Copy number variants
CPTAC  Clinical Proteomic Tumor Analysis Consortium
CRC  Colorectal cancer
CTRP  Cancer Therapeutics Response Portal
DEGs  Differentially expressed genes
DSS  Disease-free survival
ECM  Extracellular matrix
EMT  Epithelial mesenchymal transition
FDR  False discovery rate
GDSC  Genomics of Drug Sensitivity in Cancer
GSEA  Gene set enrichment analysis
GSVA  Gene set variation analysis
GTEx  Genotype-Tissue Expression
IHC  Immunohistochemistry
KEGG  Kyoto Encyclopedia of Genes and Genomes
Log2FC  Log2 fold change
mIF  Multiplex immunofluorescence
OS  Overall survival
PFS  Progression-free survival
PI3K  Phosphatidylinositol 3-kinase
rhCOL8A1  Recombinant human COL8A1
scRNA-seq  Single-cell RNA sequencing
SNP  Single nucleotide polymorphism
SNV  Single nucleotide variant
ST  Spatial transcriptomics
SubMap  Subclass mapping
TCGA  The Cancer Genome Atlas
TME  Tumor microenvironment

Supplementary Information
The online version contains supplementary material available at  h t t  p s : /  / d o  i .  o r 
g / 1 0 . 1 1 8 6 / s 1 2 9 4 3 - 0 2 4 - 0 2 1 8 0 - y     .  

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Acknowledgements
Not applicable.

Author contributions
ZQL designed, conceived, and supervised the research. XWH and JHD 
provided project guidance and funding support. XZ performed bioinformatics 
analysis and wrote the manuscript. JSH and ANZ collected data from public 
databases. JSH and ANZ performed statistical analysis of experiment trials. 

ANZ, JSH, YHB, and STL conducted cell and animal experiments and generated 
data. JSH, ANZ, YHB, STL, HX, YYZ, SYW, and DS reviewed and made significant 
revisions to the manuscript. ZKZ and LL checked the figures and tables. PL and 
QC restricted and rechecked the methods and data. CHZ and YKC collected 
and prepared the related papers. SXY and BYL provided clinical samples. All 
authors read and approved the final manuscript.

Funding
This work was funded by the Henan Province Medical Research Project (Grant 
No. LHGJ20190388).

Data availability
All published data used in this work can be acquired from public databases. 
Other data used for this study are available from the corresponding author 
upon reasonable request.

Declarations

Consent for publication
All authors have consented to submit this article for publication.

Competing interests
The authors declare no competing interests.

Author details
1Department of Interventional Radiology, The First Affiliated Hospital of 
Zhengzhou University, Zhengzhou, Henan 450052, China
2Interventional Institute of Zhengzhou University, Zhengzhou,  
Henan 450052, China
3Interventional Treatment and Clinical Research Center of Henan 
Province, Zhengzhou, Henan 450052, China
4Department of Pediatric Surgery, The First Affiliated Hospital of 
Zhengzhou University, Zhengzhou, Henan 450052, China
5Department of General Surgery, Peking Union Medical College Hospital, 
Beijing 100020, China
6Department of Urology, The First Affiliated Hospital of Zhengzhou 
University, Zhengzhou, Henan 450052, China
7Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an 
Jiaotong University, Xi’an, Shaanxi 710061, China
8Department of Oncology, Zhujiang Hospital, Southern Medical 
University, Guangzhou, China
9Department of Neurosurgery, Xiangya Hospital, Central South University, 
Changsha, Hunan 410008, China
10Department of Oncology, The First Affiliated Hospital of Zhengzhou 
University, Zhengzhou, Henan 450052, China
11Clinical Science Institute, University Hospital Galway, Galway, Ireland
12Tianjian Laboratory of Advanced Biomedical Sciences, Academy of 
Medical Sciences, Zhengzhou University, Zhengzhou, China
13Department of Colorectal Surgery, The First Affiliated Hospital of 
Zhengzhou University, Zhengzhou University, Zhengzhou, China
14Richard Dimbleby Department of Cancer Research, Comprehensive 
Cancer Centre, Kings College London, London, UK
15Institute of Basic Medical Sciences, Chinese Academy of Medical 
Sciences and Peking Union Medical College, Beijing 100730, China

(See figure on previous page.)
Fig. 7 COL8A1 interfered with PI3K-AKT signaling promoting oxaliplatin resistance. (A) The KEGG analysis of DEGs between malignant resistant cells and 
sensitive cells calculated by FindMarkers function at the single-cell level. (B) UMAP plot of PI3K-AKT pathway score calculated by AddMouduleScore func-
tion in malignant cells. (C) The Spearman correlation of PI3K-AKT pathway score calculated by GSVA algorithm and AUC of oxaliplatin in TCGA-CRC. The 
oxaliplatin AUC value for each sample in TCGA-CRC was predicted by the pRRophetic algorithm. (D) GSEA showing PI3K-AKT pathway was upregulated in 
the high COL8A1 group of TCGA-CRC. (E) Venn-diagram intersected DEGs between high and low COL8A1 group, Hallmark EMT genes and genes correlat-
ed with COL8A1 greater than 0.8. (F) The KEGG analysis of 56 intersected genes. (G) The Spearman correlation of AKT3 expression and COL8A1 expression 
in TCGA-CRC. (H-I) Western blotting showing PI3K-AKT pathway activity in CRC cells treated with rhCOL8A1 or combined with siITGB1. (J) Western blotting 
showing PI3K-AKT pathway activity treated with rhCOL8A1 or combined with siITGB1 in subcutaneous xenograft mouse model. (K-L) The CCK8 assay 
compared the proliferation rates of CRC cells treated with oxaliplatin plus rhCOL8A1 or combined with AKT inhibitor Ipatasertib. (M-O) Representative 
images of subcutaneous xenografts from SW480 cells treated with rhCOL8A1 alone or combined with AKT inhibitor Ipatasertib. Tumor weight and tumor 
volume were measured after implantation. (P-Q) Western blotting showing PI3K-AKT pathway activity in CRC cells treated with rhCOL8A1 or combined 
with siAKT. (R-S) Western blotting showing EMT markers levels in CRC cells treated with rhCOL8A1 or combined with siAKT. (T) Schematic representation 
of the suggested mechanism by which COL8A1 mediates cancer cell survival and tumor progression
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