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Abstract
Biology of aging is an active and rapidly expanding area of biomedical research. Over the years, focus of work in this field has 
been gradually shifting from studying the effects and symptoms of aging to searching for mechanisms of the aging process. 
Progress of this work led to an additional shift from looking for “the mechanism” of aging and formulating the correspond-
ing “theories of aging” to appreciation that aging represents a net result of multiple physiological changes and their intricate 
interactions. It was also shown that mechanisms of aging include nutrient-dependent signaling pathways which have been 
remarkably conserved in the course of the evolution. Another important development in this field is increased emphasis 
on searching for pharmacological and environmental interventions that can extend healthspan or influence other aspects of 
aging. Progress in understanding the key role of aging as a risk factor for chronic disease provides impetus for these studies. 
Data from the recent pandemic provided additional evidence for the impact of age on resilience. Progress of work in this 
area also was influenced by major analytical and technological advances, including greatly improved methods for the study 
of gene expression, protein, lipids, and metabolites profiles, enhanced ability to produce various genetic modifications and 
novel approaches to assessment of biological age. Progress in research on the biology of aging provides reasons for optimism 
about the chances that safe and widely applicable anti-aging interventions with significant benefits for both individual and 
public health will be developed in the not too distant future.
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Introduction

Biology of aging is a rapidly expanding and evolving 
research field, and we thought that the readers might be 
interested in a brief overview of new developments, new 
concepts, new areas of emphasis, and new methodological 
approaches in this area of investigation. What follows is a 
somewhat personal view of these changes during the last 
25 years. Twenty-five years ago, Holly Brown-Borg reported 
remarkable extension of longevity of mutant mice we were 
working with [1], and the direction of research in our labo-
ratory started to shift from reproductive endocrinology to 
biology of aging. For readers interested in earlier develop-
ments in this field and in another perspective on more recent 

events, we recommend an excellent recent article by Arlan 
Richardson [2].

Genetics of Aging: Longevity Genes, Gene 
Polymorphisms, and Profiles of Gene Expression

Pioneering studies of Johnson, Jazwinski, Kenyon, Guarente, 
Ruvkun, Partridge, Tatar, and other investigators in the ‘80s 
and ‘90s, provided evidence that mutations of individual 
genes can markedly, often quite impressively, extend longev-
ity in different organisms, including baker’s yeast (Saccharo-
myces cerevisiae), microscopic roundworm (Caenorhabdi-
tis elegans), and fruit fly (Drosophila melanogaster). These 
mutations were soon termed “longevity genes” or “longevity 
assurance genes,” and their discovery attracted great atten-
tion within, as well as outside, the field of biology of aging, 
including popular news media. Studies of longevity genes in 
yeast and in invertebrate animals were soon followed by the 
reports that single gene mutations can also extend longev-
ity in mice (Mus musculus) [1, 3], organisms taxonomically 
and biologically much closer to humans. These findings in 
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experimental animals led to renewed interest in the study of 
the genetic control of human aging and to search for longev-
ity genes in individuals who lived to exceptionally old age 
(for example, centenarians) or came from long-lived families 
[4–8].

The most exciting outcomes of the studies of genetics of 
aging in the ‘90s and in the succeeding years were the iden-
tification of specific cellular processes (signaling pathways) 
and the corresponding epistatic relationships between lon-
gevity genes, which are involved in the control of longevity, 
and the realization that these pathways have been remark-
ably preserved in the course of evolution [9–13]. Extensive 
homologies of the insulin/insulin-like growth factors signal-
ing (IIS) pathway and the mechanistic target of rapamycin 
(mTOR) pathway [14, 15], and magnitude of their impact on 
aging in yeast, worms, insects, and mammals, are particu-
larly striking when viewed in light of tremendous differences 
in body plan, life history, and physiological functioning of 
these species.

Long-lived mutants have been extremely useful in the 
studies of mechanisms of aging because their complex phe-
notypes and extended longevity can be traced back to func-
tions of individual genes, and animals predisposed to slower 
and/or delayed aging can be easily identified when they are 
young, thus avoiding complications due to the effects of 
aging and to shorter survival of normal controls. While these 
studies continue, the focus of work on the genetics of aging 
has been gradually shifting from the search for novel lon-
gevity genes and single nucleotide polymorphisms (SNPs) 
associated with longevity, risk of various chronic diseases, 
or other age-related phenotypes, to characterizing changes 
in gene expression and corresponding changes in function 
of various tissues and organ systems. In terms of methodol-
ogy, this represents a shift away from genome-wide associa-
tion studies (GWAS) to various microarray platforms for 
analysis of steady-state levels of messenger RNAs, RNA 
sequencing (RNAseq), and now increasingly to single-cell 
RNA sequencing (scRNA-seq). There is also increasing 
interest in chromatin modifications (primarily acetylation 
and methylation) that may be involved in epigenetic control 
of gene expression.

Healthspan Vs Lifespan

Alterations in average, median, and particularly in the 
maximal longevity, provide important and, in most cases, 
uncontestable evidence of the effects of genetic factors, 
environment, or pharmacological interventions on the pro-
cess of aging. Real or imagined possibilities of extending 
lifespan have been sought for millennia and continue to 
excite our imagination. However, reflection on the issues of 
aging, mortality, and longevity, leads to realization that in 
terms of both public health issues and individual hopes and 

aspirations, longevity per se is not the key parameter or the 
most important goal. Instead, there is increasing interest in 
achieving “healthy aging” or “successful aging,” with these 
terms representing extension of healthspan, the period of 
life free of disease and disabilities. This brings up a question 
whether any of the interventions shown to extend longev-
ity (such as calorie restriction, suppression of somatotropic 
signaling, or treatment with rapamycin) can also increase the 
absolute or relative length of the healthspan. This question 
appears to be very straightforward, but is not easy to answer. 
Much work has been done, and continues to be directed at 
developing reliable and practical means of assessment of 
healthspan and frailty in humans and in experimental ani-
mals [16–21].

The importance of this issue is almost impossible to over-
state. This is probably best illustrated by the association of 
the impressive increase in human life expectancy due to 
vaccinations and other public health measures and to the 
progress of medicine with the increased number of people 
living with Alzheimer’s disease and other dementias. On the 
other hand, people achieving exceptional longevity gener-
ally experienced a reduced, rather than expanded, period of 
major health problems and dependence [22–27]. Moreover, 
there is increasing evidence that anti-aging interventions 
can extend healthspan in experimental animals [3, 28–31]. 
These findings provide realistic hope that nutritional, phar-
macological, or environmental interventions can “square the 
survival curve” that is prolong healthy life and reduce the 
period of frailty, morbidity, infirmity, and dependence [32].

Translating Research Findings from Experimental 
Animals to Humans; Anti‑Aging Interventions 
as Preventive Medicine

Effects of various regimens of dietary restriction reported 
decades ago provided clear evidence that reducing caloric 
intake or restricting intake of protein or essential amino 
acids can extend longevity and delay the onset, as well as the 
incidence, of age-related diseases in many organisms. Sur-
prisingly, until recently, the enormous potential of anti-aging 
interventions as a bona fide preventive medicine received 
little attention from the medical profession or public health 
sector. The relatively recent increase in the interest in this 
subject led to the formulation of the “geroscience” concept 
[33], which represents recognition of the biological process 
of aging as a modifiable risk factor for chronic diseases. 
Chronological age is well documented to represent a key 
risk factor for cardiovascular disease, Alzheimer’s disease 
and other dementias, arthritis, diabetes, and cancer. The dis-
proportional impact of the Covid-19 pandemic on the elderly 
focused attention on the role of aging in susceptibility to 
infections and ability to recover from illness.
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Renewed appreciation of the relationships between aging 
and disease promotes search for interventions that could be 
recommended to healthy individuals in an effort to extend 
their healthspan. Drugs which are already well characterized 
and approved for human use and compounds sold without a 
prescription are of obvious interest in this regard. Metformin 
is a drug widely used for the treatment of diabetes and has 
very strong record of safety and effectiveness. It was already 
reported to provide treated patients with significant level of 
protection from cancer, CVD, and dementias [34–36], and 
was shown to extend longevity of mice in some (although 
not all) studies [37–42]. A search for potential health ben-
efits of metformin in individuals who do not have diabetes 
was spearheaded by Barzilai and his colleagues and a study 
termed “TAME” (Targeting Aging with Metformin) is ongo-
ing [43].

Rapamycin inhibits RNA translation and protein synthe-
sis, and promotes autophagy by suppressing the activity of 
mTOR Complex I and is used clinically to prevent rejection 
of transplanted organs [44]. It extends longevity in mice and 
in simpler organisms ([45–51], and was reported to prevent 
cancer [52]. Moreover, a closely related compound was 
reported to improve the responses of middle-aged people 
to a flu vaccine [53]. The impact of rapamycin on aging, 
with particular attention to healthspan, is tested in ongoing 
studies in domestic dogs [54] and non-human primates [55].

Another relatively new area of biogerontological studies 
deals with the role of senescent cells. Cell senescence was 
long believed to represent a natural defense against cancer by 
removing the cells from dividing (mitotic) population [56]. 
However it was later realized that accumulation of senescent 
cells paradoxically leads to degradation of tissue environ-
ment, including increased risk of developing cancer [57]. 
Studies of Kirkland, van Deursen, Campisi, Niedernhofer, 
Robbins, and others provided evidence that drugs capable 
of reducing the accumulation of senescent cells can extend 
longevity, ameliorate numerous effects of aging, and prevent 
age-related disease in mice [58–62]. A number of clinical 
studies on the effects of these drugs (termed “senolytics”) 
in various human cohorts are ongoing and results obtained 
to date are encouraging [63–65].

New Methods, New Concepts, and New Vocabulary

Rapid progress in the fields of molecular and cell biology 
is continuing at an ever-accelerating pace and creates new 
opportunities for the studies of aging. The resulting shifts 
in emphasis include increasing interest in RNA-Seq and 
scRNA-seq (as mentioned earlier in this article) along with 
studies of the downstream consequences of alterations in 
gene expression which include analysis of proteins, metabo-
lites, lipids, and inflammation markers (proteomics, metaba-
lomoics, lipidomics etc).

Another important recent development was the demon-
stration that various measures of DNA methylation corre-
late with chronological age with great (often astounding) 
precision, thus providing “aging clocks.” It appears that 
age-related modifications of DNA and histones may pro-
vide the long-sought biomarkers of aging. Importantly, there 
is increasing evidence that age assessed by these clocks is 
influenced by factors known or suspected to affect the rate 
of aging such as stress, disease, anti-aging interventions, 
and life-extending mutations [66–70]. This indicates that the 
aging clocks can provide meaningful assessment of biologi-
cal age. This will likely prove very useful in screening poten-
tial anti-aging interventions and predicting risk of chronic 
disease and death.

In addition to the impressive methodological progress 
in the studies of biology of aging, there are also important 
developments in the interpretation of data and conceptual 
implications of the accumulating information. Thus there 
is increasing appreciation that aging cannot be explained in 
terms of a single definable cause (as proposed by the various 
“theories of aging” that have been proposed over the years) 
because it reflects complex network of interactions between 
various mechanisms operating more or less concomitantly. 
A popular representation of this conceptual advance is a 
graphic image of a set of hallmarks or pillars of aging and 
their interconnections [71, 72]. Although strict reliance on 
this model of the mechanism(s) of aging has recently been 
questioned [73], it certainly provides a very useful emphasis 
on the complexity of the underpinning physiological interac-
tions and the difficulties in unravelling its specific elements.

Another, less often discussed difficulty in identifying 
mechanisms of aging, concerns discerning the mechanisms 
from the effects of aging. This is further complicated by 
many age-associated alterations representing effects of aging 
(such as progressive decline of insulin sensitivity or ther-
mogenic activity of brown adipose tissue) appear to be also 
causally related to the aging process [74–77].

Novel Mechanisms and Prospects for Novel 
Interventions

Novel, often unsuspected mechanisms, regulatory loops, and 
means of cross-talk between different tissues that can influ-
ence longevity are identified with surprising frequency. The 
relatively recent appreciation of the role of cell senescence 
in organismal aging followed by identification of compounds 
that deplete senescent cells were mentioned earlier in this 
article.

Remarkable extension of longevity in mice in which 
experimentally-induced increase in vascular endothelial 
growth factor (VEGF) produced apparent vascular rejuve-
nation was described earlier this year [78]. These exciting 
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findings suggests existence of yet another potentially “drug-
gable” mechanism involved in the control of aging.

Studies of various classes of non-coding RNA [79–84], 
NLRP 3 inflammasome [85–89], and hepatic production of 
hydrogen sulfide [90–92] provide other examples of fairly 
recent developments in the search for mechanisms of aging 
and anti-aging interventions.

Increasing Emphasis on the Importance of Genetic 
Background of Experimental Animals in Generating 
Data Potentially Translatable to Humans 
and on Sex Differences in Responses to Anti‑Aging 
Interventions

Advantages of using inbred (that is genetically almost iden-
tical) experimental animals in biomedical research include 
wealth of information from earlier studies, multiple com-
mercial sources, availability of genetically modified animals 
with the same genetic background, and a somewhat ques-
tionable expectation of reduced variability. This, combined 
with the understandable tendency to use the same type of 
animals that have been used in published studies, led to the 
popularity of C57BL6 mice in research on aging. However, 
increased emphasis on the importance of “translatability” 
of animal research data to human applications led to inter-
est in using animals with genetic architecture resembling 
normal human populations, not inbred and highly variable. 
To meet this need, Miller suggested using animals derived 
from crossing four relatively genetically unrelated inbred 
strains, the UMHET3 mice. Notably, UMHET3 mice are 
currently used in the Interventions Testing Program (ITP) 
of the National Institute of Aging. This program tests com-
pounds suspected of anti-aging activity on longevity of mice 
at three different sites (in Michigan, Texas, and Massachu-
setts) and reports both positive and negative findings in peer-
reviewed literature [93] (https://​www.​nia.​nih.​gov/​resea​rch/​
dab/​inter​venti​ons-​testi​ng-​progr​am-​itp/​publi​catio​ns-​nia-​inter​
venti​ons-​testi​ng-​progr​am). Intriguingly, ITP results provided 
novel evidence for the impact of local environmental factors 
on the outcome of longevity studies. Longevity of UMHET3 
mice is not identical at the three research sites in spite of 
extraordinary effort to control uniformity of diet, housing 
conditions, ambient temperature, etc. [94].

Another type of genetically heterogeneous (Diversity 
Outbred; DO) mice for aging studies was developed at 
the Jackson Laboratory in Maine (https://​www.​jax.​org/​
strain/​009376). Diversity Outbred mice were developed 
by random outcross matings of 160 Collaborative Cross 
recombinant inbred mouse lines, and the colony is main-
tained by continued random matings that avoid crosses 
between siblings. This colony maintenance strategy retains 
the widest possible genetic diversity in each DO mouse. 

The DO parental lines, the Collaborative Cross strains, 
were developed by crossing eight inbred mouse strains, 
followed by subsequent inbreeding to produce new and 
unique recombinant incipient inbred lines [95].

Because of the concern that female reproductive cycles 
may introduce an additional source of individual vari-
ability, most of older studies published in this area uti-
lized only males. In accordance with guidelines from the 
National Institutes of Health and policies of many bio-
medical journals, newer work frequently utilizes both 
sexes. This led to the demonstration that results obtained 
in males and females are rarely identical and often strik-
ingly different. For example, ITP studies identified a num-
ber of interventions that extend longevity only in one sex 
(17αEstradiol and Nordihydroguaiaretic acid) or have a 
much greater effect in females (rapamycin) or males (aspi-
rin, acarbose and Protandim®) [96–98].

Conclusions

Focus of studies on the biology of aging has gradually 
shifted from describing the multiple effects of aging to 
the search for genetic and cellular mechanisms of aging. 
This resulted in identification of multiple mutations and 
deletions that impact aging, single nucleotide polymor-
phisms that track longevity, and several cellular signaling 
pathways with a remarkably conserved role in aging in 
evolutionarily very distant organisms.

Much of the ongoing work is directed at finding inter-
ventions that could have beneficial impact on human 
aging, with particular emphasis on extending the health-
span. There is much hope that nutritional, lifestyle, and 
pharmacological anti-aging interventions will emerge as 
key methods of preventative medicine with potentially 
enormous impact on individual welfare and public health.
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