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Abstract

Fisher’s partitioning of genotypic values and genetic variance is highly relevant in the current

era of genome-wide association studies (GWASs). However, despite being more than a

century old, a number of persistent misconceptions related to nonadditive genetic effects

remain. We developed a user-friendly web tool, the Falconer ShinyApp, to show how the

combination of gene action and allele frequencies at causal loci translate to genetic variance

and genetic variance components for a complex trait. The app can be used to demonstrate

the relationship between a SNP effect size estimated from GWAS and the variation the SNP

generates in the population, i.e., how locus-specific effects lead to individual differences in

traits. In addition, it can also be used to demonstrate how within and between locus interac-

tions (dominance and epistasis, respectively) usually do not lead to a large amount of non-

additive variance relative to additive variance, and therefore, that these interactions usually

do not explain individual differences in a population.

Introduction

It is generally agreed that the theoretical foundation of quantitative (complex) trait genetics

was the 1918 paper from RA Fisher [1]. Fisher showed how the effect sizes and gene action

within and between trait loci could be summarized as genetic variance components and that

these genetic variances could be estimated from the resemblance between relatives, without

knowing anything about what we now term “genetic architecture,” i.e., the number of causal

loci and the joint distribution of allele frequency and effect sizes at those loci. Douglas Falconer

popularized quantitative genetics in 1960, by providing an introduction to its general concepts

with the first edition of his now famous book “Introduction to Quantitative Genetics” [2]. Fal-

coner used the analysis of variance methodology of Fisher [1], but provided simpler and more

intuitive notation and derivations. The book was a huge success, with 3 subsequent editions,

the last one being Falconer and Mackay [3]. Extension of the concepts is provided in the

advanced text book of Lynch and Walsh [4].

Although Fisher’s variance decomposition is more than a century old, it is highly relevant

today because we now have the genomic tools to identify individual trait loci, in particular

through the experimental design of the genome-wide association study (GWAS). GWAS

essentially uses Fisher’s [1] method of partitioning genotypic values by performing a linear
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regression of the trait on SNP allelic dosage [5]. In just over a decade, hundreds of thousands

of genetic variants have been associated to traits in both model and non-model species. In

human applications, as of January 29, 2021, the GWAS Catalog [6] contained 4,845 publica-

tions and 246,178 associations from data mapped to Genome Assembly GRCh38.p13 and

dbSNP Build 153.

However, we and others have found that the concepts that link gene–gene interactions

(dominance within a locus and epistasis between loci) with genetic variation and thereby indi-

vidual differences in a population remain confusing and misunderstood. Here, we present an

R ShinyApp for use as a tool for teaching and learning quantitative genetics. We named it the

Falconer ShinyApp in memory of Douglas Falconer and his tremendous contribution to the

field of quantitative genetics [7].

Results

In the Falconer ShinyApp, we illustrate Chapters 7 and 8 of Falconer and Mackay [3] as well as

Chapter 5 of Lynch and Walsh [4], through 3 different genetic models. The application illus-

trates the concept of average effect, nonadditive effect, and the decomposition of the total

genotypic variance through the 3 models. A 1-locus model with additive and dominance effect

first describes the within locus interaction effect (dominance) on the average effect and addi-

tive variance. Then, a 2-locus model with additive and additive-by-additive effect illustrates

the inter-locus interaction effect. Finally, a completely general 2-locus model allows the user to

specify the genotypic values and allele frequencies at the 2 loci, and the resulting total geno-

typic variance is then partitioned into 5 variance components (additive, dominance, additive-

by-additive, additive-by-dominance, and dominance-by-dominance), using a general least

squares approach [4].

One-locus model with additive and dominance effects

We first consider a single locus model with alleles A1 and A2 at frequency p and 1-p, respec-

tively. Under panmixia (i.e., random mating) and Hardy–Weinberg equilibrium, the expected

genotype frequencies are (1−p)2,2p(1−p) and p2, for A2A2, A1A2 and A1A1, respectively. We

arbitrarily assign trait values -a, d, and a to the 3 genotypes, d representing the dominance

effect (within locus interaction, no interaction when d = 0) and 2a the difference between the 2

homozygotes. Under this model, the population mean is M = (2p−1)a+2p(1−p)d (see Equation

7.2 of Falconer and Mackay[3]). Fisher [1] partitioned the genotypic values and the variance

due to genotypes using a linear model approach, which models the genotypic values as a func-

tion of the allelic dosage (0, 1, or 2) of genotypes and the allele frequency. Except for the case

of pure additivity (d = 0), where there is a perfect linear relationship between genotypic value

and allelic dosage, the relationship between genotypic values and allelic dosage is nonlinear.

Fisher used a linear model to derive the least squares linear relationship between genotypic

value and allelic dosage and thereby partition of genotypic values of traits in terms of expected

values under pure additivity (called “breeding values” in the literature) and deviations from

this model due to the within locus interaction (dominance). The slope of the linear regression

of the trait genotype means, weighted by their frequency, on A1 allelic dosage (0, 1, or 2) is the

average effect of allelic substitution at a locus (confusingly also called “additive effect” in the lit-

erature):

a ¼ aþ ð1 � 2pÞd ð1Þ

The average effect depends both on half of the difference between the genotypic values of

the 2 homozygotes (a) and the dominance value d, as does the additive variance (see below).
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The residuals of the linear regression are the deviations due to the within locus interaction

(dominance). Fisher [1] partitioned the total genotypic variance (VG) of this model as

VG ¼ VA þ VD;

with VA as the variance of the additive (breeding) values, which is known as the additive vari-

ance, and VD as the dominance variance. VA is the variance due to the regression of genotype

means onto allele dosage and is given as VA = 2p(1−p)α2 = Hα2, with H being the heterozygos-

ity under Hardy–Weinberg equilibrium of the genotype frequencies. Notably, VA includes

contributions from dominance effects (through α, see Eq 1) when p6¼0.5. Similarly, the domi-

nance variance due to within locus interaction is the variance of the residuals of the linear

regression, VD = (2p(1−p)d)2 = H2d2. Therefore, the dominance variance disproportionally

depends on the locus heterozygosity compared to the additive variance (H2 versus H) and

reaches its maximum at p = 0.5 where dominance deviations are not captured by the linear

regression and do not contribute to α (Eq 1). In summary, the additive genetic variance VA is

the regression variance, and VD is the residual variance from a regression of genotypic mean

trait value on allelic dosage.

When performing a GWAS, individual phenotypes y are regressed on the number x (x = 0,

1, 2) of reference alleles at a given locus, i.e., the allelic “dosage,” where the reference allele for

this dosage count is arbitrarily the major or minor allele (but this arbitrary choice is reflected

in the sign of the regression coefficient β): y = μ+βx+e, where the residuals e include both the

nonadditive genetic effects at the locus, the genetic effects (additive and nonadditive) at other

loci, and an environmental and/or chance (nongenetic) effect. The quantity of interest is the

slope β of the model (the effect size of the locus), which is the average effect of allele substitu-

tion, hence β = α, because the expected phenotypic value of a genotype is its expected geno-

typic value, under the assumption of independence between genetic and environmental

effects. Hence, performing a regression of phenotype on allelic dosage at, for example, a SNP

marker, as routinely done in GWAS, is equivalent to estimating the average effect size, and the

regression variance is the additive genetic variance due to the locus.

For noncontinuous trait and GWAS, the same model as above can be used on either the

actual scale of the trait measurement or on a transformed scale. For example, for binary disease

traits (y = 0 or y = 1), GWAS analysis is often performed using logistic regression, so that β
and the regression variance are on an underlying logistic scale. Note that a nonlinear transfor-

mation between the observed (0 and 1) and underlying continuous scale implies that absence

of dominance variance on one scale (for example, logic or probit) does not imply absence on

the other scale.

In the Falconer ShinyApp, we let the user choose the arbitrarily assigned genotypic values

by specifying a, d, and the allele frequency p in a predefined range. Given these values, we

adapted the Table 7.2 and Fig 7.3 of Falconer and Mackay [3]. Hence, we display the popula-

tion trait mean, genotypic values (i.e., trait means per genotype class, both absolute and

expressed as deviation from the population mean), additive (breeding) values, and dominance

deviations, as well as the linear regression of the genotypic values weighted by their frequency

on the A1 allele dosage. Finally, we display the distribution of the additive (VA) and dominance

(VD) genetic variance as well as the proportion of total genetic variance explained by the addi-

tive variance (VA/VG) as a function of the arbitrarily assigned genotypic values a and d.

In a simple numerical example, we consider a locus with complete dominance and the A1

allele dominant over the recessive allele A2. We arbitrarily assign genotypic values a = 4 and

d = 4. In this example, the distributions of the additive, dominance, and total genotypic vari-

ance, as well as the ratio VA/VG, are shown in Fig 1. It shows that the contribution of additive
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variance to the total genotypic variance (VA/VG) increases when the frequency p of the domi-

nant allele decreases, with VA/VG!1 for p!0. It also shows that VA (and VG) is much higher

when the dominant allele is at low frequency (e.g., p = 0.1) than VD (and VG) when the domi-

nant allele is at higher frequency (e.g., p = 0.9).

Two-locus model with additive and additive-by-additive effects

We extend the 1-locus to a 2-locus model with additive and additive-by-additive epistatic

interaction only, assuming no within loci dominance effects (d = 0 at both loci). We introduce

a second (unlinked) locus with alleles B1 and B2 and frequencies q and 1-q, respectively. The

genotypic values and frequencies of the 9 genotypes are described in Table 1, where aAB is the

additive-by-additive interaction effect.

This model is a re-parametrization of the model described in Mäki-Tanila and Hill [8],

where our population mean becomes

M ¼ aAð2p � 1Þ þ aBð2q � 1Þ þ aABð1 � 2ðpþ qÞ þ 4pqÞ

And the average effects at the 2 loci are

aA ¼ aA þ ð2q � 1ÞaAB ð2Þ

aB ¼ aB þ ð2p � 1ÞaAB

Fig 1. Numerical example for a single locus model with genotypic value a = 4 for the homozygote A1A1 and

complete dominance of A1 (d = 4). Distributions of (A) additive (VA), dominance (VD), and total (VG) genotypic

variance and (B) proportion of genotypic variance explained by additive variance (VA/VG).

https://doi.org/10.1371/journal.pgen.1009548.g001

Table 1. Genotypic values and frequencies of a 2-locus model with additive and additive-by-additive effect and no

dominance at either locus.

A2A2 A1A2 A1A1

B2B2 −aA−aB+aAB

(1−p)2(1−q)2
−aB

2p(1−p)(1−q)2
aA−aB−aAB

p2(1−q)2

B1B2 −aA

(1−p)22q(1−q)

0

4p(1−p)q(1−q)

aA

2p2q(1−q)

B1B1 −aA+aB−aAB

(1−p)q2
aB

2p(1−p)q2
aA+aB+aAB

p2q2

https://doi.org/10.1371/journal.pgen.1009548.t001
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Therefore, the average effect at each locus depends on half of the difference between the

genotypic values of the homozygotes (aA or aB) as well as the additive-by-additive effect and

the allele frequency of the interacting locus. In this model, the total genotypic variance (VG) is

partitioned in additive (VA) and additive-by-additive variance (VAA, the variance due to the

interaction between the breeding values at the 2 loci)

VG ¼ VA þ VAA;

with the additive variance

VA ¼
X

Hiai
2;

where Hi is the frequency of heterozygote genotype at locus i (i = A, B), αi the average effect at

locus i, and the additive-by-additive variance

VAA ¼ HAHBa
2

AB

As for the single locus model previously described, this 2-locus model illustrates how non-

additive genetic effects, here an additive-by-additive epistatic effect, enter in the average effect

term as well as in the additive variance. As for dominance variance, the additive-by-additive

variance disproportionally depends on the locus heterozygosity compared to the additive vari-

ance, since additive variance depends on the sum of heterozygosities at the 2 loci, whereas

additive by additive variance depends on their product.

In the Falconer ShinyApp, the user chooses the allele frequencies p and q as well as the

genotypic values aA, aB, and aAB in a predefined range. The corresponding values and frequen-

cies for the 9 genotypes are displayed following Table 1, as well as the population mean M, the

locus-specific average effects αA and αB, and the different variance components. The genotypic

values and linear regressions are plotted as a function of the A1 allelic dosage for the different

backgrounds (locus B genotypes). Hence, it illustrates the departure from the additive model

(aAB = 0) when additive-by-additive interactions are present (see Fig 2A and 2B for a numeri-

cal example). We use a graphical representation[9] of the additive (VA), additive-by-additive

(VAA), and proportion of genotypic variance explained by additive variance (VA/VG) as a func-

tion of the allele frequencies p and q given the genotypic values.

General 2-locus model

In the previous models, we illustrated the effect of within and between loci interaction on the

average effect and additive variance. Lastly, we propose a generalized 2-locus model where the

user can provide all the genotypic values in an interactive table and choose the allele frequen-

cies at the 2 (unlinked) loci (p and q). The genotypic values as well as the linear regressions are

plotted as a function of the A1 allelic dosage for the different genotypes at locus B, and so does

the linear regression of the genotypic values, weighted by their frequency on the A1 allele dos-

age. The total genotypic variance (VG) of this model is then partitioned in 5 components:

VG ¼ VA þ VD þ VAA þ VAD þ VDD;

where VAD is the additive-by-dominance variance (due to the interaction between the breeding

value at 1 locus and the dominance deviation at the second locus) and VDD the dominance-by-

dominance variance (due to the interaction between the dominance deviations at the 2 loci).

Definitions and derivations of these and higher-order interaction components were given by

Cockerham [10] and Kempthorne [11]. We use the least squares approach described in Lynch

and Walsh [4] to calculate the different variance components and display their values.
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As numerical examples, we will consider 2 classical epistatic models that involve all nonad-

ditive components. The first example is the 2-locus duplicate factor model, such as described

by Shull [12] when he studied the shape of seed capsules of shepherd’s purse plants (Bursa

Fig 2. Genotypic values (closed circles) at 2 biallelic loci A and B in 4 different 2-locus models and the weighted

least squares regression fits (colored lines) for each B locus genotype against A1 allele dosage. In (A), we consider a

2-locus model with additive effects only at both loci (aA = aB = 4), while in (B), we consider a 2-locus model with

additive and additive-by-additive effects (aA = aB = aAB = 4). In (C), we consider a 2-locus duplicate factor model

(Table 2), and in (D), a 2-locus complementary model (Table 3), both with c = 4. The horizontal scale shows the

number of A1 alleles in the genotype. The different genotypes at locus B are depicted in different colors (black for B2B2,

red for B1B2, and blue for B1B1). We chose allele frequencies p = q = 0.5 in all 4 models. Each point size is weighted by

its genotype frequency, and linear regression lines between the number of A1 allele and the genotypic values are fitted

by weighted least squares for each locus B genotype background. In panels (C) and (D), the red and blue lines are

overlaid.

https://doi.org/10.1371/journal.pgen.1009548.g002

Table 2. Genotypic values of a 2-locus duplicate factor model.

A2A2 A1A2 A1A1

B2B2 0 c c
B1B2 c c c
B1B1 c c c

https://doi.org/10.1371/journal.pgen.1009548.t002
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bursa-pastoris). Shull [12] found that all genotypes led to a triangular capsule, apart from the

double recessive homozygote, which led to an oval shape. We consider the equivalent statistical

model (Table 2) where genotypic values are c except for the double recessive homozygote

which has value 0. In this highly epistatic model and as described by Hill and colleagues [13],

we expect VA/VG!1 when allele frequencies p,q!0. Choosing c = 4 and p = q = 0.5 (Fig 2C),

the total genotypic variance is then partitioned as

VG ¼ VA þ VD þ VAA þ VAD þ VDD

0:94 ¼ 0:25þ 0:13þ 0:25þ 0:25þ 0:06

Leading to VA/VG = 0.27, in accordance with theoretical expectation [13].

A second classical example of epistasis is the complementary model of flower color in sweet

pea (Lathyrus odoratus) studied by Bateson and colleagues [14]. In this species, the flower

color is controlled by 2 loci, each with a dominant allele. All genotypes involving at least a

recessive homozygote at 1 locus result in white flowers whereas the other genotypes lead to the

dominant purple color. For this 2-locus complementary model (Table 3), we chose c = 4 and p
= q = 0.5 (Fig 2D), resulting in a partitioning of the total genotypic variance

VG ¼ VA þ VD þ VAA þ VAD þ VDD

3:93 ¼ 2:25þ 1:12þ 0:25þ 0:25þ 0:06

Leading to VA/VG = 0.57, also in accordance with theoretical expectation [13].

There are special cases (at least in theory) where there is no additive variance (α = 0), hence

where all genetic variation is nonadditive. In such cases, an additive model (e.g., as used in a

standard GWAS) will fail to capture any genetic variation. That said, very little evidence for

nonadditive genetic variation have been found in human traits when analyzing a broad range

of phenotypes [15–17].

Persistent misconceptions

Despite the theory being more than a century old, persistent misconceptions related to gene

interactions effects remain. One common misunderstanding is that models that estimate addi-

tive effects of alleles or estimate additive variance assume that there are no gene interactions,

which is not correct. Indeed, an additive model does not fit nonadditive effects explicitly; how-

ever, the average effect that is estimated is a function of nonadditive effects (both dominance

and epistatic effects; see Eqs 1 and 2).

A second misconception is that interactions with large effect sizes should make a large con-

tribution to the observed population variation of a complex trait. For example, a rare recessive

mutation can have a large effect size but still leads to a small amount of genetic variance

explained in the population. Indeed, even in the absence of dominance interactions, rare vari-

ants with large effect sizes only contribute proportionally to their frequency.

Table 3. Genotypic values of a 2-locus complementary model.

A2A2 A1A2 A1A1

B2B2 0 0 0

B1B2 0 c c
B1B1 0 c c

https://doi.org/10.1371/journal.pgen.1009548.t003
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Epistatic interactions have been proposed as a potential source of genetic variation [18,19].

This leads to the third misconception that higher-order gene–gene interactions, which could,

in principle, be detected by machine learning algorithms [20,21], would explain a lot of genetic

variation. However, data and theory show that it is almost certainly not true and that additive

variance is expected to remain the main contributor of genetic variation, even in the presence

of high-order interactions [8,13]. This also means that observing a large additive variance is

not inconsistent with an underlying generative model that is highly interactive.

A final misconception is that the results from model organisms on nonadditive genetic vari-

ation can be generalized to other species. Although different studies using model organisms

have highlighted the importance of nonadditive genetic variation [9,22], postulating that these

results translate to outbred populations, including humans, would be a mistake. The experi-

mental designs in most model organisms are based on inbred lines, for example, segregating

crosses from 2 different founder inbred strains or recombinant inbred lines (lines bred to iso-

genicity following an initial cross). Such designs lead to intermediate allele frequencies (typi-

cally 0.5) and thereby maximize heterozygosity and the variance attributable to nonadditive

effects. However, in outbred populations, there is strong evidence of negative selection on

complex traits, so that heterozygosity at causal loci is lower than its expectation under neutral-

ity [23,24], and therefore, nonadditive variance is a priori predicted to be much smaller than in

model organisms [22]. Moreover, inbreeding itself might lead to results about interactions that

are not transferable to outbred populations [25].

Conclusions

Fisher’s [1] partitioning of genotypic trait values and of phenotypic variance remains highly

relevant in the GWAS era, but misunderstandings persist, especially about how nonadditive

genetic effects (interactions) impact per-allele effect size and variance. We developed the Fal-

coner ShinyApp in order to illustrate through 3 genetic models how interactions within and

between loci create a departure from a linear relationship between genotype and phenotype

and how they convert to average effect sizes and additive variance. We hope that it will be help-

ful for students and researchers learning or teaching quantitative genetics.

Availability and implementation

The Falconer ShinyApp is accessible using web browsers at https://shiny.cnsgenomics.com/

Falconer2/, and the R shiny source code is available on GitHub (https://github.com/

CNSGenomics/falconer-shiny).
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