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HIV‑1 Vpu utilizes both cullin‑RING ligase 
(CRL) dependent and independent mechanisms 
to downmodulate host proteins
Peter W Ramirez1†, Ana Beatriz DePaula‑Silva1†, Matt Szaniawski1, Edward Barker2, Alberto Bosque1 
and Vicente Planelles1*

Abstract 

Background:  Hijacking of the cullin-RING E3 ubiquitin ligase (CRL) machinery is a common mechanism employed 
by diverse groups of viruses for the efficient counteraction and degradation of host proteins. In particular, HIV-1 
Vpu usurps the SCFβ-TrCP E3 ubiquitin ligase complex to mark CD4 for degradation by the 26S proteasome. Vpu also 
interacts with and downmodulates a number of other host proteins, including the restriction factor BST-2. However, 
whether Vpu primarily relies on a cullin-dependent or -independent mechanism to antagonize its cellular targets has 
not been fully elucidated.

Results:  We utilized a sulphamate AMP analog, MLN4924, to effectively block the activation of CRLs within infected 
primary CD4+ T cells. MLN4924 treatment, in a dose dependent manner, efficiently relieved surface downmodula‑
tion and degradation of CD4 by NL4-3 Vpu. MLN4924 inhibition was highly specific, as this inhibitor had no effect 
on Nef’s ability to downregulate CD4, which is accomplished by a CRL-independent mechanism. In contrast, NL4-3 
Vpu’s capacity to downregulate BST-2, NTB-A and CCR7 was not inhibited by the drug. Vpu’s from both a transmitted 
founder (T/F) and chronic carrier (CC) virus preserved the ability to downregulate BST-2 in the presence of MLN4924. 
Finally, depletion of cellular pools of cullin 1 attenuated Vpu’s ability to decrease CD4 but not BST-2 surface levels.

Conclusions:  We conclude that Vpu employs both CRL-dependent and CRL-independent modes of action against 
host proteins. Notably, we also establish that Vpu-mediated reduction of BST-2 from the cell surface is independent 
of β-TrCP and the CRL- machinery and this function is conserved by Vpu’s from primary isolates. Therefore, potential 
therapies aimed at antagonizing the activities of Vpu may need to address these distinct mechanisms of action in 
order to achieve a maximal effect.
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Background
Cullin-RING ligases (CRLs) constitute an important 
group of ubiquitin ligases and play a prominent role in 
the efficient regulation of protein turnover and homeo-
stasis [1]. In particular, a recurring theme among viruses 
from distant families is their common ability to usurp 

CRL complexes with the aim of evading host control 
mechanisms. Notably, the HIV-1 accessory protein Vif 
hijacks a cullin-5 containing ubiquitin ligase complex 
(CRL5) to target cytidine deaminases of the APOBEC3 
family for proteasomal degradation [2–5]. Similarly, the 
HIV-2 accessory protein Vpx relies on a CRL4 complex 
to degrade the restriction factor SAMHD1 [6, 7].

Activation of CRLs is dependent on a process known 
as neddylation. This post-translational modification 
involves the covalent addition of the NEDD8 protein, a 
relative of ubiquitin, onto a lysine residue on the cullin 
backbone. Neddylation induces a conformational change 
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in the CRL complex that turns the enzyme catalytically 
active, allowing the transfer of ubiquitin to a substrate 
[8]. MLN4924, a potent inhibitor of the E1 neddyla-
tion enzyme NAE (Nedd8-activating enzyme), blocks 
the activity of all CRLs but does not affect non-cullin 
ubiquitin ligases [9]. Previous studies have shown that 
MLN4924 can potently block Vif-mediated proteasomal 
degradation of APOBEC3G [10]. Furthermore, in the 
context of HIV-2, MLN4924 inhibited the degradation 
of SAMHDI induced by Vpx, phenocopying the absence 
of Vpx in HIV-2 and restoring efficient restriction of the 
virus in myeloid cells [11–13].

The HIV-1 accessory protein Vpu, in addition to coun-
teracting the restriction factor BST-2/tetherin [14, 15] 
and downregulating CD4, antagonizes multiple immune 
system molecules. Binding of Vpu’s phospho-serine resi-
dues to the F-box protein β-ΤrCP forms an SCFβ-TrCP 
(CRL1) complex that targets CD4 for proteasomal deg-
radation [16, 17]. With regards to BST-2, counteraction 
is thought to be triggered by Vpu’s acidic di-leucine motif 
manipulating Adaptor-Protein 1 (AP-1) to mislocalize 
BST-2 towards a perinuclear compartment (trans-Golgi 
network-TGN) [18, 19]. However, the requirement for 
β-TrCP in BST-2 antagonism by Vpu has remained con-
troversial. For other Vpu targets, specifically NTB-A and 
CCR7, a cullin-independent mechanism of downregula-
tion has been proposed [20, 21].

In this study, we asked whether pharmacological inhibi-
tion of the SCFβ-TrCP complex by MLN4924 would reveal 
whether cullin activity is important for Vpu to downmod-
ulate its cellular targets. We hypothesized that down-
regulation of BST-2, CCR7 and NTB-A by Vpu would 
not be impacted by MLN4924 treatment. Moreover, we 
predicted that Vpu downregulation (and degradation) of 
CD4 would be relieved by MLN4924. Finally, we sought 
to determine whether Vpu-mediated cell surface down-
regulation of BST-2 is a function that can be dissociated 
from BST-2 degradation and that is cullin-independent.

Results
Pharmacological inhibition of CRL‑activity disables NL4‑3 
Vpu’s ability to downregulate CD4, but not BST‑2, CCR7 or 
NTB‑A
To determine whether Vpu can act as multifunctional 
protein capable of downregulating host proteins in the 
absence of neddylation and a functional SCFβ-TrCP com-
plex, primary CD4+ T cells were infected with either 
an HIV-1NL4-3-derived, replication-defective virus car-
rying GFP in place of Nef (DHIVGFP(Vpu+/Nef−); 
Fig.  1a), or with an isogenic virus lacking both Nef and 
Vpu (DHIVGFP(Vpu−/Nef−); Fig.  1b) [21]. All viruses 
were pseudotyped with the vesicular stomatitis virus 
glycoprotein G (VSV-G). We utilized the above nef- and 

env-deficient viruses such that the known activities of 
Nef and Env on CD4 would not interfere with that of 
Vpu (reviewed in [22]). Two days post infection, cells 
were incubated in either DMSO (solvent) or MLN4924 
and protein surface expression analyzed by flow cytom-
etry 24 h later. As expected, the virus devoid of Nef and 
Vpu (DHIVGFP(Vpu−/Nef−)) showed similar surface 
levels of CD4, BST-2, CCR7 and NTB-A when compar-
ing GFP-negative (uninfected) and -positive (infected) 
cells (Fig.  2a, panels ii, viii, xiv, xx). Downregulation of 
CD4, BST-2, CCR7 and NTB-A was apparent in cells that 
were infected with DHIVGFP(Vpu+/Nef−) and treated 
with DMSO (Fig.  2a, panels iii, vix, xv, xxi). However, 
MLN4924 relieved downmodulation of CD4 in a dose-
dependent manner (Fig. 2a, panels iii–vi, b). In contrast, 
downregulation of BST-2, CCR7 and NTB-A was unaf-
fected by MLN4924 treatment (Fig.  2a, panels vii–xxiv, 
b). These results indicate that Vpu utilizes both cullin-
dependent and -independent mechanisms for down 
modulating host proteins.

MLN4924 relieves NL4‑3 Vpu, but not Nef mediated, 
degradation of CD4
To determine whether MLN4924 also prevented the deg-
radation of CD4, primary CD4+ T cells were infected 
as described in Fig.  2 but were instead permeabilized, 
fixed and stained for total levels of CD4. Figure 3 shows 
that inhibition of neddylation rescued CD4 from Vpu-
induced degradation (Fig. 3a, panels ix–xii, b). As a fur-
ther control to show specificity of cullin inactivation by 
MLN4924, primary CD4+ T cells were infected with 
either env-defective HIV-1 (DHIV; Fig. 1e), lacking Vpu 
but expressing Nef (DHIV Vpu−/Nef+; Fig.  1f ) or an 
isogenic virus lacking Nef and expressing Vpu (DHIV 
Vpu+/Nef−; Fig. 1g). Nef accelerates the endocytosis of 
target CD4 molecules present on the plasma membrane 
via clathrin and Adaptor-Protein 2 (AP-2), ultimately 
shuttling CD4 for lysosomal degradation in a multivesic-
ular body (MVB) dependent manner [23, 24]. We there-
fore hypothesized that a virus encoding only Nef (DHIV 
Vpu−/Nef+) would be able to downmodulate CD4 in a 
manner that would be insensitive to MLN4924 treat-
ment. This expectation was corroborated as shown in 
Figs. 3c (panels vii and viii), d.

Primary Vpu isolates maintain the ability to downregulate 
BST‑2 in the absence of CRL‑activity
A recent study showed that Vpu alleles from field strains 
of HIV-1 have the capacity to modulate host proteins, in 
particular CD4 and BST-2, to a greater extent than the 
prototypical HIV-1NL4-3 Vpu [25]. We therefore wished 
to determine whether the CRL-dependent and inde-
pendent mechanisms observed with HIV-1NL4-3 Vpu 
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(Fig. 2a) would be maintained with Vpu alleles from pri-
mary isolates. To address this, we replaced Vpu in DHIV-
GFP(Vpu+/Nef−) with Vpu’s from either a transmitted 
founder (T/F; WITO) [26–30] or from a chronic carrier 
(CC; WARO) [31] virus. These new viruses were termed 
DHIV-GFP WITO (Vpu+/Nef−; Fig. 1c) and DHIV-GFP 
WARO (Vpu+/Nef−; Fig.  1d). We observed that Vpu’s 

from both a T/F (DHIV-GFP WITO) and CC (DHIV-GFP 
WARO) exhibited an enhanced ability to downregulate 
CD4 when compared to HIV-1NL4-3 Vpu (Fig. 4a, panels 
iii–v, b upper left). This effect was previously reported 
by Jafari et  al., who proposed that primary Vpu isolates 
may adopt an optimized tertiary structure better suited 
to counteract CD4 as a result of differences between their 

Fig. 1  Lentiviral constructs and Vpu amino acid alignments. a The lentiviral vector DHIV, or “defective” HIV, was derived from the HIV-1NL4-3 sequence 
and cut between two BglII sites to efficiently delete envelope/gp120 (gray box with dashed lines, red X marks) but maintain in-frame Tat, Rev and RRE 
ORFs. The constructs used in this study were derived from the DHIV backbone and are as follows: i the GFP gene in place of Nef. ii Replacement of 
NL4-3 Vpu with a primary Vpu isolate or iii introduction of a frame shift mutation within Vpu and Nef. a DHIV-GFP (Vpu+/Nef−). b DHIV-GFP (Vpu−/
Nef−). c DHIV-GFP WITO (Vpu+/Nef−). d DHIV-GFP WARO (Vpu+/Nef−). e DHIV. f DHIV (Vpu−). g DHIV (Nef−). h Amino acid sequence alignment 
of Vpu proteins from a transmitted founder (T/F;WITO) and chronic carrier (CC; WARO) compared to NL4-3 Vpu. An asterisk indicates fully conserved 
residues; colon represents amino acid conservation with strongly similar properties; period designates amino acid conservation with weakly similar 
properties. Highlighted residues mark amino acid differences between the three strains.



Page 4 of 12Ramirez et al. Retrovirology  (2015) 12:65 



Page 5 of 12Ramirez et al. Retrovirology  (2015) 12:65 

amino acid sequence and that of HIV-1NL4-3 Vpu [16, 32, 
33] (Fig. 1h). MLN4924 treatment had a dramatic effect 
on the ability of both a T/F and CC Vpu to downregu-
late CD4 (Fig. 4a, panels viii–x, b lower left). Both a T/F 
and CC Vpu were able to decrease the cell surface den-
sity of BST-2 to about the same extent as HIV-1NL4-3 Vpu 
(Fig. 4a, panels xiii–xv, b upper right). However, the addi-
tion of MLN4924 in cells expressing Vpu did not restore 
surface levels of BST-2 to any significant degree (Fig. 4a, 
panels xviii–xx, b lower right). These results reinforce 
the fact that primary Vpu isolates also possess the abil-
ity to counteract host proteins by CRL-independent 
mechanisms.

siRNA mediated knockdown of cullin 1 reduces CD4, 
but not BST‑2, surface levels in the presence of Vpu
Although MLN4924 is primarily used and known as 
an NAE (and thus pan-CRL) inhibitor, at IC50 values of 
1.5 and 8.2 μM the drug can also block the functions of 
the NAE-related enzymes, ubiquitin-activating enzyme 
(UAE) and SUMO-activating enzyme (SAE) [9]. There-
fore, as an alternative approach to chemical inhibition, 
we assessed Vpu function in cells depleted of cullin 1. 
HeLa-CD4 cells were transfected twice (24 h apart) with 
either a non-targeting siRNA or siRNA targeting cullin 
1, followed by infection with either DHIV-GFP WARO 
(Vpu+/Nef−) or DHIV-GFP (Vpu−/Nef−). As shown in 
Fig.  5, knockdown of cullin 1 attenuated Vpu’s capacity 
to downregulate CD4 from the cell surface (Fig. 5a, com-
pare panels ii and v), but had no effect on downregulation 
of BST-2 (Fig.  5a, panels viii and xi). We conclude that 
Vpu’s ability to decrease surface levels of BST-2 is inde-
pendent of CRL-activity.

Discussion
Vpu acts as a functional protein that interferes with 
cellular targets through multiple mechanisms. The di-
serine motif of Vpu renders Vpu capable of recruit-
ing the E3 ubiquitin ligase complex substrate adaptor 
β-TrCP for target ubiquitination and eventual pro-
teasomal (for CD4) [17, 34, 35] or endosomal sorting 
complexes required for transport (ESCRT) mediated 

endo-lysosomal degradation (for BST-2) [36–40]. Pre-
vious studies have also shown, however, that Vpu-
mediated surface downregulation of BST-2 can be 
uncoupled from BST-2 degradation [41–43]. The expla-
nation lies in the fact that Vpu induces the mislocali-
zation of BST-2 within a perinuclear compartment (i.e. 
trans-golgi network (TGN)) [36, 41, 44–46]. As a con-
sequence, both recycled and newly synthesized BST-2 
are retained within the TGN, thereby decreasing total 
levels of BST-2 at the cell surface [45–47]. A recent 
report by Jia et al. denoted interaction of Vpu with the 
clathrin Adaptor-Protein complex 1 (AP-1) [19]. Bind-
ing of AP-1 and Vpu occurs through a conserved motif, 
E59xxxL63V64 (ELV), within Vpu’s C-terminal domain, 
previously reported to be important in BST-2 surface 
downmodulation and viral release [18]. In our pre-
sent study, we found that pharmacological inhibition 
of CRL- activity or knock down of cullin 1 hindered 
Vpu’s capacity to downregulate CD4, but not BST-2. 
Therefore, our findings support a model whereby cullin 
activity (and β-TrCP) are dispensable for Vpu to down-
regulate BST-2.

Numerous studies have shown that the di-serine motif 
of Vpu, which mediates interaction with β-TrCP when 
phosphorylated, is required for downmodulation and/or 
degradation of both CD4 and BST-2 [17, 48–52]. Thus, 
mutation of the di-serine motif abrogates degradation 
of CD4 [16, 53], confirming a role for β-TrCP. On the 
other hand, Tervo et al. found that depletion of β-TrCP2 
or the simultaneous depletion of β-TrCP1 and 2 did 
not block the ability of Vpu to promote HIV-1 release 
and failed to restore surface levels of BST-2 [43]. These 
results, taken together, suggest that the di-serine motif of 
Vpu is directly involved in interaction with β-TrCP, but 
that mutations in this motif affect the downregulation 
of BST-2 through possibly a more general effect on Vpu 
protein conformation or perhaps the binding of another 
cellular factor implicated in the mislocalization of host 
proteins [43]. Therefore, our observation that downregu-
lation of BST-2, CCR7 and NTB-A is CRL-independent 
does not contradict the notion that the di-serine motif of 
Vpu is required for this function [15, 21, 54].

(see figure on previous page.)
Fig. 2  HIV-1 Vpu utilizes both cullin dependent and independent mechanisms to downregulate host proteins. a Primary CD4+ T cells were either 
mock infected or infected at an MOI of 1 with DHIVGFP(Vpu+Nef−) or DHIVGFP(Vpu−Nef−). 2 days post infection, either DMSO or increasing con‑
centrations of MLN4924 were added to cell cultures. 24 h later, surface expression of CD4, BST-2, CCR7 or NTB-A was analyzed by flow cytometry. His‑
tograms depict a comparison of GFP negative (blue line) and GFP positive (red line) cells along with an IgG isotype control (gray shaded histogram). 
Unless otherwise noted, all experiments involving primary CD4+ T cells are representative of three separate experiments performed in three different 
healthy donors. b Relative mean fluorescence intensity (MFI) values of surface expression of CD4, BST-2, CCR7 or NTB-A from DHIVGFP(Vpu+Nef−) 
infected cells (a). Data was normalized by setting the MFI values from uninfected (mock) cells to 100% and is depicted graphically as ±SEM. Unless 
otherwise noted, all experiments including statistics were performed through a pairwise Student’s t test comparing GFP positive and GFP negative 
cells to assess significance: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Fig. 3  MLN4924 alleviates Vpu- but not Nef-mediated degradation of CD4. a Cultured TCM were infected as described in Fig. 2a. To assess total 
levels of CD4, cells were permeabilized and stained 24 h after addition of MLN4924 and analyzed by flow cytometry. Histograms are color-coded as 
described in Fig. 2a. b MFI values of total (intracellular) CD4 expression levels from DHIVGFP(Vpu+Nef−). Data was normalized and statistical signifi‑
cance obtained as described in Fig. 2b. n.s. not significant. c Primary CD4+ T cells were either mock infected or infected at an MOI of 1 with DHIV WT, 
DHIV Vpu−/Nef+ or DHIV Vpu+/Nef−. 2 days post infection, cell cultures were treated with either DMSO or 500 nM MLN4924. 24 h post MLN4924 
treatment, cells were assessed for surface levels of CD4 between p24Gagneg (blue line) and p24Gagpos (red line). Gray shaded histograms represent 
an IgG matched isotype control. Shown is one representative experiment out of three. d Relative CD4 surface levels were quantified from data 
obtained in Fig. 3c and are depicted graphically as ±SEM of either cells treated with DMSO (left) or 500 nM MLN4924 (right). Statistical significance 
between p24Gagneg and p24Gagpos populations was determined as in Fig. 2b.
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Fig. 4  Primary Vpu isolates maintain the ability to decrease surface expression of CD4 and BST-2 in a CRL-dependent and independent manner. a 
Primary CD4+ T cells were either mock infected or infected at an MOI = 1 with DHIV-GFP (Nef−/Vpu−), DHIV-GFP (Nef−/Vpu+) or viruses encoding 
Vpu taken from either a transmitted/founder (T/F) (DHIV-GFP WITO (Nef−/Vpu+)) or a chronic carrier (CC) primary isolate (DHIV-GFP WARO (Nef−/
Vpu+)). The cells were treated with either DMSO or 500 nM MLN4924 48 h post infection. 24 h post MLN treatment, the cellular GFP negative and 
positive populations (red and blue histograms) were assessed for surface levels of CD4 and BST-2 via flow cytometry. An IgG control was included 
to set the baseline for positive staining (gray shaded histogram). b Relative CD4 and BST-2 surface levels were quantified, normalized, and scored 
statistically as described in Fig. 2b.
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Fig. 5  siRNA knockdown of cullin 1 hinders surface downmodulation of CD4, but not BST-2, by Vpu. a HeLa-CD4 cells were transfected twice with 
pooled control or cullin 1 siRNAs. 4 h post the second transfection, the cells were infected with VSV-G pseudotyped DHIV-GFP (Nef−/Vpu−) or 
DHIV-GFP WARO (Nef−/Vpu+). Cells were subsequently stained to detect surface levels of CD4 and BST-2 between GFP negative (blue line) and GFP 
positive (red line) populations 48 h post infection. Gray shaded histogram represents an IgG matched isotype control. b A portion of cells from a were 
lysed and subjected to Western blot to determine the knockdown efficiency of cullin 1. c Quantification of cullin 1 normalized to β-actin from b.
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Structurally, phosphorylation of Vpu at serine 52 and 
56 induces a conformational change in Vpu’s C-terminus: 
the formation of a β-strand within residues 50–59 and 
displacement of the third alpha helix (h3) away from the 
phosphorylation site [55]. The structural rearrangements 
induced by phosphorylation result in the emergence of 
acidic side chains surrounding serine 52 and 56, creat-
ing an electronegative binding region upon which a pro-
tein exhibiting electropositive potential can bind [55]. In 
particular, phosphorylated serines 52 and 56, glycine 53, 
asparagine 54 and the hydrophobic residues isoleucine 46 
and leucine 45 were shown to be involved in the binding 
to the F-box protein β-TrCP [56]. Our observations with 
MLN4924 and cullin knockdown argue against a role for 
cullin mediated ubiquitination in the downregulation 
of BST-2 from an independent line of experimentation 
other than mutagenesis.

Given that Vpu does not induce the degradation of 
CCR7 or NTB-A but rather retention within the TGN, 
our data suggest that these molecules are also downregu-
lated in a CRL-independent manner (Fig. 2a) [20, 21, 54]. 
A recent report by Bachle et  al. identified a conserved 
C-terminal AWF motif present within HIV-1 subtype B 
Vpu isolates that influences the ability of Vpu to down-
regulate the lipid antigen receptor CD1d [57]. Therefore, 
whether Vpu’s AWF or ELV motifs, which are CRL-inde-
pendent, are required for downmodulation of CCR7 and 
NTB-A remains to be determined. It will also be compel-
ling to investigate the requirement for β-TrCP and the 
SCFβ-TrCP complex in downmodulation of other reported 
targets of Vpu, such as CD1d, CD155, CD62L and mem-
bers of the tetraspanin family [58–61].

Conclusions
This work shows that cullin inactivation, through either 
pharmacological inhibition or depletion of cullin 1, does 
not render Vpu unable to downregulate BST-2, CCR7 or 
NTB-A. This highlights that facts that Vpu is multifunc-
tional and that therapeutic targeting of neddylation, while 
potent and specific against CD4 downmodulation by 
Vpu, would still allow other targets to be downregulated.

Methods
Antibodies and reagents
Antibodies used in this study were as follows: APC-
labeled mouse anti-human CCR7 (clone 150303; R & D 
Systems Inc.), mouse anti-human NTB-A-APC (clone 
292811; R & D Systems Inc.), APC-labeled mouse anti-
human CD4 (clone S3.5; Life Technologies), rabbit anti-
human BST-2 (NIH AIDS Reagent Program, Division of 
AIDS, NIAID, NIH; Drs. Klaus Strebel and Amy Andrew 
(Cat. # 11721)), goat-anti-rabbit Alexa Fluor (AF) 647 
(Molecular Probes, Invitrogen), mouse APC-conjugated 

isotype control (clone 20102; R & D Systems Inc.), rab-
bit AF-647-conjugated isotype control (Cell Signaling 
Technology), rabbit anti-human cullin 1 (abcam) and 
mouse anti-human β-actin (Sigma Aldrich). MLN4924 
was purchased from Cayman Biologicals. The dry solvent 
was then resuspended in DMSO at a stock concentration 
of 20 mM, further aliquotted and diluted at 200 μM and 
used as indicated. ON-TARGETplus SMARTpool siRNAs 
targeting human cullin 1 or control non-targeting siR-
NAs were purchased from Dharmacon.

Cells and plasmids
Human embryonic kidney 293T (HEK293T) cells were 
maintained in Dulbecco’s Modified Eagle’s Medium 
(DMEM) containing 10% fetal bovine serum (Atlas Bio-
logicals) supplemented with 100 U/ml penicillin, 100 μg/
ml streptomycin and 2 mM l-glutamine (Life Technolo-
gies). HeLa-CD4+ clone 1022 (obtained through the 
NIH AIDS Reagent Division of AIDS, NIAID, NIH (Cat. 
#1109; Dr. Bruce Chesebro) were cultured in RPMI com-
plete media in the presence of 1 μg/ml G418 (Life Tech-
nologies) while CCRF-CEM and primary CD4+ T cells 
were cultured in RPMI complete media only. All cells 
were maintained at 5% CO2 at 37°C. For all experiments 
involving primary CD4+ T cells, coverage was main-
tained under protocol #IRB_00067637 approved by the 
University of Utah Institutional Review Board. The gen-
eration of cultured TCM has been described previously 
[21].

The DHIV plasmids used in this manuscript have 
been described previously (Ramirez et  al.; Cell Reports 
2014). To construct DHIV-GFP WITO (Vpu+/Nef−) 
and DHIV-GFP WARO (Vpu+/Nef−), we first re-ligated 
DHIV-GFP (Vpu+/Nef−) after Xho1 and Sma1 diges-
tion to create a unique EcoR1 site. A novel Mlu1 site 
after Vpu (ACC TGT to ACGCGT) was then introduced 
using site-directed mutagenesis (Stratagene) according 
to the manufacturers’ instructions with the following 
primers: FWD 5′-CAG TCTATTATGGGGTACGCG 
TGTGGAAGGAAGCAACC and REV 5′-GGTTGCT 
TC CTTCCACACGCGTACCCCATAATAGACTG. To 
replace HIV-1NL4-3 Vpu with Vpu’s from primary iso-
lates, we obtained full length transmitted founder (T/F; 
pWITO.c/2474; Cat# 11739, Dr. John Kappes and Dr. 
Christina Ochsenbauer) or chronic carrier (CC; pWARO; 
Cat # 12419, Dr. Beatrice Hahn) HIV-1 infectious 
molecular clones (IMC) from the NIH AIDS Reagent 
Program. HIV-1WITO Vpu was PCR amplified using the 
following primers: FWD 5′-GCAGGAGTGGAAGCCAT 
AATAAGAATTC and REV 5′-ACAACGCGTCTACTC 
ATCATTAACATCCCAAGGAGC (EcoR1 and Mlu1 
sites italicized, respectively) and subcloned into DHIV-
GFP(Vpu+/Nef−) to create DHIV-GFP WITO(Vpu+/
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Nef−). DHIV-GFP WARO(Vpu+/Nef−) was constructed 
in a similar fashion with the following HIV-1WARO Vpu 
primers: FWD 5′-GGAGTGGAAGCCATAATAAGA 
ATTCTGC and REV 5′-ACGACGCGTCTACAGATCA 
TTAATATCCCAAGGAGCATC. All constructs were 
confirmed via sequencing.

Flow cytometry
Surface levels of CD4, BST-2, CCR7 and NTB-A were 
assessed by staining cells with their appropriate anti-
bodies at 4°C for 30 min in buffer (1 × PBS + 3% FBS). 
An additional step including a secondary antibody was 
necessary to detect BST-2 surface levels. A viability dye, 
eFlour 450 (eBioscience) was then used to distinguish live 
from dead cells. Fixation was achieved using 0.5% Para-
formaldehyde (PFA).

In experiments involving surface analysis of CD4 and 
detection of intracellular p24, cells were first probed with 
anti-APC-CD4, stained with eFluor 450, permeabilized 
(Cytofix/Cytoperm: BD Biosciences) and then stained 
with mouse-anti-FITC-p24. Total levels of CD4 in pri-
mary CD4+ T cells were measured by staining cells with 
eFlour 450, permeabilization and then probing with anti-
APC-CD4. All data was collected on a BD FACS CantoII 
and analyzed with FlowJo software.

Viruses and infections
Viral stocks were generated by co-transfection of 20 μg 
DHIV along with 5 μg of a construct expressing vesicu-
lar stomatitis virus G-protein (VSV-G) by calcium phos-
phate mediated transfection into HEK293T cells. Media 
(DMEM) was replaced after 16 h and the cellular super-
natant collected, aliquotted and stored at −80°C 48  h 
post-transfection. Viral titers and MOI were determined 
via infection of CCRF-CEM cells. Primary CD4+ T cells 
generated as described above were infected 5 days post-
activation at an MOI of 1 via spinoculation: 106 cells 
(1  ml final volume) for 2  h at 37°C in the presence of 
8  μg/ml Polybrene (Sigma). After infection, cells were 
then resuspended in RPMI complete medium supple-
mented with IL-2 (30 U/ml).

siRNA mediated cullin 1 depletion
HeLa cells (5 × 105) were transfected twice (24 h apart) 
with either control siRNA or siRNAs against cullin 1 at a 
final concentration of 100 nM using Lipofectamine 2000 
(Invitrogen) according to the manufacturers’ instruc-
tions. The medium was changed 4  h after each trans-
fection. 4  h post the second transfection, the cells were 
either mock infected or infected with DHIV-GFP (Vpu−/
Nef−) or DHIV-GFP WARO (Vpu+/Nef−) for 4  h at 
37°C at an MOI =  0.8. After 48  h, the cells were either 
processed for flow cytometry or lysed and subjected to 

Western blot to detect cellular levels of cullin 1 between 
samples.
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