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Abstract

Background: Protein complexes are basic cellular entities that carry out the functions of their components. It can be
found that in databases of protein complexes of yeast like CYC2008, the major type of known protein complexes is
heterodimeric complexes. Although a number of methods for trying to predict sets of proteins that form arbitrary
types of protein complexes simultaneously have been proposed, it can be found that they often fail to predict
heterodimeric complexes.

Results: In this paper, we have designed several features characterizing heterodimeric protein complexes based on
genomic data sets, and proposed a supervised-learning method for the prediction of heterodimeric protein
complexes. This method learns the parameters of the features, which are embedded in the naïve Bayes classifier. The
log-likelihood ratio derived from the naïve Bayes classifier with the parameter values obtained by maximum likelihood
estimation gives the score of a given pair of proteins to predict whether the pair is a heterodimeric complex or not. A
five-fold cross-validation shows good performance on yeast. The trained classifiers also show higher predictability
than various existing algorithms on yeast data sets with approximate and exact matching criteria.

Conclusions: Heterodimeric protein complex prediction is a rather harder problem than heteromeric protein
complex prediction because heterodimeric protein complex is topologically simpler. However, it turns out that by
designing features specialized for heterodimeric protein complexes, predictability of them can be improved. Thus, the
design of more sophisticate features for heterodimeric protein complexes as well as the accumulation of more
accurate and useful genome-wide data sets will lead to higher predictability of heterodimeric protein complexes. Our
tool can be downloaded from http://imi.kyushu-u.ac.jp/~om/.
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Background
Protein complexes are basic cellular entities that carry out
the functions of their components. Those functions are
performed in various biological processes in a cell, includ-
ing transcription, signal transduction, and development.
Therefore, it is useful to identify protein complexes in
order to elucidate various complicated mechanisms in a
cell.

There exist a few databases of protein complexes of
yeast. One of them is MIPS protein complex catalog [1], a
comprehensive catalog of manually curated protein com-
plexes of yeast. It contains 217 complexes, excluding com-
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plexes derived from high-throughput experimental data
sets [2-4]. An up-to-date database of curated protein com-
plexes of yeast is CYC2008 [5], which contains manually
curated 408 heteromeric protein complexes.

The major type of protein complexes in these databases
is heterodimeric complexes, that is, protein complexes
composed of two different proteins. MIPS catalog and
CYC2008 have 64 (29%) and 172 (42%) heterodimeric
complexes, respectively.

A number of unsupervised learning methods for pre-
dicting arbitrary types of protein complexes simultane-
ously have been proposed, for example, MCL [6], RRW
[7], NWE [8], PPSampler [9], RNSC [10], MCODE [11],
DPClus [12], CMC [13], and COACH [14]. It is reported
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that they achieve good performance for protein complexes
of size three or more (see, for example, [15-17]). How-
ever, it can be found that those existing tools can not
give high performance for heterodimeric complexes [9].
The best known F-measure score is only 0.316, which is
achieved by PPSampler (Details will be given in the result
section).

A fundamental reason of the drawback is that a score
function for a predicted complex is often designed based
on inter-connectivity between proteins within a predicted
complex, like density measure of a subgraph of a protein-
protein interaction (PPI) network. Under such a scoring
scheme, the number of proteins within a predicted clus-
ter should be high to some degree, at least three or
four, in order that such a score function works effec-
tively. As a result, heterodimeric complexes are left out of
consideration.

This weakness of existing tools toward heterodimeric
protein complexes implies the need to develop another
approach for predicting heterodimeric complexes. In this
paper, we present a method for learning naïve Bayes
classifiers for heterodimeric complexes. Those classifiers
exploit the features for heterodimeric protein complexes
which are designed with genome-wide data sets, including
PPI data, gene ontology annotations, and protein localiza-
tion data. Those features are trained by positive examples,
a part of known heterodimeric protein complexes, and
negative examples, which will be pairs of two proteins
that are not known to form heterodimeric protein com-
plexes. Such a feature can be considered to be essentially
a pair of conditional probability distributions of possible
values of features. One is a distribution of feature values
specialized for positive examples, and the other is spe-
cialized for negative examples. The log-likelihood ratio by
the naïve Bayes classifier with those trained features can
be used to score a given pair of two proteins and predict
whether the pair forms a heterodimeric protein complexes
or not.

It should be noted here that the problem of iden-
tification of two components of heterodimeric protein
complexes is different from that of identification of
PPIs. In the latter problem, it does not matter whether
an interaction forms a protein complex with interac-
tions neighboring with that interaction. On the other
hand, in the former problem, it is required to determine
whether an interaction solely forms a protein complex or
not.

We have carried out a five-fold cross-validation over
the positive and negative examples derived from known
heterodimeric complexes in CYC2008 and known PPIs
in WI-PHI, which is a database of PPIs of yeast. This
computational experiment shows acceptable performance
and gives us interesting insights into heterodimeric pro-
tein complexes. Furthermore, the trained classifiers are

evaluated by predicting whether each of the PPIs in WI-
PHI is heterodimeric or not. It then turns out that those
classifiers show higher predictability than various exist-
ing algorithms on yeast data sets with the exact matching
criterion. Similar results are also obtained with an approx-
imate matching criterion.

Methods
In this section, we describe our method for predicting
heterodimeric protein complexes by naïve Bayes classi-
fiers. For this task, we have designed several features for
heterodimeric protein complexes based on a weighted
PPI network, semantic similarities for molecular function
and biological process aspects of the Gene Ontology, and
protein localization information. Here a feature means
a (mathematical) function mapping from a pair of pro-
teins to a real number or an integer, which is called a
score.

Given a set of features, a five-fold cross-validation is car-
ried out, in which classifiers are trained with training sets
of positive and negative examples and those trained clas-
sifiers are evaluated with test sets of positive and negative
examples (see Figure 1). The trained classifiers are then
used to predict whether each of known PPIs form a het-
erodimeric protein complex or not (see Figure 2), and the
resulting performance is compared with those of other
methods.

In the subsequent subsections, we introduce templates
for features as well as individual features for a het-
erodimeric protein complex, and describe details of other
parts of our methods.

Design of features for heterodimeric protein complexes
We here design several features for heterodimeric pro-
tein complexes, which will be exploited in a naïve Bayes
classifier.

In general, measures of internal connectivity for a sub-
graph, like density measure, are often used as a feature
characterizing heteromeric protein complexes. For exam-
ple, MCODE [11] is designed based on the observation
that densely connected subgraphs may represent known
complexes. However, such measures do not work well
for heterodimeric protein complexes because the possi-
ble states of internal connectivity of a pair of proteins
is binary, i.e., connected or not. In general, density-
based measures works better for larger complexes.
Therefore, we have designed features specialized for het-
erodimeric protein complexes, which are derived from
PPIs, gene ontology annotations, and protein localization
data.

Here we introduce three templates for features for het-
erodimeric protein complexes. Let e be a pair of proteins.
The combination of a template and a score function
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Figure 1 Overview of a five-fold cross-validation. This figure gives an overview of the five-fold cross-validation carried out in this work. The
positive and negative examples are determined from the WI-PHI and CYC2008 databases.

for e leads to a concrete feature. In this work, four
score functions for e are formulated based on the fol-
lowing four genome-wide data sets, respectively: (i) PPI
weights of WI-PHI [18], (ii) proximity from a protein
to another obtained by random walks with restarts on
the PPI network derived from WI-PHI, and (iii) seman-

Figure 2 Overview of evaluation of trained classifiers by all
known PPIs. This figure shows an overview of evaluation of the
classifiers trained in a cross-validation by all PPIs in the WI-PHI
database.

tic similarity for biological process aspect of GO, and (iv)
semantic similarity for molecular function aspect of GO,
respectively.

Before describing those data sets, a PPI network is intro-
duced as an underlying graph for features. Let G = (V , E)

be an undirected graph representing a PPI network where
a node is a protein and an edge corresponds to an inter-
action between the corresponding proteins. This graph is
used as the underlying graph for features to be defined
here.

For an edge, e, let

Ne = {e′ ∈ E||e′ ∩ e| = 1},

representing the edges adjacent to either end point of e.
This graph, G, is made from the WI-PHI database in this
work.

WI-PHI [18] is a PPI database with 5955 yeast pro-
teins and 50000 interactions. Among them, 49607 with
5953 proteins are non-self interactions. Each interaction
has a weight, which is determined from various hetero-
geneous data sources, including results of tandem affinity
purification coupled to MS (TAP-MS), large-scale yeast
two-hybrid studies, and small-scale experiments stored in
dedicated databases. The higher the weight is the more
reliable it is. The lowest and highest values are 6.6 and
146.6, respectively. If e is not included in WI-PHI, the
weight of e is set to be zero. Hereafter, the weight of e is
denoted by PPIWeight(e).

The next score function of e is a proximity of the two
nodes between e derived from a random walk with restarts
[7,8,19-21]. The output of a random walk with restarts
at a node, u, gives the stationary probability from u to



Maruyama BMC Bioinformatics 2013, 14:347 Page 4 of 15
http://www.biomedcentral.com/1471-2105/14/347

the other nodes, v, denoted by π(u → v), satisfying the
following equation:

xu = (1 − α)Axu + αbu

where xu = (
π(u → v1) π(u → v2) · · · π(u → vn)

)T, bu
is the vector whose elements are all 0 except the u-th
element being 1, A is the column-normalized transition
matrix derived from G, and α is the restart probability of
a random walk with restarts. Here, α is set to be 0.6, the
default value of the restart probability of NWE [8]. The
different values of 0.3 and 0.9 are also applied, and very
similar results are obtained in the cross-validation (data
not shown). Since the stationary probabilities between u
to v are not symmetric, namely, π(u → v) �= π(v → u),
we here define the symmetric proximity of a random walk
with restarts between u and v as

RandomWalkProximity(u, v)=(π(u → v) + π(v → u))/2.

This score function is also given to templates to generate
concrete features.

The Gene Ontology project, or GO, provides a con-
trolled vocabulary to describe gene and gene product
attributes in any organism and the GO database is a
comprehensive knowledge structures relating functions
of genes and their products [22]. Although it is still on-
going project, it has already been proved to be effective
in the evaluation of human PPIs [23]. Let X be an ontol-
ogy among the two ontologies, Biological Process (BP) and
Molecular Function (MF). Here, Cellular Component is
excluded because this ontology contains many terms rep-
resenting subunits or memberships of protein complexes.
Yang et al. proposed a method for improving existing GO
semantic similarity measures in [24]. In this work, the pro-
posed measure based on Lin (the option 38 in their MAT-
LAB tool) is adopted. We denote by SemanticSim.X(e)
the semantic similarity score of e over X, which is also
used as a score function by the templates. An ontology
file shows GO terms and their relationships. The file we
used is dated Nov. 21, 2012. and downloaded from http://
www.geneontology.org/GO.downloads.shtml. An annota-
tion file contains associations between gene products and
GO terms. The file we used is compiled by Saccharomyces
Genome Database (SGD) [25] and dated Nov. 17, 2012.

Suppose that for a pair of proteins, e ∈ V 2, a score func-
tion, m, gives a real number, m(e), which will be one of
the followings: PPIWeight(e), RandomWalkProximity(e),
SemanticSim.BP(e), or SemanticSim.MF(e).

Score-type feature
The first template is used to generate a score-type feature.
The score-type feature with m, denoted by m.Score(e), is

a function to just return the score of m for e, i.e., m(e).
Thus this is the most simplest feature. For example, the
returned value is 30 for e in the graph in Figure 3. This type
features will work well if m itself is a good characterization
of heterodimeric protein complexes.

DiffToMax-type feature
The second template provides a DiffToMax-type feature,
which calculates the differences between m(e) and the
maximum of scores of the adjacent edges to e, i.e.,

m.DiffToMax(e) = m(e) − max
e′∈Ne

m(e′).

For this feature, it is expected that the higher the gap
is, the likelier e corresponds to a heterodimeric com-
plex. For the edge, e, in the graph in Figure 3, we have
m.DiffToMax(e) = 12.

Rank-type feature
The last template gives a rank-type feature, denoted by
m.Rank(e), which returns the number of the adjacent
edges to e whose scores of m are greater than m(e), i.e.,

m.Rank(e) = |{e′ ∈ Ne|m(e′) > m(e)}|.

For the edge, e, in the graph in Figure 3, we have
m.Rank(e) = 0. It can be expected that the higher the
returned value to e is, the lower the likelihood that e is a
heterodimeric protein complex.

In addition to the three feature templates, we have
designed three individual features as follows.

Feature based on protein localization
The next feature is designed based on the observation that
two proteins should express in the same location if they
interact with each other. Huh et al. [26] classified 75% of
the yeast proteins into 22 distinct subcellular localization
categories by their GFP(green fluorescent protein)-tagged
library. By exploiting this localization information, the
feature, Localization(e), is defined as follows:

6
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Figure 3 An example of a subgraph of a PPI network. This graph
consists of an edge, e, and its adjacent edges with their weights.
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Localization(e) =
⎧⎨
⎩

1 if both proteins of e share at least one category at which they express,
0 if either protein of e completely has no categories at which it expresses,

−1 otherwise

Feature based on neighboring common nodes
Existence of nodes neighboring to both nodes, u and v
of e, is often used as an index to determine whether u
and v belong to the same protein complex of size three or
more (see, for example, [27]). Thus, the number of such
nodes can be used as an inverse indicator of e being a
heterodimeric protein complex. The set of those nodes is
equal to Nu ∩ Nv, where Nu = {z ∈ V |{u, z} ∈ E}. Thus,
the feature, NeighboringCommonNode(e), is defined as

NeighboringCommonNode(e) = |Nu ∩ Nv|.
Feature based on neighboring edges
The feature, NeighboringEdge(e) calculates the number of
neighboring edges to e, i.e.,

NeighboringEdge(e) = |Ne|.

If e corresponds to a heterodimeric protein complex, this
feature can be expected to return a low value.

Positive and negative examples of heterodimeric protein
complexes
Positive and negative examples are required in supervised-
learning processes. In the problem of heterodimeric pro-
tein complex prediction, those examples can be modeled
as a pair of different proteins. In this work, a positive
example is a pair of proteins satisfying the following
conditions: (i) it corresponds to a heterodimeric protein
complex in CYC2008, (ii) it is not a proper subset of any
other complex in CYC2008, and (iii) it corresponds to a
PPI in WI-PHI. This means that positive examples used
in the learning process are highly reliable. The total num-
ber of the resulting positive examples is 152. On the other
hand, negative examples are randomly chosen from PPIs
in WI-PHI except all PPIs corresponding to heterodimeric
protein complexes in CYC2008. The number of them is
set to 1520, ten times that of positive examples. Note that
these positive and negative examples are used only in a
five-fold cross-validation. After that process, the resulting
classifiers are evaluated with all PPIs in WI-PHI.

It should be noted here that some true positive exam-
ples would be missed due to the incompleteness of used
databases of protein complexes. In addition, some of the
current negative examples can be false negative ones (i.e.
true heterodimeric protein complexes) due to the same
reason. This kind of issues will be resolved by further
accumulation and annotation of data.

Discretization
Maximum likelihood estimation is applied to learn two
conditional distributions of each of specified features from
a training data set. If a feature returns a real number,
the range is discretized into 10 equal-width bins over the
interval from the minimum to the maximum among the
values of all the positive and negative training examples. If
a feature returns an integer, 10 bins are also prepared. For
example, in a rank-type feature, the first 9 bins correspond
to the feature values, 0, 1, · · · , 8, respectively, and the last
one covers 9 and more. In both cases, the resulting distri-
butions are multinomial distributions. A Dirichlet Prior is
applied to avoid the probability being zero of a particular
bin. The pseudocount of one is given to each of the bins in
this study.

Naïve Bayes classifier
In order to predict heterodimeric protein complexes, we
exploit a naïve Bayes classifier, which is a simple proba-
bilistic model based on Bayes’ theorem. Figure 4 presents
an overview framework of a naïve Bayes classifier. Let
X1, X2, . . . , XM be random variables for M features, and
C a random variable representing a class whose value is
either 1 (true) or 0 (false). In a naïve Bayes classifier, it is
assumed that each feature Xj is conditionally independent
of every other feature Xk for k �= j.

Figure 4 Naïve Bayesian probabilistic model for scoring a pair of
proteins. The root node ‘C’ is the binary indicator for heterodimeric
protein complexes (1 (true) if the pair of proteins forms a
heterodimeric protein complex and 0 (false) otherwise). Each of the
remaining nodes, labeled X1, X2, . . . , XM , represents a particular
features, like ones described in Section ‘Design of features for
heterodimeric protein complexes’.
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For a pair of proteins in a given PPI network, we can
compute the conditional probability of how likely it repre-
sents a heterodimeric protein complex using the following
equation.

P(C|X1, X2, . . . , XM) = P(X1, X2, . . . , XM|C)P(C)

P(X1, X2, . . . , XM)

= P(C)
∏M

j=1 P(Xj|C)

P(X1, X2, . . . , XM)

Bayes’ rule is used in the first row of the above equations.
The second equation utilizes the conditional indepen-
dence assumption of the naïve Bayes model to decompose
the conditional joint probability to the probabilities of
different features.

Let S be a pair of proteins to be classified whose feature
values are x1, x2, . . . , xM for X1, X2, . . . , XM, respectively.
The log likelihood ratio (LLR) for S can be computed using
the two posteriors, P(C = 1|X1 = x1, X2 = x2, . . . , XM =
xM) and P(C = 0|X1 = x1, X2 = x2, . . . , XM = xM) as
follows:

LLR(S) = log
P(C = 1|X1 = x1, X2 = x2, . . . , XM = xM)

P(C = 0|X1 = x1, X2 = x2, . . . , XM = xM)

= log
P(C = 1)

∏M
j=1 P(Xj = xj|C = 1)

P(C = 0)
∏M

j=1 P(Xj = xj|C = 0)

= log
P(C = 1)

P(C = 0)
+

M∑
j=1

log
P(Xj = xj|C = 1)

P(Xj = xj|C = 0)

In order to make two LLRs with the different numbers
of features comparable, the above LLR is normalized by
dividing by M + 1. Hereafter LLR means the normalized
LLR.

In the learning process of naïve Bayes classifiers, the
ratio of P(C=1)

P(C=0)
is set to be proportional to the ratio of

the number of positive examples to the number of neg-
ative examples, which is 1

10 . As a result, the class LLR,
log P(C=1)

P(C=0)
= −2.30. In the evaluation process of trained

classifiers with all PPIs in WI-PHI, the ratio of P(C=1)
P(C=0)

is
also set to be proportional to the ratio of the number of
positive examples to the number of negative examples,
which is 152

49607−152 = 0.0031. In this case, the class LLR is
set to be log P(C=1)

P(C=0)
= −5.66.

If the LLR of S is greater than a specified threshold, S
is predicted to be positive, and negative otherwise. The
default value of the threshold is set to be 0.6 in order to rel-
atively reduce the number of false positives. Later, we will
see how much the value of the threshold affects the pre-
dictability. By varying the value of the threshold, a receiver
operating characteristic (ROC) curve is obtained.

Here is a remark on functional dependencies between
features. It is reported in an empirical study of the naïve

Bayes classifier in [28] that even if some features are func-
tionally dependent, naïve Bayes often works well. Thus,
in this work, various sets of features which can be func-
tionally dependent are embedded into the same naïve
Bayes classifier. Actually, the best performance feature
set we have obtained contains features derived from the
same source data sets, which will be shown in the result
section.

Performance measures
There have been many unsupervised learning algorithms
proposed to predict heteromeric protein complexes, not
specialized for heterodimeric complexes. Some of them
can predict clusters of size two. Thus, it would be useful to
be able to compare performance of supervised and unsu-
pervised learning algorithms w.r.t. heterodimeric protein
complexes. To realize it, firstly, we formulate the three
major measures, precision, recall, and F-measure in a gen-
eral way, which is the same as in [9]. After that, we will
explain how to use them.

To formulate those measures, a matching criterion for
two sets of proteins is needed. Let s and t be sets of pro-
teins with arbitrary sizes. The overlap ratio between s and
t, denoted by ov(s, t), is defined as follows:

ov(s, t) =
{ |s∩t|√|s|·|t| if |s ∩ t| ≥ 2

0 otherwise.

We say that s and t are matched if ov(s, t) is no less than a
predefined threshold, η. If s and t share at least two pro-
teins, the overlap ratio is equal to the ratio of the number
of common proteins in s and t to the geometric mean of
the sizes of s and t. Thus, it is one if s and t are identical
to each other. On the other hand, if s and t share less than
two proteins, the overlap ratio is defined as zero. The rea-
son why the overlap ratio is zero even if s and t share one
protein is to avoid unfavorable situations when the value
of η is set to be the typical value of 0.4472 (= √

0.2) in the
literature. Without that criterion, by randomly generating
clusters of size two, known complexes of size two can be
matched with some of the clusters by chance.

Let C be a set of predicted clusters of proteins by an
algorithm, and K a set of known complexes. We denote
by Npc(C, K , η) the number of predicted clusters matched
with at least one known complex, i.e.,

Npc(C, K , η) = |{c|c ∈ C, ∃k ∈ K , ov(c, k) ≥ η}|,

and by Nkc(C, K , η) the number of known complexes
matched with at least one predicted cluster, i.e.,

Nkc(C, K , η) = |{k|k ∈ K , ∃c ∈ C, ov(k, c) ≥ η}|.
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We then define the precision of C to K with η as

precision(C, K , η) = Npc(C, K , η)

|C| .

In a similar way, the recall of C to K with η is defined as

recall(C, K , η) = Nkc(C, K , η)

|K | .

The F-measure of C to K with η is defined as the har-
monic mean of the corresponding precision and recall.
Namely, we have

F(C, K , η) = 2 · precision(C, K , η) · recall(C, K , η)

precision(C, K , η) + recall(C, K , η)
.

In this work, two different matching criteria, which
are exact and approximate ones, respectively, are used to
evaluate predicted clusters of size two. For the set of all
clusters predicted by an algorithm, C, we denote by C|2
the subset of all clusters of size two in C. Notice that C is
equal to C|2 if C is generated by our classifiers. Let K be
the set of all known complexes in CYC2008, and K |2 the
set of all known heterodimeric complexes in CYC2008.
The precision and recall with the exact matching crite-
rion for size two are given as precision(C|2, K |2, 1) and
recall(C|2, K |2, 1), respectively. Note that all the clusters
and complexes used in the measures are of size two. The
precision and recall with the approximate matching crite-
rion with η for size two are given as precision(C|2, K , η)

and recall(C, K |2, η), respectively, where η is set to be η =√
0.2, the typical value in the literature.

K-L divergence
The Kullback-Leibler (K-L) divergence of two trained con-
ditional distributions of a feature can be used as a measure
for indicating how discriminative the feature is. The K-
L divergence is a measure of the difference between two
probability distributions, and defined as follows [29]:

KL(P||Q) =
∑

i
P(i) log2

P(i)
Q(i)

.

Note that in general the Kullback-Leibler divergence is not
symmetric, namely KL(P||Q) �= KL(Q||P). The symmetric
and non-negative Kullback-Leibler divergence is defined
as follows:

KLsym(P||Q) = 1
2

(KL(P||Q) + KL(Q||P)) .

For a feature Xi with two trained conditional distribu-
tions, P(Xi|C = 1) and P(Xi|C = 0), the symmetric K-L
divergence of Xi is defined as

KLsym(P(Xi|C = 1)||P(Xi|C = 0)).

Hereafter the symmetric K-L divergence is simply called
the K-L divergence.

Results and discussion
Finding the best feature set
In the first stage of a five-fold cross-validation, the K-
L divergence of the 15 designed features is calculated.
The mean with standard deviation of those values of each
feature over the five folds is shown in Figure 5. The follow-
ing observations are obtained from Figure 5. At first, the
K-L divergences of the three features, Localization, Neigh-
boringEdge, and NeighboringCommonNode are relatively
considerably lower than the others. Their K-L divergences
are 0.2 or less. On the other hand, those of the other fea-
tures are about 0.5 or more. As a result, the three features
seem to be relatively less effective to predict heterodimeric
protein complexes. Thus, in the next stage, these three fea-
tures are excluded. Secondly, the highest K-L divergence
of 2.0 is given by PPIWeight.Rank. Thus this feature is
expected to be the most effective feature to discriminate
heterodimeric protein complexes from the other com-
plexes. Lastly, the K-L divergence of a feature derived from
a feature template is largely dependent on the score func-
tion embedded in the feature. When considering the K-L
divergence averaged over the different templates with the
same score function, those score functions are sorted as
follows: PPIWeight, SemanticSim.BP, RandomWalkProx-
imity, and SemanticSim.MF. Thus, according to this order,
the corresponding features are expected to contribute the
discrimination of heterodimeric protein complexes from
the others.

In the second stage of finding discriminative naïve Bayes
classifiers, an exhaustive search was executed in the fol-
lowing search space for feature sets. At first, any of the
three low K-L divergence features are not included in
all the feature sets in the search space. Secondly, for
each of the four score function for a pair of proteins,
PPIWeight, SemanticSim.BP, RandomWalkProximity, and
SemanticSim.MF, three concrete features, Rank, Score,
and DiffToMax, are created. Lastly, any feature set in the
search space should include one or two features from the
four concrete features derived from the same score func-
tion. Thus, the total number of feature sets in the search
space is 1296.

For each of the feature sets in the search space, a five-
fold cross-validation was carried out. Note that the pre-
dictability of trained classifiers are evaluated with five test
sets of the cross-validation. In the next section, the feature
set with the highest mean of F-measures on the five test
sets is analyzed deeply.

Analyses
The best feature set found in the previous section
consists of the followings: PPIWeight.Score, PPIWeight.
DiffToMax, SemanticSim.BP.Rank, SemanticSim.BP.Diff
ToMax, RandomWalkProximity.Rank, RandomWalkProx-
imity.Score, and SemanticSim.MF.DiffToMax. It is inter-
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Figure 5 K-L divergences of features. The K-L divergence of each feature is calculated with five training sets of positive and negative examples.
The mean and standard deviation of five divergence values of a feature are represented by the height of the corresponding bar and the error bar on
the top, respectively.

esting that PPIWeight.Rank, whose K-L divergence is the
highest among the 15 features, is not included in the
above feature set. Instead of that, PPIWeight.Score and
PPIWeight.DiffToMax are contained. Probably, the com-
bination of them would work better than PPIWeight.Rank
alone. The results on test sets in the five-fold cross-
validation are shown in Table 1. Recall that the numbers of
positive and negative examples are 152 and 1520, respec-
tively. Each of them is predicted by one of the five trained
classifiers to be either positive or negative in the cross-
validation. Totally, 98 (64.5%) of the 152 positive examples
are correctly predicted to be positive. Namely, they are
true positive, and the 54 remaining positive examples are
false negatives. On the other hand, 1498 (98.6%) of 1520
negative examples are true negative and the other 22 ones
are false positives.

Table 1 Prediction result on test sets in five-fold
cross-validation

Fold 1 2 3 4 5 Total

TP 15 22 25 18 18 98

FN 16 9 5 12 12 54

TN 299 299 298 300 302 1498

FP 5 5 6 4 2 22

This table shows the numbers of true positives (TP), false negatives (FN), true
negatives (TN), and false positives (FP) for the test set of each fold. Note that the
number of positive examples is 31 in the first and second folds, and 30 in the
other folds. The number of negative examples is 304 in each fold.

For each test set, the performance measures of preci-
sion, recall, and F-measure are calculated. Their means
with standard deviations are shown in Figure 6. The pre-
cision, recall, and F-measure are averagely 0.818, 0.645,
and 0.716, respectively. These scores are acceptable result.
This feature set is also applied to several different sets of
training and test, and quite similar results are obtained
(data not shown).

It is interesting to see how many classes predicted by
the five trained classifiers are consistent for each of the
152 positive and 1520 negative examples. Table 2 shows
the frequency of positive and negative examples according

Figure 6 Performance of trained classifiers by test sets. This
graph shows the mean and standard deviation of precision, recall,
and F-measure of the five trained classifiers. These scores are derived
from five test sets of positive and negative examples.
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Table 2 Consistency of predicted classes

0 1 2 3 4 5

P 48 4 0 3 0 97

N 14 5 2 2 3 1494

This table shows the frequency of positive and negative examples according to
the number of correct predictions by the five trained classifiers. The first row
shows the number of classifiers whose predicted classes are correct. The next
rows, P and N, give the results on positive and negative examples, respectively.

to the number of correct predictions by the classifiers. It
can be found that 97 (63.8%) of the positive examples are
consistently predicted correctly by the five trained clas-
sifiers. In the next section, two instances are examined.
Interestingly, there are many 48 (31.6%) positive exam-
ples that are consistently predicted to be negative by the
classifiers. One of them is also picked up and the reason
for the misclassification is considered. Notice that, totally,
145 (95.4%) of the positive examples are predicted to be
the same class by the five trained classifiers. Furthermore,
1494 (98.3%) of the negative examples are consistently
predicted to be negative by the classifiers, and 14 (0.9%)
negative examples are consistently predicted to be pos-
itive. Totally, 1508 (99.2%) of the negative examples are
consistently predicted by the classifiers. As a result, the
five trained classifiers are fairly consistent to each other.

In the subsequent sections, some of true positives, false
negatives, and false positives, which are consistently pre-
dicted by the five trained classifiers, are analyzed further.

True positive
The first instance of true positives is the pair of two pro-
teins, UBP3/YER151C and BRE5/YNR051C. These pro-
teins are known to interact with each other to co-regulates
anterograde and retrograde transport between the endo-
plasmic reticulum and Golgi compartments [30]. There is
no other known complexes including at least one of the
two proteins in CYC2008. The scores of the features to
this instance are given in the column of TP1 of Table 3.

Table 3 Raw scores of features

Feature TP1 TP2 FN

PPIWeight.Score 79.5 12.8 58.3

PPIWeight.DiffToMax 39.5 -7.2 -47.4

RandomWalkProximity.Rank 0 0 9

RandomWalkProximity.Score 0.0953 0.0509 0.0231

SemanticSim.BP.Rank 0 0 9

SemanticSim.BP.DiffToMax 0.728 0.269 -0.808

SemanticSim.MF.DiffToMax -2.00 1.22 -1.08

This table shows the returned values of features to particular examples. The
columns of TP1, TP2, and FN correspond to the pairs of UBP3/YER151C and
BRE5/YNR051C, ECM17/YJR137C and MET10/YFR030W, and CDC28/YBR160W
and CLN1/YMR199W, respectively.

The PPI weight of the pair is shown to be 79.5, which is
relatively high. This means that feature PPIWeight.Score
gives a high score to the pair. In addition, UBP3/YER151C
and BRE5/YNR051C have 30 and 8 interactions in WI-
PHI, and none of the neighboring interactions to the two
proteins, except the pair, has a PPI weight higher than that
of the pair, 79.5. This means that PPIWeight.DiffToMax,
RandomWalkProximity.Rank, and RandomWalkProxim-
ity.Score, can return high scores to this pair. Actually,
RandomWalkProximity.Rank marks the optimal score of
0 (see Table 3). In addition, this pair has statistically sig-
nificant biological process GO term, “ribophagy” with p-
value 9.58e-06, indicating SemanticSim.BP features return
high scores to this pair. Notice that SemanticSim.BP.Rank
marks the optimal score of 0. Figure 7 (a) shows the mean
of LLRs of each feature, Xj, by the five trained classifiers.

All the features, except SemanticSim.MF.DiffToMax,
have scores greater than two. As a result, all the whole
LLRs obtained by the five trained classifiers are more than
2.0, respectively, which is higher than the threshold, 0.6.

This first instance can be trivial because the PPI
weight of the pair is high. This means high LLRs
of features derived from the PPIWeight score func-
tion. We then pick up all positive examples whose
corresponding PPI weights are at most 20 and which
are consistently predicted to be positive by the five
trained classifiers. The following 15 instances satisfy
this criteria: YPL147W YKL188C; YNL246W YLL002W;
YOR363C YAL051W; YCL009C YMR108W; YJR135W-
A YGR181W; YJR137C YFR030W; YBR036C YBR161W;
YFL041W YBR207W; YDL099W YDR517W; YLR067C
YJL209W; YIR021W Q0115; YHR079C-A YPL121C;
YCL017C YER048W-A; YJR035W YKL054C; YOR321W
YDL093W. Among them, the pair of ECM17/YJR137C
and MET10/YFR030W is taken as the second instance to
be analyzed.

The protein complex formed by those proteins is
known as sulfite reductase complex (NADPH). CYC2008
does not contain any other complexes including one
of the proteins. The scores and LLRs of the features
to this instance are given in the column of TP2 of
Table 3 and Figure 7 (b), respectively. This pair’s PPI
weight is 12.8, which is considerably low. As a result,
the LLR by PPIWeight.Score is averagely below -3 (See
Figure 7 (b)). ECM17/YJR137C has four PPIs. The high-
est PPI is one with MET10/YFR030W. On the other
hand, MET10/YFR030W has 48 PPIs. The number of
PPIs whose weights are higher than the PPI weight with
ECM17/YJR137C is only four. Thus, the scores of Ran-
domWalkProximity features for this pair are relatively high
because most of the neighboring PPIs to the pair have
lower weights than that of the pair, although the PPI
weight of the pair is absolutely low. Actually, the LLR of
RandomWalkProximity.Rank is the highest among all the
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Figure 7 LLRs of features of positive examples. These graphs show the LLRs of features for particular instances. Those are (a) UBP3/YER151C and
BRE5/YNR051C, (b) ECM17/YJR137C and MET10/YFR030W, and (c) CDC28/YBR160W and CLN1/YMR199W.

seven features (see Figure 7 (b)). In addition, the most
statistically significant biological process GO terms are
hydrogen sulfide metabolic process and hydrogen sulfide
biosynthetic process with p-value 2.33e-05. Furthermore,
the most statistically significant molecular function GO
term is sulfite reductase (NADPH) activity with p-value
2.33e-07. As a result, the LLRs of SemanticSim features

are high. Thus, in this case, the fault of PPIWeight fea-
tures is covered by the other features, so that this example
is correctly predicted to be positive.

False negative
In this section, an instance is picked up from the 48
(31.6%) positive examples that are consistently predicted



Maruyama BMC Bioinformatics 2013, 14:347 Page 11 of 15
http://www.biomedcentral.com/1471-2105/14/347

to be negative by the five trained classifiers, and examined,
too.

The pair of CDC28/YBR160W and CLN1/YMR199W
is known to form Cdc28p/Cln1p complex, which is a
cyclin-dependent kinase complex to promote the G1 to
S phase transition [31]. Especially, CDC28/YBR160W is
well known as a master regulator of mitotic and mei-
otic cell cycles and to form nine heterodimeric cyclin-
dependent kinase complexes with CLB1, CLB2, · · · , CLB6,
CLN1, CLN2, and CLN3, respectively. Thus, this pro-
tein can be considered to be a hub protein. On the other
hand, no other complexes including CLN1/YMR199W
are known. The scores and LLRs of the features to this
instance are given in the column of FN of Table 3 and
Figure 7 (c), respectively. The PPI weight of the pair is
58.3. Thus, The LLR of PPIWeight.Score is high. However,
the others’ LLRs are weak as follows. CDC28/YBR160W
has 75 PPIs, and three of them have higher weights than
that of the pair. The highest is 105.7 given with YBR135W.
As a result, PPIWeight.DiffToMax gives a negative LLR.
CLN1/YMR199W has 26 PPIs, and none of them have
higher weights than that of the pair. Although the PPI
weight of the pair is relatively high, the pair has many
neighboring PPIs. This would make the LLRs of the
RandomWalkProximity features weak. To make matters
worse, the pair has no statistically significant GO terms
in both biological process and molecular function aspects.
As a result, this pair is incorrectly predicted. As long as a
component of a heterodimeric complex is a hub protein, it
might be difficult to detect the complex correctly even if
appropriate GO terms were assigned to the two proteins
of the complex.

False positive
Lastly, we discuss false positives. Among them, two inter-
esting cases can be found. One is the case where either or
both proteins of a given pair of proteins are components
of a known heteromeric protein complex of size three or
more. This result indicates that the features used here
are still not enough to discriminate heterodimeric protein
complexes from heteromeric ones. Note that, among the
14 negative examples that are consistently predicted to be
positive, nine negative examples are in this group, which
can be identified in the section of the results on negative
examples in Additional file 1. Another case is that a pair
of proteins can be a true heterodimeric complex. Actu-
ally, among the five remaining false positives, the pair of
GIR2/YDR152W and RBG2/YGR173W is known to be a
heterodimeric protein complex [31].

In addition, MSH4/YFL003C and MSH5/YDL154W are
known to form a dimer with each other. These pairs can
be also positive examples. Notice that the set of nega-
tive examples used in the cross-validation corresponds to
only 3% of the PPIs of WI-PHI. Among them, false posi-

tives with high LLRs could be good candidates for positive
examples.

ROC curve
A ROC curve is given in Figure 8. This is obtained from
the results whose LLR thresholds are ranged from -1 to
1.95 with 0.05 increments in between. Let tpi, fni, tni, and
fpi be the numbers of true positives, false negatives, true
negatives, and false positives, respectively, in the i-th fold
of the five-fold cross-validation. Next, TP is defined as the
sum of tpi for i = 1, 2, . . . , 5. This is equivalent to the
total number of true positives in the cross-validation. In
the same way, FN, TN, and FP are given. The false posi-
tive rate and true positive rate are given as FP/(FP + TN)

and TP/(TP + FN). The ROC curve is created by plot-
ting the false positive rate vs. the true positive rate at each
LLR threshold. We can see that as the false positive rate
increases, the true positive rate quickly becomes large and
saturated. Actually, for the false positive rate of 0.169, the
corresponding true positive rate is 1. The area under the
ROC curve (AUC) is 0.974. Thus, we can conclude that
our method is successful in the cross-validation. Note that
the peak of F-measure is given by the LLR threshold rang-
ing from 0.0 to 0.7. The threshold of 0.1 gives the best of
averaged F-measure of 0.729 with the standard deviation
0.037. The corresponding precision and recall are 0.670
with 0.077 and 0.809 with 0.071, respectively.

Raw output data
Additional files 1 and 2 provide raw outputs of our method
for the feature set analyzed in this section. Additional file
1 is the main output file of our tool. Additional file 2 gives
the pair of trained multinomial distributions of a feature
for positive and negative examples in each fold of the five-
fold cross-validation.

Performance comparison
Qi et al. [32] have proposed a supervised approach with a
Bayesian classifier for protein complex prediction. How-
ever, their target is complexes composed of three or more
proteins. Most of the features embedded into their classi-
fier are specialized to work well for relatively large com-
plexes. Thus it will be difficult to apply their method to
heterodimeric protein complex prediction.

On the other hand, there have been many unsuper-
vised learning methods proposed to predict heteromeric
protein complexes. Thus, to see how much performance
our method achieves, performance comparison is carried
out with the following nine unsupervised protein complex
prediction tools, MCL [6], RRW [7], NWE [8], PPSam-
pler [9], RNSC [10], MCODE [11], DPClus [12], CMC
[13], and COACH [14]. However, the last four tools are
excluded from further analysis because they do not return
any predicted clusters of size two. Note that the above
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Figure 8 ROC curve. This graph shows a ROC curve, which is obtained by changing the LLR threshold from -1 to 1.95 with 0.05 increments in
between.

tools are all executed with their default settings, except
the option of the minimum size of predicted complexes
of RRW and NWE, which are set to be two. Recall that
features based on functional information, which are based
on the biological process and molecular function ontolo-
gies, respectively, are exploited by our method. Thus,
our method should be compared with another algorithm
incorporating functional information in protein complex
prediction. RNSC (Restricted Neighborhood Search Clus-
tering Algorithm) [10] is such a method and adopted in
this comparison because it is publicly available.

Usually, all PPIs of a database are taken as input to unsu-
pervised learning algorithms. Here, all WI-PHI PPIs are
given to the above unsupervised learning algorithms. In
order to compare our classifiers with those algorithms as
fair as possible, the five trained classifiers are imposed on
the prediction of the class of the pair of the proteins of
each of the PPIs.

In the literature, heteromeric predicted clusters are
approximately evaluated whether they are matched with
some known complexes. A typical matching threshold
is η = √

0.2 (see, for example, [9,11,14,33]). Thus,
precision(C|2, K , η) and recall(C, K |2, η) are calculated
with η = √

0.2. It should be noted here that, when
C is given by our classifiers, we have C|2 = C, i.e.,
recall(C, K |2, η) is equal to recall(C|2, K |2, η). On the
other hand, in general, it does not hold for unsupervised
learning methods. Thus, this performance comparison
with this approximate matching criterion is advantageous
to unsupervised learning methods. However, as shown in
Figure 9, in F-measure, the classifiers are superior to the
unsupervised learning methods (Details are shown soon).

The number of predicted clusters, Npc, and Nkc under
η = √

0.2 are shown in Table 4. Those numbers of our
method are averaged over the five trained classifiers. It can
be seen that the number of predicted clusters varies with
the individual tool, ranging from 129 to 1824. Similarly, it

holds for Npc and Nkc, respectively. From these numbers,
the three performance measures of precision, recall, and
F-measure are calculated and the resulting graph is shown
in Figure 9. The precision of our classifiers is slightly more
than 0.5, followed by 0.3 of PPSampler. The best per-
former in recall is NWE, closely followed by MCL and our
classifiers. These tools form the top group. As a result, the
F-measure of our classifiers turns to be the best, which is
0.487 ± 0.007, followed by 0.316 of PPSampler and 0.287
of NWE. Thus it is 54% better than the second.

Next is the performance comparison with the exact
matching criterion of η = 1. In this case, Npc is equal
to Nkc, which is shown in Table 5. It varies from 2 to 78.
The resulting precision, recall, and F-measure are shown
in Figure 10. In can be seen that the precision of the classi-
fiers is still higher than those of the unsupervised learning
methods, although the gap between the best and the sec-
ond best precision score, 0.209, given by PPSampler, is

Figure 9 Performance comparison with the approximate
matching criterion. The five trained classifiers and five unsupervised
learning methods are compared in precision, recall, and F-measure,
which are determined with the approximate matching criterion with
η = √

0.2.
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Table 4 Performance with the approximate matching
criterion with η = √

0.2

Method NBCs MCL RRW NWE PPSampler RNSC

#cluster 298 ± 18 213 1824 632 129 576

Npc 156 ± 6 7 122 129 39 8

Nkc 78 ± 4 79 60 83 57 32

The first row shows the name of a prediction algorithm. The second row gives
the number of predicted clusters of size two. The subsequent columns show Npc

and Nkc calculated with η = √
0.2. The column of NBCs (naïve Bayes classifiers)

gives the result of our method.

smaller than that with the approximate matching crite-
rion. In recall, the classifiers and NWE, which are almost
the same, are 43% better than the third best score of 0.32,
given by RRW. Finally, the best F-measure, 0.334 ± 0.007,
is also achieved by the classifiers, followed by NWE and
PPSampler whose F-measures are 0.194 and 0.179, respec-
tively. Thus, the best one is 74% and 88% better than them,
respectively.

By comparing Figures 9 and 10, the following observa-
tions is obtained. At first, the precision of all tools are
reduced. This fact indicates that some predicted clusters
of size two are approximately matched with strictly larger
known complexes, t. Note that |t| is limited to ten in this
work because of ov(s, t) ≥ √

0.2 with |s| = 2. Notice
that those predicted clusters are completely included in
the matching known complexes from the definition of
the overlap ratio. Secondly, the recall of all the unsuper-
vised learning methods, especially MCL, PPSampler, and
RNSC, are also reduced. This fact indicates that some
of the known complexes of size two, i.e., heterodimeric
protein complexes, are approximately matched with pre-
dicted clusters of size ranging from three to ten. These
two observations imply the difficulty of predicting het-
erodimeric protein complex exactly.

Although the trained classifiers outperforms other
methods, the performance measures are lower than those
in the cross-validation. One of the reasons is that the
unbalanced ratio of the number of negative examples to
that of positive ones. The ratio is 49448 to 159. These
numbers are obtained as follows. CYC2008 contains 172
heterodimeric protein complexes. Among them, 13 het-
erodimeric complexes do not have the corresponding PPIs
in WI-PHI. Thus, 159 positive examples are determined
from WI-PHI and CYC2008. Recall that WI-PHI has
49607 non-self interactions. Thus, the resulting negative

Table 5 Performance comparison with the exact matching
criterion

Method NBCs MCL RRW NWE PPSampler RNSC

Npc(= Nkc) 78 ± 4 4 55 78 27 2

The second row shows Npc(= Nkc) calculated with η = 1.

Figure 10 Performance comparison with the exact matching
criterion. The five trained classifiers and five unsupervised learning
methods are compared in precision, recall, and F-measure, which are
determined with the exact matching criterion.

examples in the WI-PHI database is 49448. In general,
to avoid making many false positives, the LLR thresh-
old and the class LLR, log P(C=1)

P(C=0)
should be relatively low.

Actually, the class LLR is set to be lower than in the cross-
validation. This causes that the number of true positives,
98, in the cross-validation (Table 1) is reduced to 78 ± 4
in this performance comparison (Table 5). Another reason
is due to not yet known PPIs nor heterodimeric protein
complexes. Thus, some of the current negative examples,
determined from the WI-PHI and CYC2008 databases,
can be positive examples, as shown in Section ‘Analyses’.
If these data sets are expanded quantitatively and quali-
tatively, prediction can be more accurate. Lastly, informa-
tion on PPIs and heterodimeric protein complexes being
static is also another reason, because they are intrinsically
dynamic cellular entities. If time- and context-dependent
PPIs and protein complexes are available, more sophisti-
cated features could discriminate heterodimeric protein
complexes from the others more correctly.

Potential protein complexes
We have conducted further analysis as follows. All pairs
of proteins, x, satisfying the following conditions are
extracted: (i) x is known to have an interaction between
the proteins of x, (ii) x does not correspond to any het-
erodimeric protein complexes, and (iii) x is predicted to
be positive by all the five classifiers. The total number of
those PPIs are 154. Among them, 51 (33%) of them are
completely included in known complexes of size three or
more. Thus, some of the remaining 103 PPIs are candi-
dates for true heterodimeric complexes. In addition, many
of 103 PPIs can be potential subunits of undiscovered pro-
tein complexes of size three or more because the fact that
they are predicted to be positive by the five classifiers
implies that they are functionally and topologically closely
related. Thus, these PPIs are good candidates for unknown
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protein complexes. Raw data of this analysis can be found
in the last part of Additional file 1.

Future works
Currently, there is no high-quality weighted PPI data in
human, like WI-PHI in yeast. It is a future work to create
such data set and apply our method to human data sets.
In addition, it is also an interesting future work to apply
classifiers trained by yeast data sets to other organisms.
In this case, the requirement is at least input data sets to
features embedded into the classifiers.

It is also a future work to design more sophisticated
features or templates for concrete features using some
genome-wide data sets. Especially, a feature based on 3D
structure information can be promising.

Very recently, an independent work for predicting
heterodimeric protein complexes by a support vector
machine (SVM) with new features based on protein
domain information has been published [34]. Although
the best F-measure of the proposed method in a ten-fold
cross-validation is 0.631, which is lower than 0.716 of our
best F-measure in the five-fold cross-validation, it would
be worth considering to apply existing kernel functions
to the problem and to design new kernel functions. Fur-
thermore, in addition to SVMs, other machine learning
classification tools like decision trees and random forests
should be considered.

Conclusions
In this paper, we have proposed a supervised learning
method for heterodimeric protein complexes. For this
purpose, we have designed templates for features and indi-
vidual features, which is based on genome-wide data. The
naïve Bayes classifiers are evaluated in a five-fold cross-
validation, and the trained classifiers are also tested with
all known PPIs. Those classifiers are shown to attain much
better performance than existing unsupervised learning
methods.

Additional files

Additional file 1: Main output file. This file is the main output file of our
tool, which contains results of the five-fold cross-validation and the
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Additional file 2: Parameters of trained naïve Bayes classifiers. This
file shows for a feature, the pair of multinomial distributions trained by
positive and negative training examples in each fold of the cross-validation.
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