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Protein design holds promise for applications such as the 
control of cells, therapeutics, new enzymes and protein-
based materials. Recently, there has been progress in 
rational design of protein molecules, and a lot of attempts 
have been made to create proteins with functions of our 
interests. The key to the progress is the development of 
methods for controlling desired protein tertiary struc-
tures with atomic-level accuracy. A theory for protein 
folding, the consistency principle, proposed by Nobuhiro 
Go in 1983, was a compass for the development. Anfinsen 
hypothesized that proteins fold into the free energy min-
imum structures, but Go further considered that local 
and non-local interactions in the free energy minimum 
structures are consistent with each other. Guided by the 
principle, we proposed a set of rules for designing ideal 
protein structures stabilized by consistent local and 
non-local interactions. The rules made possible designs 
of amino acid sequences with funnel-shaped energy land-
scapes toward our desired target structures. So far, vari-
ous protein structures have been created using the rules, 

which demonstrates significance of our rules as intended. 
In this review, we briefly describe how the consistency 
principle impacts on our efforts for developing the design 
technology.
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Understanding of protein folding is important to develop 
the methodology for creating our desired proteins. Anfinsen 
hypothesized that proteins fold into the free energy mini-
mum structures [1]. However, the folding problem—How 
do amino acid sequences determine the folded structures?— 
has been a long-standing problem for more than a half cen-
tury. Researches for protein folding or structure prediction 
from amino acid sequences have attempted to address the 
problem by studying complicated proteins created by nature 
spending billions of years, which have energetically unfa-
vorable non-ideal features such as kinked α-helices, bulged 
β-strands and buried polar residues. Protein design studies 
provide an alternative approach to tackle the problem by cre-
ating simple protein structures not having such unfavorable 
features from scratch with hypotheses about protein folding 
and experimentally testing how the designs fold.

Protein design expands the possibility of developments for therapeutics, biosensors, materials, etc. Recently there 
has been great progress in computational design of protein structures. The basic idea that underlies the progress is 
the rules we discovered relating secondary structure patterns to tertiary motifs, which make it possible to design 
Go’s proposed ideal protein structures. In this review, we describe how our rules were discovered in the history of 
protein design and folding studies.
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was achieved by Kuhlman, B., et al. in 2003 [16]. The 
authors created a novel protein fold, Top7, from scratch (Fig. 
4). In this study, the authors developed a protocol in the  
software, Rosetta, to design protein structures from the back-
bone, in which the backbone structure of Top7 was built by 
assembling short fragments of known protein structures [17] 
and then sidechains that stabilize the built backbone were 
explored by an iterative approach between the rotamer-based 
sidechain design for a fixed backbone and gradient-based 
optimization of the entire structure for a fixed sequence  
[16]. The developed protocol enabled to identify sidechain-
backbone pairs that have very low energies in computation, 
and one of the sequences of the pairs was found to have fold-
ing ability to the designed Top7 structure with atomic-level 
accuracy. Since then, however, no one made a success of  
the de novo design of protein structures until our work,  
indicating that the protocol was not enough to design protein 
structures. For designing proteins folded into the desired 
structures, there should be other essential factors than 
exploring low energy structures with tight hydrophobic core 
packing. Indeed, the paper did not describe how the lengths 
of the secondary structures and loops in the Top7 structure 
were determined. If we can design proteins with well-packed 
low energy structures whatever lengths of the secondary 
structures and loops are used, are the designs foldable? We 
started our work [18] in Baker group by investigating the 
folding abilities of proteins depending on the lengths of  
secondary structures and loops with folding simulations and 
statistical analysis of naturally occurring protein structures. 
Before describing the work, some hypotheses suggested by 
protein folding studies need to be introduced, which were 
the compass for developing our design methods.

Funnel-shaped energy landscape
The theoretical studies for protein folding from the late 

1980s to 1990s suggested a hypothesis that natural proteins 
have evolved to have funnel-shaped energy landscapes toward 
the native state from the denatured state, in which proteins 
decrease their energies along with the formation of the 
folded structure [19–22] (Fig. 1a). On the other hand, poly-
peptides with random amino acid sequences have various 
low energy structures, resulting in rugged and non-funneled 
energy landscapes (Fig. 1b). Such polypeptides are trapped 
into various non-native states, not showing foldability toward 
the native state. This funnel hypothesis is supported by  
the fact that protein folding studies using Go-like models 
can explain the folding mechanisms (cooperative folding-
unfolding transition, pathways, rates, etc.) found by experi-
ments for small proteins [23–28]. The original Go model 
(not Go-like), a lattice model, proposed by Go [29] to 
embody the consistency principle [30] was applied to study 
the cooperative protein folding-unfolding transition, not in 
the context of the above energy landscape discussion. In 
either case of the Go or Go-like models, the essence of the 

Protein design in early days
Protein design work was started in the late 1980s by the 

design of helical bundle structures. DeGrado, W. H., et al. 
[2] attempted to design dimeric helical bundle structures 
based on a hydrophobic (H) and hydrophilic (P) amino acid 
sequence pattern using the helical wheel model. Hecht, M. H., 
et al. [3] tried to design a four helix bundle, taking into 
account various structural features for helical proteins, derived 
from statistics of known protein structures, such as favorable 
amino acid types in α-helix or at the N- and C-terminal  
α-helix capping positions. However, these designed proteins 
were experimentally found to be in a molten globule state,  
in which proteins are compact with native-like secondary 
structure contents but without tight core packing [4]. The 
designs of TIM-barrel fold were also challenged by consid-
ering sequence preference for each residue position based on 
natural TIM-barrel proteins, but also found to be in a molten 
globule state [5]. All these efforts in early days tell us that 
protein folding is not determined just by simple amino acid 
patterning such as HP pattern: detailed atomistic modeling 
of tertiary structures is essential for designing amino acid 
sequences that have folding ability toward a unique tertiary 
structure. For example, the core in natural protein structures 
is apparently made of densely packed hydrophobic atoms. 
Actually, Hecht, M. H., et al. [3] tried to achieve the packed 
hydrophobic core in the design using a physical model, but 
it would have been difficult to capture the atomistic detail by 
hand.

Computational protein design from sidechain-
redesign to full-scratch

The pioneer work of computational protein design with 
atomic resolution modeling was done by Dahiyat, B. I., et al. 
in the late 1990s, focusing on the redesign of sidechains of a 
naturally occurring protein structure using the backbone as a 
scaffold [6]. The group redesigned sidechains of zinc finger 
domain by stripping off the native sidechains of the protein 
and rebuilding new sidechains (amino acids) with a set of 
discretely represented sidechain conformations (rotamer 
library): new sidechain conformations that have the lowest 
energy for the zinc finger backbone were explored with the 
rotamer library. The design was found to form a compact 
well-ordered structure of zinc finger domain in the solution 
NMR structures, in which the packing of the hydrophobic 
core was similar to the design model. Since then, successful 
sidechain-redesigns of natural proteins have been reported 
for lambda-Cro [7], tenascin [8], homeodomain [9], etc. In 
these days, various designs such as novel enzymes [10], an 
influenza binder [11], and cage-like symmetric oligomers 
[12–15] were created using naturally occurring proteins as 
scaffolds, which can be considered as applications of the 
rotamer-based sidechain designs.

The first de novo design of a globular protein structure 
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Go’s consistency principle and local backbone  
preference for shaping funnel

Go proposed a hypothesis for protein folding, the consis-
tency principle [30]. He considered that the local and non- 
local interactions are consistent with each other, in which 
local (non-local) interactions are those between amino acids 
close (distant) along a sequence. For example, if a tertiary 
structure is stabilized by non-local interactions such as 
hydrophobic and vdW interactions, but has local steric 
clashes or amino acids with low propensity for their second-
ary structures, the interactions of the tertiary structure are 
regarded as inconsistent. For the consistent case, all the local 
and non-local interactions consistently stabilize the tertiary 
structure with each other. The Go’s consistency principle is 
a paradigm shift for protein folding next to the Anfinsen’s 
thermodynamic principle: a folded structure has consistent 
interactions as well as corresponding to a free energy mini-
mum. Indeed, as of 2019, more than 150,000 structures are 
deposited in the protein structure database (PDB), and when 
observing the structures, various interactions are surpris-
ingly consistent: for example, buried polar groups without 
making hydrogen bonds are very rare [32]. About 20 years 
after the Go’s consistency principle, Chikenji, G., et al. dis-
cussed how funnel-shaped energy landscapes arise, using 
exact enumeration with a HP lattice model [31]. As described 
above, the Go model considers only the specific interactions 
formed in the native structure as an ideal limit to satisfy the 
consistency principle and has smooth-funneled energy land-
scape. On the other hand, the HP model used in their study 
has nonspecific nonlocal hydrophobic interactions and has a 
rugged energy landscape with multiple stable non-native 
structures. The authors demonstrated that by introducing 
local interactions into the HP model through a prohibition  
of one conformation for each local sequence (Fig. 2b), the 
rugged energy landscape get sculpted to be funneled into the 
native structure, in which any disallowed local conforma-

models is an assumption to consider only native interactions 
formed in the native conformation as the energy gain ignor-
ing non-native interactions, which makes the energy land-
scape smoothly funneled.

The funnel theory directly leads to the idea that for design-
ing foldable proteins, it is essential to obtain amino acid 
sequences with funnel-shaped energy landscapes toward  
target structures. Such sequences could be acquired by 
exploring sequences that simultaneously stabilize the target 
structure and destabilize all of non-native structures. How-
ever, it is practically impossible to identify such sequences 
considering myriad non-native structures. How do we then 
find out such sequences? Clues for solving the question were 
the consistency principle proposed by Nobuhiro Go in 1983 
[30] and the discussion by Chikenji, G., et al. on how funnel-
shaped energy landscapes arise [31].

Figure 1 Schematic of (a) a funnel-shaped energy landscape of an 
amino acid sequence that has folding ability toward a folded structure 
and (b) a rugged and non-funneled energy landscape of a random 
sequence.

Figure 2 Illustration for how funnel-shaped energy landscapes arise using lattice HP model by Chikenji, G., et al. [31]. (a) The HP sequence, 
HHHPHHPHHHHPHHPH, which has initially a rugged energy landscape with multiple low-energy conformations, becomes to have a funnel-
shaped energy landscape toward a single conformation (Native) by assuming (b) just single disallowed conformation for each local sequence pattern.
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strongly dependent on the lengths of the secondary struc-
tures and the connecting loop, not the detail of amino acid 
sequences, and that these dependencies are described in the 
simple rules (Fig. 3a). Our succeeding paper [34] further 
identified that the rules can be extended with the discretized 
backbone torsion bins, ABEGO, for the loops (torsion bins A 
and B are the α-helix and β-sheet regions; G and E are the 
positive phi regions equivalent to A and B; and O is the cis 
peptide bond). The major origin of the backbone structure 
preferences found in the rules is backbone strain arising from 
the polypeptide’s molecular geometry and the local steric 
hindrance in phi-psi angles of each residue. The discovered 
rules allow us to control protein topologies: selecting lengths 
or ABEGO patterns of the secondary structures and loops 
that favor the tertiary motifs present in the desired topology, 
many of the non-native topologies are disfavored by local 
backbone strain, resulting in funnel-shaped energy landscape.

Design of various ideal protein structures based on 
the rules

We have finally reached a general method to design amino 
acid sequences with funnel-shaped energy landscapes 
toward a unique structure [18]. De novo protein designs pro-
ceed in two steps: the backbone building [17] and the side-

tions are not included and maximum number of hydrophobic 
interactions is satisfied, i.e., local and nonlocal interactions 
are consistent (Fig. 2a). This result suggested that the con-
formational biases by local interactions can shape funnel-
shaped energy landscapes.

Based on the described studies on protein folding, we 
have sought to develop methods for designing protein struc-
tures from scratch. Go indicated that the interactions in nat-
urally occurring proteins (real proteins) cannot be perfectly 
consistent because interactions relating to stabilities and 
functions may not be consistent. Moreover, he suggested  
a concept of ideal proteins, in which various interactions  
are perfectly consistent. We hypothesized that proteins with 
funnel-shaped energy landscapes can be readily generated 
by designing such ideal proteins, and set out to seek design 
methods to create them [18].

The rules for designing ideal proteins
We investigated the relationships between local inter

actions favoring secondary structure patterns and non-local 
interactions favoring tertiary structure motifs [18] using 
Rosetta folding simulations [33] and statistical analysis of 
naturally occurring protein structures. As the results, we 
found that folding ability to a particular tertiary motif is 

Figure 3 (a) Discovered rules for designing ideal protein structures stabilized consistent local and non-local interactions. (b) A blueprint, drawn 
by the rules, for building backbone structures for an ideal structure of IF3-like fold shown in Figure 4. The numbers represent the secondary struc-
ture and loop lengths. Strand lengths are shown by filled and open boxes. The filled boxes represent pleats (Cα-Cβ vectors) coming out of the page, 
and the open boxes represent pleats going into the page. (c) The energy landscape for the designed sequence of IF3-like fold shown in Figure 4. The 
energy landscape was obtained from Rosetta ab initio structure prediction simulations [33]. Each red point represents the lowest energy structure 
obtained in independent simulation starting from an extended chain; the y-axis shows the Rosetta all atom energy, and the x-axis, the Cα root mean 
square deviation (RMSD) to the design model. Each green point represents the lowest energy structure obtained in independent simulation starting 
from the design model.
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