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To maximize the sensitivity of detecting affects of genetic variants in mice, variables have been minimized
through the use of inbred mouse lines, by eliminating infectious organisms and controlling environmental
variables. However, the impact of standard animal husbandry and experimental procedures on the validity of
experimental data is under appreciated. In this study we monitored the impact of these procedures by using
parameters that reflect stress and physiological responses to it. Short-term measures included telemetered

Keywords: . . .
St;Vess response heart rate and systolic arterial pressure, core body temperature and blood glucose, while longer-term
Husbandry parameters were assessed such as body weight. Male and female C57BL6/NTac mice were subjected to a range of

stressors with different perceived severities ranging from repeated blood glucose and core temperature
measurement procedures, intra-peritoneal injection and overnight fasting to cage transport and cage changing.
Our studies reveal that common husbandry and experimental procedures significantly influence mouse
physiology and behaviour. Systolic arterial pressure, heart rate, locomotor activity, core temperature and blood
glucose were elevated in response to a range of experimental procedures. Differences between sexes were evident,
female mice displayed more sustained cardiovascular responses and locomotor activity than male mice. These
results have important implications for the design and implementation of multiple component experiments where
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the lasting effects of stress from previous tests may modify the outcomes of subsequent ones.

© 2012 Elsevier Inc. Open access under CC BY license.

1. Introduction

Following the elucidation of the mouse genome sequence, compre-
hensive functional annotation of the mouse genome is pivotal to
understanding the normal function of all genes and the mechanisms
through which genetic variants cause disease. As the effort to generate
mutant alleles for all mouse genes progresses with pace [1,2], the most
facile and informative methods to elucidate phenotypes from knockout
mice at large scale and high throughput remain a challenge [3]. The
resource of targeted and gene trap alleles in the embryonic stem cell lines
generated by members of the International Knockout Mouse Consortium
(IKMC) provide a foundation of alleles on a uniform genetic background
for large scale phenotyping programmes [4]. Several programmes have
been initiated to generate and systematically phenotype the mice from
these resources including the Sanger Mouse Genetics Project (MGP),
European Mouse Disease Clinic (EUMODIC) and the International Mouse
Phenotyping Consortium (IMPC) [5]. The Sanger Mouse Genetics Project
will generate, characterise and archive more than 1000 lines of knockout
mice over the next 5years. The phenotyping screens employed are
designed to identify genes which perturb the function of the organism via
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their affect at different levels from small subsets of cells and tissues
through to organs and complex physiological systems. A phenotype
results from a complex interaction arising from the genetic mutation
but influenced by other alleles in the genetic background and the
environment. Changes in any one component can influence the
phenotype. Mouse geneticists have long appreciated the advantage of
controlling for factors which influence phenotype, most notably genetic
variation, by use of inbred strains, and limiting exposure to infectious
organisms. Environmental factors are also important and their influence
on results is under appreciated [6]. In a pivotal paper by Crabbe et al. [7],
strain differences and variation between laboratories were highlighted.
Since this study was published, further supporting evidence has been
published which describes data variability attributed to strain [6,8,9],
age, sex [10,11], diet [11], housing [10,12,13] and husbandry practices
[10]. To achieve the throughput of alleles required for large scale
phenotyping projects it is necessary to minimize the number of animals
assayed. It follows that there will be a corresponding loss of sensitivity in
the phenotyping assays unless sources of variation are identified and
controlled. Accordingly efforts to minimize variation in phenotyping tests
is central to the progress and productivity of such projects [6,7,14].

It has been reported that stress from research and husbandry
procedures may have an adverse effect on the well-being of laboratory
animals [15,16]. Observation on the influence of these stresses have
been reported using the rat [16,17], but it is unclear how these results
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extrapolate to mice, given the differences in mouse and rat physiology
and their responses to stress [18,19]. The research community would
benefit greatly from understanding the effects of stress in mice, with
particular focus on refining working practices to reduce data variability
which would reduce the numbers of animals required in an experi-
mental protocol and provide a greater understanding of parameters
which could improve mouse welfare.

The current study was conducted to determine the potential impact
of stress resulting from common husbandry and experimental pro-
cedures on mouse welfare, data quality and reproducibility. Specifically,
we examined changes in cardiovascular (CV) parameters, fasted blood
glucose (BG) and core temperature (Tc) parameters during BG and Tc
measurement procedures, sham intraperitoneal (ip) injection, cage
transport, overnight fast and cage changing, the latter two procedures
encompassing novel environment as a potential stressor. We report the
effect of stress on data quality and highlight that stress is a powerful
source of variability which must be considered when standardising
protocols and when comparing inter-laboratory data.

2. Materials and methods
2.1. Animals

The care and use of all mice in this study were in accordance with
the UK Home Office regulations, UK Animals (Scientific Procedures) Act
of 1986 and were approved by the Wellcome Trust Sanger Institute
Ethical Review Committee. C57BL/6NTac mice of both sexes were bred
and maintained in a specific pathogen-free unit, room temperature and
humidity regulated (21 42 °C; 55 £+ 10%), 12/12 h light/dark cycle with
lights off at 19:30h and no twilight period. Mice were housed in
individually ventilated cages (IVC) (Techniplast Seal Safe 1284 L)
receiving 60 air changes per hour, at a stocking density of 4-5 mice
per cage unless otherwise stated below [overall dimensions of caging
(Lx W x H): 398 x215 x 187mm, floor area = 530 cm?]. Aspen bedding
substrate and standard environmental enrichment of nestlet, cardboard
tunnel, and three wooden chew blocks were provided. Mice were given
water and breeding diet (irradiated A03, SAFE, France) ad libitum unless
otherwise stated in the methods below.

2.2. Experimental procedures

2.2.1. Transmitter implantation and post operative care

One mouse from each cage of 4 mice was selected for radiotelemetry
transmitter implantation surgery. In total, 7 female (weighing 30.6 0.8 g
before surgery (mean+SEM)) and 6 male (weighing 36.6+16¢g
before surgery (mean+ SEM)) C57BL/6NTac mice at 17-18 weeks of
age underwent surgical implantation of a radiotelemetry transmitter
with a weight of 1.4 g (TA11PA-C10, Data Sciences International, USA).
Mice were anaesthetized by inhalation of isofluorane and oxygen
(induction: isofluorane 2.5%: oxygen 1 L/min; maintenance: isofluorane
1-1.5%: oxygen 0.5-0.7 L/min) and eyes were protected from drying
with ointment (Viscotears Liquid Gel, Pharma GmbH, Germany). A
midline incision was made through the skin on the ventral side of the
neck, the flexible catheter of the radiotelemetry probe was inserted into
the left common carotid artery and the transmitter body placed
subcutaneously along the right flank. Silk sutures (Mersilk, Ethicon
Inc, UK) were used to close the incision and remained in place until
termination of the animal. Analgesia was administered (Buprenorphine,
Patheon UK Ltd, UK, 0.1 mg/kg s.c.) immediately after anaesthesia.
Further doses of buprenorphine were given immediately and 24 h post
surgery. Post-operatively, mice were placed in a recovery rack pre-
heated to 30 °C for 2 h. When mice were fully ambulant they were
housed in their individual cages. In addition to normal food and water, a
dietary supplement (Complan, Complan Food Ltd, UK), was given to the
implanted mice for 14 days to support recovery and minimise risk of
welfare complications and/or loss of test subjects due to poor health.

Visual examination of the overall condition of all mice and body weight
(BW) checks were performed daily for 14 days post surgery. BW
recordings were taken each morning between 8 am and 10 am using
Adventurer Pro AV2101 precision balance (Ohaus scales and balances,
UK) set to accommodate animal movement. Average weights of
implanted and non-implanted mice of both sexes are presented in
Supplementary Table 1.

Radiotelemetry measurements were initiated in the fifth week post
surgery. Cages were positioned over receivers at all times and trans-
mitters were activated from outside the cage. This enabled measurements
to be initiated without cage disturbance. During recording sessions,
systolic arterial blood pressure (SAP), heart rate (HR), respiratory rate
(derived from blood pressure waveforms) and locomotor activity were
monitored using the Dataquest IV system (Data Sciences International,
USA). Both scheduled and continuous recording modes were used
depending on experimental protocol. Radiotelemetery signals were
processed using DataQuest A.RT. v.4.0 (Data Sciences International,
USA).

2.2.2. Re-grouping

The implanted mice were re-grouped with their cage-mates 3 days
after surgery in accordance with the recommendations of the BVAAWF/
FRAME/RSPCA/UFAW Joint working group [20] and in-house observa-
tions. The implanted mice exhibited no overt signs of sickness or distress
and wounds were sealed, dry and clean at the time of re-grouping. We
implemented the following strategy to prevent or minimise aggressive
behaviour towards cage-mates. Upon removal of the mouse selected for
surgery, all cage-mates were also individually housed into clean cages but
with the addition of a small amount of soiled bedding from their original
home cage. Seven days prior to separation, additional nesting material
was given so that ample was available for transfer into individual cages
and additional environmental enrichment provided to minimise compe-
tition upon re-grouping. During separation, transfer of aspen bedding
substrate between individual cages was performed daily. Soiled, group
home cages were stored unventilated and used to re-house mice after
separation. Animals were re-housed with those they had been housed
with previously and were rubbed with soiled bedding from all other
animals before being added to the group. From this point forward all non-
implanted mice also had access to Complan supplement. Cages were
stored unventilated for 60 min after re-grouping to allow accumulation
of odours.

Over a 10-week period, both implanted mice and their cage-mates
underwent several potentially stressful experimental and husbandry
procedures frequently encountered in animal units, in the order described
in Table 1.

2.2.3. Blood glucose measurement

Animals at 21-22 weeks of age were fasted overnight (up to 16 h)
prior to BG measurement procedures, by transferring mice to a clean
cage base with clean nesting material and a small amount of soiled
bedding and environmental enrichment from their old cage. The change
of cage and bedding obviated the possibility that mice may access
spilled food. Water remained freely available throughout the entire
fasting period. Food was returned following collection of the final blood
sample at T;,q, extending the fasting duration to a maximum of 18 h. A

Table 1
Timing of the experimental procedures.
Age (weeks) Procedure
17-18 Surgery
17-18 (72 h post surgery) Re-grouping
21-22 BG sampling
22-23 Tc sampling
23-24 Ammonia measurement initiated
27-28 Overnight fast
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drop of blood was obtained from unrestrained mice by nicking the tail
tip with a blade. Measurements were taken using a handheld blood
glucose meter (Accu-chek Aviva, Roche Diagnostics, UK), beginning
between 9 am and 10 am for all test mice. All BG measurements were
completed by 12noon.

2.24. Core temperature measurement

Rectal Tc measurements were taken on unrestrained mice at
22-23 weeks of age using a DH-5 Monitoring thermometer with
associated RET-3 rectal mouse-specific probe (Viking Scientific, USA).

During BG and Tc sampling procedures, the mouse to be measured
was identified by earmark and moved from the cage base onto the cage
grid, the mouse remaining within range for the DSI receiver to record
all responses, and the measurement taken. When BG or Tc values were
obtained the mouse was returned to the cage base and the next mouse
identified and tested in the same way. Implanted mice were tested
first, followed by cage-mates. The order in which mice were removed
from group housing and tested was recorded and kept consistent when
a repeat measurement was taken. BG and Tc were measured at two
time points 120 min apart (T and Tj0) and cages were undisturbed
between measurements. CV parameters were recorded continuously
from 20 min prior to the initial BG or Tc measurement until 20 min
after the repeat measurement.

2.2.5. Cage change and ammonia concentration

Cage change procedure and ammonia levels were assessed over a
4 week interval commencing when the mice were 23-24 weeks of
age. Prior to this testing, cage changes were routinely performed at
fortnightly intervals i.e. mice had undergone 11-13 cage changes.
During movement of mice to a clean cage both cages were placed side by
side on a DSI receiver and the implanted mouse was transferred to the
new cage first followed by cage-mates. Clean aspen bedding substrate
and nesting material were provided. Environmental enrichment and a
small amount of bedding from the soiled cage were transferred. CV
parameters were recorded continuously from 24 h prior to cage clean
until 48 h after.

Cage changing was performed with either a 7 or 14 day interval and
ammonia concentration measured in triplicate in each unpopulated
soiled cage. Ammonia concentrations were measured using ammonia
specific diffusion tubes and a manual pump [MSA NH3detector tube
(range 0-200 ppm), Gas-Tester™II H Detector Tube Pump; Ribble
Enviro, UK]. To obtain readings that reflected concentrations within
undisturbed cages, soiled cages were left unventilated for 30 min prior
to measurement and the tube was inserted through the water bottle
aperture and held approximately 3 cm above the bedding at the level of
an adult mouse head.

2.2.6. Overnight fast

Mice aged between 27 and 28 weeks were assessed for response to a
16 h period of food deprivation. Food was removed and mice were
transferred to a new cage base as described above, 2 h before the onset of
dark phase. During movement of mice from old cage to new cage, both
cages were placed side by side on a DSI receiver and the implanted
mouse was transferred to the new cage first followed by cage-mates. The
non-fasted control group was present in the room during the procedure,
but their cages were not disturbed. CV parameters were recorded
continuously in fasted and non-fasted mice 20 min prior to, and during
cage changing and overnight fasting period. Food was re-introduced to
cages upon completion of the fasting period.

During a follow-up study additional time points and experimental
procedures were measured on mice without radiotelemetric implants
that had not been part of the radiotelemetric study. As the magnitude of
response to sampling methods was similar in male and female mice,
further work was performed only on males to reduce the number of
animals used. Non-implanted male mice were distributed over 16
groups of 10 mice housed 5 per cage; each mouse was only a part of one

experimental group (Table 2). Mice undergoing BG measurement were
tested at 13 weeks of age whilst mice undergoing Tc measurement were
tested at 14 weeks of age.

2.2.7. Time course of BG and Tc responses

To gain better insight into the time-course of BG and Tc responses,
the BG and Tc methods described above were used to test mice at
baseline (Tp) and a second time-point, either 15 min (T;5), 30 min
(T30) or 60 min (Tgp) after the initial measurement. Later time points
were sampled by gentle manipulation of the tail; a second incision
was not required.

2.2.8. Intraperitoneal injection

BW was captured immediately prior to measurement of BC and Tc.
Sham solution (saline, 0.1 ml/10 g body weight) was administered via
ip injection then BG and Tc were re-tested at Tys.

2.2.9. Cage transport

Cages of group housed mice were moved between rooms on a
wheeled trolley and stored on a mobile ventilated rack during testing.
BG and Tc were taken from one group immediately following transport
of cages and from a second group 60 min after transport of cages.

2.2.10. Individual housing

Group housed mice were transferred individually to a clean cage base
with aspen bedding substrate and one paper tissue for nesting material.
BG and Tc were taken from one group immediately following individual
housing and from a second group 60 min after individual housing.

2.3. Experimental design and statistical methods

For all experiments detailed below, the experimental unit was an
individual mouse and factors thought to affect the variables being
measured were standardised throughout the experiment. The one
exception occurred for the sex comparisons of radio-telemetric data
as the experiments using female mice were performed 11 weeks
prior to those performed using male mice. As females are the more
docile sex, they were studied first, as this allowed us to assess the
severity of the response to post-surgery re-grouping before repeating the
experiments using male mice. Although both sexes were investigated
separately, any possible age effect was controlled for by performing the
same experiments at the same age for both sexes.

Repeat measure designs were used when studying radiotelemetric
data in response to a potential stressor applied to implanted mice
(n=6 females, 7 males). On the basis of the results of the pilot
preliminary study for telemetric recording of blood pressure, at least 6
animals were required to achieve 80% power to detect a 10 mm Hg
difference, with a probability of p<0.05. The baseline data collected
over the time course before the application of a stressor formed the
internal control for each animal. A two-way repeat measure ANOVA
was used to examine the effect of fasting and time on the variables
monitored. Changes of SAP, HR and locomotor activity during
overnight fast were expressed as delta, where delta is the difference
between fasted and non-fasted measurements for the same group of
animals. The use of delta allowed a comparison across sexes as each

Table 2
Experimental groups of non-implanted male mice.

Procedure BG sampling Tc sampling

To+Tis Group 1 (n=100) Group 9 (n=10)
To+ T30 Group 2 (n=10) Group 10 (n=10)
To+ Teo Group 3 (n=10) Group 11 (n=10)

ip injection (To+ Tys) Group 4 (n=10) Group 12 (n=10)
Cage transport (T + Tgo) Group 5,6 (n=10) Group 13, 14 (n=10)
Individual housing (Tp + Teo) Group 7,8 (n=10) Group 15, 16 (n=10)




A.-K. Gerdin et al. / Physiology & Behavior 106 (2012) 602-611 605

animal formed its own internal control. A two-way repeat measure
ANOVA was used to assess for significant effect of sex and time. A one-
way repeat measure ANOVA was used to examine the effect of procedures
(BG and Tc measurement procedure, and cage change) with time and
each sex statistically examined independently.

For the study of BW changes in response to the implanting procedure,
amixed design repeated measures ANOVA was used. Analysis by ANOVA
on the delta values calculated by subtracting post surgery weight (with
subtraction of 1.4 g attributed to the implanted transmitter) from pre-
surgery weight allowed a comparison across sexes as each animal
formed its own internal control. ANOVA's were followed by post hoc
Dunnets tests. All CV data is presented as mean + Standard Error of the
Mean (SEM). Differences were considered significant when p<0.05.

Analysis of BG and Tc measurements obtained during radiotelem-
etry recordings was performed using a general linear model with date
treated as a random block effect, and gender and implant as fixed
factors. Time points were compared using a paired t-test. Differences
were considered significant when p<0.05.

Further studies to examine BG and Tc changes in response to a
potential stressor applied to non-implanted male mice used a fully
randomised experiment format to compare control and treated animals
(n=10 per group). Experiments to investigate the time-course of BG or
Tc responses used a repeat measure format where later measurements
were compared with measurements taken from the same group of
animals at an earlier time point. All BG and Tc were examined using a
one-way ANOVA followed by Tukey HSD post hoc testing. Differences
were considered significant when p<0.05.

To compare ammonia levels between cleaning regimes, a fully
randomised format was used to compare the ammonia level at one
week vs. two weeks between cage cleaning. A two tailed, homoscedastic
t-test (n=6 female, 7 male) was used to detect differences in ammonia
concentrations. For this experiment, the experimental unit was an IVC
cage previously used to group house 4 female or 4 male mice.

In all cases, the appropriateness of the statistical test was checked
using the Levene's test for equality of variances, and the Kolmogorov-
Smirnov test to assess the normality assumption. Statistical analyses
were performed using Statistica version 5.0 for windows (Statsoft
Inc., USA) and GraphPad Prizm v4.

3. Results

3.1. Effect of 3 day separation and re-housing on male and female mouse
body weight

In non-implanted mice, 3 day separation and re-housing resulted
in significantly decreased BW when compared to pre-separation BW
(p<0.001) (Fig. 1 and Supplementary Table 1). This effect was more
profound in females (p<0.001) and lasted longer in females (11 days)
when compared with males (10 days). Sex had an effect in non-
implanted animals with non-implanted females showing a significantly
reduced BW during the first 5 days when compared to non-implanted
males. Implanted mice of both sexes showed a persistent BW reduction
during the first three days post surgery when compared to pre-operation
BW (p<0.0001). Sex had no significant effect on this parameter in
implanted animals. Although a gradual BW gain was seen from day 5 post
surgery, BW remained significantly reduced in implanted mice through-
out the 14 day post operative period in comparison to the pre-operation
weights. At all time points implanted mice showed significantly more
weight loss than non-implanted mice of the same sex (p<0.0001).

3.2. Effect of common procedures on cardiovascular parameters in implanted
male and female mice

3.2.1. Effect of BG and Tc measurement procedures
The effect of BG and Tc measurement procedures are shown in
Figs. 2 and 3, respectively. Both measurement procedures induced a

significant and immediate rise in SAP and HR in both sexes when
compared with baseline CV recordings (BG males — SAP and HR p<0.001;
BG females - SAP p<0.05, HR p<0.001; Tc males and females - SAP and
HR p<0.001). The effect of BG measurement lasted longer in females
than in males (SAP - 50 min vs. 40 min; HR - 40 min vs. 35 min)
whereas the opposite was true after Tc measurement (SAP - 30 min vs.
17 min; HR - 35 min vs. 25 min).

The repeat BG and Tc measurement, 2 h after the initial measure-
ment, also resulted in a significant and immediate rise in SAP and HR in
both sexes when compared with baseline CV recordings (BG and Tc
males and females - SAP and HR p<0.001). This effect was recorded for
20 min following the sampling procedures. Repeat BG or Tc measure-
ments did not reveal any significant differences between sexes in the
magnitude of SAP and HR increase, nor did the magnitude significantly
differ between initial and repeat measurements. In both sexes a 120 min
interval between BG and Tc measurements was sufficient for SAP and HR
to return to baseline levels, baseline being notably lower during BG
testing when compared to Tc testing. This difference in baseline can be
attributed to the fasted state of mice prior to BG measurement but not
prior to Tc measurement and is described further in section 3.2.3. In both
sexes a 120 min interval was also sufficient for BG and Tc readings of
implanted mice to return to baseline levels (BG males - To=4.1 mM,
Ti120=4.3 mM; BG females - To=23.0 mM, T;30=2.9 mM; Tc males —
Tp=36.2 °C, T120=36.0 °C; Tc females — To=236.6 °C, T120=36.5 °C).
There was no significant difference in BG or Tc readings between
implanted and control animals and no difference between sexes.

3.2.2. Effect of a cage change procedure and frequency

Cage change procedure had a significant effect on SAP, HR and
locomotor activity (Fig. 4A, B, C) in both sexes when compared with
baseline (males and females - SAP and HR p<0.001; locomotor
activity p<0.0001). Females showed a more prolonged hypertension and
tachycardia following cage change in comparison with males (105 min vs.
75 min). Locomotor activity increase was also more significant (p<0.05)
and prolonged (100 min vs. 65 min) in females when compared with
males. Cage change frequency (weekly vs. fortnightly) did not signifi-
cantly influence SAP or HR responses to cage change procedure in either
sex (Supplementary Fig. 1).

Ammonia concentrations were higher for both sexes in cages cleaned
every two weeks (males — 89 ppm 4 8.43; females - 96.4 ppm <+ 10.10)
when compared with cages cleaned weekly (males - 74 ppm =+ 5.25;
females - 57.6 ppm <+ 5.86). This increase was significant in females
(p=0.0061) but not in males. Despite exposure to a higher ammonia
level, basal CV parameters, locomotor activity and respiratory rate of
mice housed in cages changed every two weeks did not differ from those
housed in weekly changed cages (Supplementary Fig. 2).

3.2.3. Effect of 16 h overnight fasting procedure

An overnight 16 h fasting procedure, beginning at 17:30 h, had a
significant effect on both sexes' SAP, HR and locomotor activity when
compared with non-fasted control groups (Fig. 5). In females, a marked
tachycardia (p<0.0001) and increased locomotor activity (p<0.0001)
were evident for a prolonged period (HR - 8 h; locomotor activity —
11 h) (Fig. 5B, C), whereas SAP was increased (p<0.0001) only during
the initial light phase (2 h) (Fig. 5A). In males, increases in SAP (p<0.01),
HR (p<0.001) and locomotor activity (p<0.001) were also observed but
the duration of HR and locomotor activity responses were less than those
seen in females (HR - 2 h; locomotor activity - 2 h) (Fig. 5B, C). The
magnitude of the increase of locomotor activity was also less profound in
males when compared with females (p<0.001) (Fig. 5C). Towards the
end of the fasting period (for 2 h after the onset of the light phase) fasted
females exhibited a significant fall in HR (p<0.01) and SAP (p<0.01) in
comparison to the non-fasted control group whereas such responses
were not evident in males.



606 A.-K. Gerdin et al. / Physiology & Behavior 106 (2012) 602-611

104 4

—@&— Male Implanted —O— Female Implanted

A A A A A

96 4

-
# # #

% of initial weight (pre surgery/separation)

. * * & *
-\;___;___1_‘-3..__;____;___-

-

- #- Male Control - -O- Female Control
* '_’:L:::?
L i
ey
--‘T‘— T #
#

#

924
#
*
88+
# *
# * * e
84 * *
80 : : : : : : : : ; : : \
0 1 2 3 4 5 6 8 9 10 11 12 13 14
Time (days)
Individual Group housing

housing

Fig. 1. Body weight of male (implanted, n = 6; controls, n=18) and female (implanted, n =7; controls, n=21) mice recorded after separation and re-grouping. Data are expressed
as percentage change from pre-surgery or pre-separation weight (day 0). Post surgery weights were adjusted by subtraction of 1.4 g to account for the weight of the implanted
transmitter. Shaded area indicates days after re-grouping. * - p<0.001-0.0001 vs. Day 0 (males); # - p<0.001-0.0001 vs. Day 0 (females); A - p<0.001 non-implanted males vs.

non-implanted females.

160 - males -©- females

#EHEHARAAH ##H#H

S5

* % kR ok R ok %

~
o
Initial BG
measurement
o e emem_
Repeat BG

20 40 60 80 100 1
Time (min)

HEREBHEY

###H

Initial BG
measuremen
Repeat BG
measurement

20 40 60 80 100 120 140
Time (min)

)
)
o

Fig. 2. Changes in SAP (A) and HR (B) of implanted male (n=6) and female (n=7)
mice during repeat BG measurement procedures following a 16 h overnight fast. Data
are expressed as mean+S.EM. * - p<0.001 vs. baseline (males); # - p<0.05 vs.
baseline (females). Baseline is representative of 5 minute averages over the 20 minute
time course prior to initial BG measurement procedure.

-®- males -0 females

|
|
> S |
90+ Zl €1
) )
801 o 8 e§
=1 B3
7071 28 ]
£ gl =1

60 ‘ . . . . ——— .

20 0 20 40 60 80 100 120 140

Time (min)

800
700
600
£
g
~ 500
o
T I
400 ol
cl
El o £l
300{ &5 L g
3 @l g z!
£g g g
200 +————r . . . : - .
20 0 20 40 60 80 100 120 140
Time (min)

Fig. 3. Changes in SAP (A) and HR (B) of implanted male (n=6) and female (n=7)
mice during repeat Tc measurement procedures. Data are expressed as mean + S.E.M;
* - p<0.001 vs. baseline males; # — p<0.001 vs. baseline females. Baseline is representative
of 5 minute averages over the 20 minute time course prior to initial Tc measurement
procedure.


image of Fig.�2
image of Fig.�3

A.-K. Gerdin et al. / Physiology & Behavior 106 (2012) 602-611 607

- males -O- females

160
150 -

#EHREHRERHRRHFRRHF R RH

1'\(

SAP, mmHg

100 1
904 2
o 31
80 E §|
704 G 8!
60 ] : ‘ . : . ‘
-20 0 20 40 60 80 100 120
Time (min)
800 #HHHHERHERRBFRRRRRRRERH
700
£ 600
a
< s00
% # ok ok ok %k ok ok & ok & ok ok ok ok %
400 8 %I
g 3l
300 G cl
5 Sl
200 43! . . . ’ ’ ’
-20 o] 20 40 60 80 100 120
Time (min)
140 - 1
I
120 4 |
| #F # # 88 E B HEREEHE SRR
5 100 | Q
@ [
> 80 : N
= 60 2y
g g5 533
40 e £l
L 3
20 A
0 . -
-20 0 20 40 60 80 100 120
Time (min)

Fig. 4. Changes in SAP (A), HR (B) and locomotor activity in arbitrary units (C) of
implanted male (n=6) and female (n=7) mice during cage changing. Data are
expressed as mean + S.E.M; * - p<0.001 vs. baseline males; # - p<0.001 vs. baseline
females. Baseline is representative of 5 minute averages over the 20 minute time
course prior to transfer to a clean cage.

3.3. Effect of a variety of common procedures on BG and Tc in non-implanted
male mice

3.3.1. Effect of tail tip blood sampling procedure on BG and Tc in non-
implanted mice

There was a significant elevation in both BG and Tc at 15 (BG and
Tc - p<0.0001), 30 (BG - p<0.001; Tc - p<0.0001) and 60 min (BG -
p<0.05; Tc - p<0.0001) after the initial tail tip blood sampling
procedure when compared with control, To measurements (Fig. 6A,
B).

3.3.2. Effect of intraperitoneal injection

Sham saline injection resulted in a significant increase in BG
(p<0.0001) and Tc (p<0.0001) when compared to control, T, measure-
ments (Fig. 6A, B). Interestingly, the magnitude of this response was not
different from that observed 15 min after the initial tail tip blood
sampling procedure alone.

3.3.3. Effect of cage transport

Cage transport to the procedure room had no effect on BG but was
shown to significantly increase Tc (p<0.001) when compared with
non-transported controls. One hour of acclimatization following cage
transport, allowed basal Tc to be restored (Fig. 6A, B).
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Fig. 5. Change in SAP (A), HR (B) and locomotor activity in arbitrary units (C) of
implanted male (n=6) and female (n=7) mice recorded during overnight fasting. To
begin the 16 h period of food deprivation, food was removed and mice were
transferred to a new cage base 2 h before the onset of dark phase. Changes of SAP,
HR and locomotor during overnight fast were expressed as delta, where delta is the
difference between fasted and non-fasted measurements for the same group of
animals. Shaded area indicates dark phase room conditions. Data are expressed as
mean4+S.E.M; * - p<0.001 vs. baseline males; # - p<0.001 vs. baseline females.
Baseline is representative of 5 minute averages over the 20 minute time course prior to
initiation of fast.

3.3.4. Effect of individual housing

Individual housing was associated with a marked increase in BG
(p<0.0001) and Tc (p<0.0001) when compared with group housed
controls. One hour of acclimatization period, following individual
housing, allowed basal BG to be restored but Tc remained signifi-
cantly elevated (p<0.0001) (Fig. 6A, B).

3.3.5. Effect of sampling order on BG and Tc in male C57BL/6NTac mice

Sampling order had no effect on BG concentrations but did resultin a
gradual increase in body temperature on removal of each mouse,
culminating in a significant raise in Tc (p<0.001) in mouse 5 compared
with mouse 1 and 2, Fig. 6C.

4. Discussion

Here we describe stress-like responses in mice caused by routine
husbandry and experimental procedures, and focus on how such
practices affect mouse physiology, behaviour and data quality. We
aimed to identify sources and manifestations of stress, reduce stress
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through refinements to working practices and utilise the effects of
stress to our advantage when the cause is unavoidable.

In this study we have demonstrated that BG and Tc measurements
activate the cardiovascular system which declines between tests but is re-
activated to the same level by a subsequent measurement. We show that
an overnight fast was associated with significant and sex-specific changes
in CV and locomotor activities. The procedure-induced changes observed
in behavioural and physiological parameters were more prevalent in
females than in males. We have also extended and confirmed previously
published observations on the impact of BG and Tc measurement [18,21],
ip sham injections [22,23], cage transport [18,24] and individual housing
[25-27] on BW, BG and Tc parameters.

We have measured cardiovascular response to BG and Tc sampling
methods by HR and SAP, which are sensitive indices of stress, activated
via the sympathoadrenal system [28]. Previous studies in mice subjected
to Tc [29] and BG measurement [30] procedures have reported marked
increases in catecholamines and corticosterone, confirming the stressful
nature of these manipulations. These findings indicate that sampling
methods can elicit physiological responses that may confound studies
where repeat BG measurements are performed.

To minimise the influence of blood sampling on glucose tolerance test
(GTT) results, a two hour recovery period following tail cut before
obtaining the first blood sample has been recommended [31]. However,
in our experience the wound may seal after 2 h necessitating the removal
of a scab or additional cutting to collect a blood sample. Furthermore, the
dose of glucose injected during GTT (2 mg/g) exerts a dominant effect
over the increase in BG caused by the sampling procedure alone. Taking
into consideration these findings we adopted a protocol for the GTT
where the first measurement is taken immediately following tail tip
excision.

To our knowledge, this is the first study to document the effects of an
overnight fast on CV function and locomotor activity in group-housed
mice of both sexes. We show significant increases in HR, SAP and
locomotor activity in group housed females and males immediately after
initiation of the fast. The magnitude and duration of these responses were
similar to those recorded after cage change procedure alone, suggesting
that increases in CV parameters and locomotor activity during the first
2 h of fasting are likely due to stress caused by cage transfer. In females
but not in males, significantly elevated HR and locomotor activity were
recorded during the dark phase and a marked reduction in SAP and
HR during the final 2 h of fasting was evident. The fasting-induced
attenuation in CV locomotor activity observed in females is consistent
with previous observations [32] and may be due to decreased metabolic
rate and activation of the parasympathetic system.

Our study adds to the literature reporting stress-like reactivity in
laboratory animals caused by cage changes. Although this is well reported
in rats [16,17], in mice this has been little studied [33]. In our study the
magnitude of HR and SAP responses to cage change was no different from
the response to more invasive procedures such as BG and Tc sampling.
However, the duration of the CV changes exceeded those triggered by the
sampling procedures. Long-lasting CV responses were paralleled by
increased exploratory activity, believed to be triggered by the novel
environment [17]. In accordance with previously published findings in
rats [17], our results suggest that mice do not habituate to cage change
despite the regularity of the procedure. Taking into consideration current
and previous observations [17] it is recommended that a 2 h acclimatisa-
tion period is required after cage change before recording baseline CV
parameters. In our phenotyping pipeline, the husbandry protocols,
sequence and intervals between tests have been selected to minimise
the possibility of confounding influences between tests. This is achieved

by acclimatisation to the procedure room, performing cage changes
within testing procedures, testing in order of perceived invasiveness and
providing enough recovery time between tests.

Another important finding was the differences between sexes in
physiological responses to the experimental and husbandry procedures,
females showing a greater and more prolonged reduction in BW
following brief individual housing, and more sustained increases in CV
parameters in response to blood sampling, cage change and during
overnight fast. The increase in arousal during overnight fasting was also
more prolonged and pronounced in females. Consistent with our
findings, Hoppe et al. 2008 [34] reported a more protracted elevation in
mean arterial pressure in females after placing C57BL/6J; 129sv mice in
a new metabolism cage. Greater female CV and arousal responses to
experimental and husbandry procedures have also been observed in the
rat [35,36]. The mechanisms underlying sex-specific differences in CV
stress-responses can be explained by differences in autonomic and
neuroendocrine control [37]. These findings may have important
implications for the interpretation of results of phenotyping tests
since it indicates that potentially confounding effects of stress are more
prevalent in female mice.

In view of our results on individual housing, the increasing body of
literature reporting a preference for social housing in rodents [38,39]
and how this can improve welfare and aid post-operative recovery
[40,41] we attempted to re-house former cage-mate mice 3 days after
telemetry implantation surgery. This was previously avoided, particu-
larly in males, due to the aggressive nature of the mouse strain in use.
Applying knowledge of rodents' reliance on olfactory cues [39] and
the effect of environmental enrichment [40] we designed a protocol
to minimise the likelihood of aggression. Following re-grouping,
active exploratory behaviour with elements of non-aggressive play-like
skirmishing was observed in females. Brief instances of aggressive
behaviour were seen in some males. In general it took a shorter time for
females to settle and become dormant than for males (1 hvs. 2 h). Body
weight data suggests social housing had a positive effect on postoper-
ative recovery as weight gain began shortly after re-grouping. Our
findings and those previously reported [41] suggest that social housing
is the least stressful of housing conditions and reveals that mice can be
re-housed after short term isolation and/or surgery [41].

Some of the most stressful events in husbandry result from changes
in familiar cage environment. Whilst frequent cage changing is good for
hygiene, it can be disruptive as rodents rely heavily on olfactory cues for
recognising and communicating with cage-mates [42]. In our study an
increased ammonia level was recorded in cages changed once every
14 days in comparison to those changed once every 7 days. However,
none of the parameters evaluated indicated a detrimental effect of the
prolonged cage-change interval. These findings are in agreement with
previous studies reporting the lack of effect of cage change frequency
(weekly vs. fortnightly) on ICR females [43] and C57BL/6] mice of both
sexes [44] housed in IVC. Our results suggest that the changing of
bedding every 14 days in IVC housing may represent a balance between
maintaining good inter-cage hygiene whilst reducing the disturbance to
mice.

Stress induced hyperthermia is a robust and reproducible phenom-
enon observed in mice and rats [21]. An increase in body temperature is
elicited by removal from group housing, or by the introduction of any
other stressor, such as the Tc measurement procedure itself. We have
refined our working practice by using this phenomenon to assess the
stress response in mice as part of our large-scale phenotyping screen by
introducing a second sampling of Tc, 15 min after the initial measure-
ment. The magnitude of Tc increase is then interpreted as a read-out

Fig. 6. Effect of blood sampling procedure (assessed 15, 30 and 60 minutes after the initial procedure), intraperitoneal injection, cage transportation and individual housing on BG
(A) and Tc (B) of non-implanted mice (n= 10 per test group). Shaded area represents To baseline mean (n = 39) -+ 1SD. Effect of sample order (C) on Tc of non-implanted male mice
(n=28 in each test group). Median, 25th and 75th percentile (box) and the lowest and highest data points still within 1.5x the interquartile range (whiskers) for each of the test
groups are shown. Data points falling outside the 1.5x IQR are considered outliers and are represented with an open circle. * - p<0.05, ** - p<0.001, *** - p<0.0001.
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for stress responsiveness, providing additional data without requiring
additional animals.

5. Conclusion

The data presented shows that common husbandry practices and
experimental procedures can have a significant impact on mouse
physiology and behaviour, as evidenced by profound and sustained
increases in BG, Tc, locomotor and CV activity. In general, more prolonged
responses were seen during an overnight fast with cage change having an
intermediate effect and sampling procedures inducing lesser and more
transient responses. Procedure-induced changes in behavioural and
physiological parameters were often more prolonged in females than in
males (only male SAP and HR elevation in response to Tc measurement
was more prolonged than the female response to the same stimuli).
The stress-like responses provoked by such procedures may have a
considerable influence on the outcomes of scientific studies. Ideally,
for variables influenced by stress, experiments will be designed to
minimise the impact of stress such that the effect of the treatment on
the basal condition can be assessed. Where this is not possible, good
experimental practices need to be followed with standardisation to
ensure treatment and control animals are exposed to the same stressors,
and randomisation to ensure hidden stressors, such as order effects,
influence the results from the control and treatment animals equally.
These methods will ensure that the experiment has good internal validity
which in turn allows assignment of causality to the effect observed.
Mathematically we cannot normalise the data for stress, as the response
to stress is not linear, therefore we have to interpret the data in the
presence of stress. The presence of stressors questions the external
validity of the results, where external validity is the ability of the
inferences to be generalised from the unique and isolated settings to
other populations and conditions. Ideally, resources permitting, when a
phenotype is observed the study should be repeated using an alternative
technique e.g. assessment of heart rate using cardiovascular telemetry
and non-invasive blood pressure. To date, the majority of animal research
has inevitably been in the presence of the stressors, and we at The Sanger
Mouse Genetic Project believe there is value in completing the study even
with this less than ideal scenario as within our high throughput pipeline
we have identified many novel phenotypes. Better insight into the
reactions of laboratory mice to husbandry practice and experimental
procedures will aid the refinement of animal care and standard operating
protocols to avoid or minimise stress responses and improve data quality.

Supplementary materials related to this article can be found online
at doi:10.1016/j.physbeh.2012.03.026.
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