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Phase transitions and self-
organized criticality in networks of 
stochastic spiking neurons
Ludmila Brochini1, Ariadne de Andrade Costa2, Miguel Abadi1, Antônio C. Roque3, Jorge Stolfi2 
& Osame Kinouchi3

Phase transitions and critical behavior are crucial issues both in theoretical and experimental 
neuroscience. We report analytic and computational results about phase transitions and self-organized 
criticality (SOC) in networks with general stochastic neurons. The stochastic neuron has a firing 
probability given by a smooth monotonic function Φ(V) of the membrane potential V, rather than a 
sharp firing threshold. We find that such networks can operate in several dynamic regimes (phases) 
depending on the average synaptic weight and the shape of the firing function Φ. In particular, we 
encounter both continuous and discontinuous phase transitions to absorbing states. At the continuous 
transition critical boundary, neuronal avalanches occur whose distributions of size and duration 
are given by power laws, as observed in biological neural networks. We also propose and test a new 
mechanism to produce SOC: the use of dynamic neuronal gains – a form of short-term plasticity 
probably located at the axon initial segment (AIS) – instead of depressing synapses at the dendrites 
(as previously studied in the literature). The new self-organization mechanism produces a slightly 
supercritical state, that we called SOSC, in accord to some intuitions of Alan Turing.

“Another simile would be an atomic pile of less than critical size: an injected idea is to correspond to a neutron 
entering the pile from without. Each such neutron will cause a certain disturbance which eventually dies away. If, 
however, the size of the pile is sufficiently increased, the disturbance caused by such an incoming neutron will very 
likely go on and on increasing until the whole pile is destroyed. Is there a corresponding phenomenon for minds, and 
is there one for machines? There does seem to be one for the human mind. The majority of them seems to be subcrit-
ical, i.e., to correspond in this analogy to piles of subcritical size. An idea presented to such a mind will on average 
give rise to less than one idea in reply. A smallish proportion are supercritical. An idea presented to such a mind may 
give rise to a whole “theory” consisting of secondary, tertiary and more remote ideas. (… ) Adhering to this analogy 
we ask, “Can a machine be made to be supercritical?”” Alan Turing (1950)1.

The Critical Brain Hypothesis2,3 states that (some) biological neuronal networks work near phase transitions 
because criticality enhances information processing capabilities4–6 and health7. The first discussion about criti-
cality in the brain, in the sense that subcritical, critical and slightly supercritical branching process of thoughts 
could describe human and animal minds, has been made in the beautiful speculative 1950 Imitation Game paper 
by Turing1. In 1995, Herz & Hopfield8 noticed that self-organized criticality (SOC) models for earthquakes were 
mathematically equivalent to networks of integrate-and-fire neurons, and speculated that perhaps SOC would 
occur in the brain. In 2003, in a landmark paper, these theoretical conjectures found experimental support 
by Beggs & Plenz9 and, by now, more than half a thousand papers can be found about the subject, see some 
reviews2,3,10. Although not consensual, the Critical Brain Hypothesis can be considered at least a very fertile idea.

The open question about neuronal criticality is what are the mechanisms responsible for tuning the network 
towards the critical state. Up to now, the main mechanism studied is some dynamics in the links which, in the 
biological context, would occur at the synaptic level11–17.

Here we propose a whole new mechanism: dynamic neuronal gains, related to the diminution (and recovery) 
of the firing probability, an intrinsic neuronal property. The neuronal gain is experimentally related to the well 
known phenomenon of firing rate adaptation18–20. This new mechanism is sufficient to drive neuronal networks 
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of stochastic neurons towards a critical boundary found, by the first time, for these models. The neuron model we 
use was proposed by Galves and Locherbach21 as a stochastic model of spiking neurons inspired by the traditional 
integrate-and-fire (IF) model.

Introduced in the early 20th century22, IF elements have been extensively used in simulations of spiking neu-
rons20,23–28. Despite their simplicity, IF models have successfully emulated certain phenomena observed in bio-
logical neural networks, such as firing avalanches12,13,29 and multiple dynamical regimes30,31. In these models, the 
membrane potential V(t) integrates synaptic and external currents up to a firing threshold VT

32. Then, a spike is 
generated and V(t) drops to a reset potential VR. The leaky integrate-and-fire (LIF) model extends the IF neuron 
with a leakage current, which causes the potential V(t) to decay exponentially towards a baseline potential VB in 
the absence of input signals24,26.

LIF models are deterministic but it has been claimed that stochastic models may be more adequate for 
simulation purposes33. Some authors proposed to introduce stochasticity by adding noise terms to the poten-
tial24,25,30,31,33–37, yielding the leaky stochastic integrate-and-fire (LSIF) models.

Alternatively, the Galves-Löcherbach (GL) model21,38–41 and also the model used by Larremore et al.42,43 intro-
duce stochasticity in their firing neuron models in a different way. Instead of noise inputs, they assume that the 
firing of the neuron is a random event, whose probability of occurrence in any time step is a firing function Φ (V) 
of membrane potential V. By subsuming all sources of randomness into a single function, the Galves-Löcherbach 
(GL) neuron model simplifies the analysis and simulation of noisy spiking neural networks.

Brain networks are also known to exhibit plasticity: changes in neural parameters over time scales longer than 
the firing time scale27,44. For example, short-term synaptic plasticity45 has been incorporated in models by assum-
ing that the strength of each synapse is lowered after each firing, and then gradually recovers towards a reference 
value12,13. This kind of dynamics drives the synaptic weights of the network towards critical values, a SOC state 
which is believed to optimize the network information processing3,4,7,9,10,46.

In this work, first we study the dynamics of networks of GL neurons by a very simple and transparent 
mean-field calculation. We find both continuous and discontinuous phase transitions depending on the average 
synaptic strength and parameters of the firing function Φ (V). To the best of our knowledge, these phase transi-
tions have never been observed in standard integrate-and-fire neurons. We also find that, at the second order 
phase transition, the stimulated excitation of a single neuron causes avalanches of firing events (neuronal ava-
lanches) that are similar to those observed in biological networks3,9.

Second, we present a new mechanism for SOC based on a dynamics on the neuronal gains (a parameter of the 
neuron probably related to the axon initial segment – AIS32,47), instead of depression of coupling strengths (related 
to neurotransmiter vesicle depletion at synaptic contacts between neurons) proposed in the literature12,13,15,17. This 
new activity dependent gain model is sufficient to achieve self-organized criticality, both by simulation evidence 
and by mean-field calculations. The great advantage of this new SOC mechanism is that it is much more efficient, 
since we have only one adaptive parameter per neuron, instead of one per synapse.

The Model
We assume a network of N GL neurons that change states in parallel at certain sampling times with a uniform 
spacing Δ . Thus, the membrane potential of neuron i is modeled by a real variable Vi[t] indexed by discrete time 
t, an integer that represents the sampling time tΔ .

Each synapse transmits signals from some presynaptic neuron j to some postsynaptic neuron i, and has a 
synaptic strength wij. If neuron j fires between discrete times t and t +  1, its potential drops to VR. This event 
increments by wij the potential of every postsynaptic neuron i that does not fire in that interval. The potential of 
a non-firing neuron may also integrate an external stimulus Ii[t], which can model signals received from sources 
outside the network. Apart from these increments, the potential of a non-firing neuron decays at each time step 
towards the baseline voltage VB by a factor μ ∈  [0, 1], which models the effect of a leakage current.

We introduce the Boolean variable Xi[t] ∈  {0, 1} which denotes whether neuron i fired between t and t +  1. The 
potentials evolve as:
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This is a special case of the general GL model21, with the filter function µ− = −g t t( )s
t t s, where ts is the time 

of the last firing of neuron i. We have Xi[t +  1] =  1 with probability Φ (Vi[t]), which is called the firing func-
tion21,38–42. We also have Xi[t +  1] =  0 if Xi[t] =  1 (refractory period). The function Φ  is sigmoidal, that is, mono-
tonically increasing, with limiting values Φ (− ∞ ) =  0 and Φ (+ ∞ ) =  1, with only one derivative maximum. We 
also assume that Φ (V) is zero up to some threshold potential VT (possibly − ∞ ) and is 1 starting at some saturation 
potential VS (possibly + ∞ ). If Φ  is the shifted Heaviside step function Θ , Φ (V) =  Θ (V −  VT), we have a determin-
istic discrete-time LIF neuron. Any other choice for Φ (V) gives a stochastic neuron.

The network’s activity is measured by the fraction (or density) ρ[t] of firing neurons:
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The density ρ[t] can be computed from the probability density p[t](V) of potentials at time t:
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∫ρ = Φ
∞
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where p[t](V)dV is the fraction of neurons with potential in the range [V, V +  dV] at time t.
Neurons that fire between t and t +  1 have their potential reset to VR. They contribute to p[t +  1](V) a Dirac 

impulse at potential VR, with amplitude (integral) ρ[t] given by equation (3). In subsequent time steps, the poten-
tials of all neurons will evolve according to equation (1). This process modifies p[t](V) also for V ≠  VR.

Results
We will study only fully connected networks, where each neuron receives inputs from all the other N −  1 neurons. 
Since the zero of potential is arbitrary, we assume VB =  0. We also consider only the case with VR =  0, and uniform 
constant input Ii[t] =  I. So, for these networks, equation (1) reads:
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Mean-field calculation. In the mean-field analysis, we assume that the synaptic weights wij follow a distri-
bution with average W/N and finite variance. The mean-field approximation disregards correlations, so the final 
term of equation (1) becomes:

∑ ρ= .
=

w X t W t[ ] [ ]
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Notice that the variance of the weights wij becomes immaterial when N tends to infinity.
Since the external input I is the same for all neurons and all times, every neuron i that does not fire between t 

and t +  1 (that is, with Xi[t] =  0) has its potential changed in the same way:

µ ρ+ = + +V t V t I W t[ 1] [ ] [ ], (6)i i

Recall that the probability density p[t](V) has a Dirac impulse at potential U0 =  0, representing all neurons that 
fired in the previous interval. This Dirac impulse is modified in later steps by equation (6). It follows that, once all 
neurons have fired at least once, the density p[t](V) will be a combination of discrete impulses with amplitudes 
η0[t], η1[t], η2[t], … , at potentials U0[t], U1[t], U2[t], … , such that η∑ ==

∞ 1k k0 .
The amplitude ηk[t] is the fraction of neurons with firing age k at discrete time t, that is, neurons that fired 

between times t −  k −  1 and t −  k, and did not fire between t −  k and t. The common potential of those neurons, at 
time t, is Uk[t]. In particular, η0[t] is the fraction ρ[t −  1] of neurons that fired in the previous time step. For this 
type of distribution, the integral of equation (3) becomes a discrete sum:
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According to equation (6), the values ηk[t] and Uk[t] evolve by the equations

η η+ = − Φ − −t U t t[ 1] (1 ( [ ])) [ ], (8)k k k1 1

µ ρ+ = + +−U t U t I W t[ 1] [ ] [ ], (9)k k 1

for all k ≥  1, with η0[t +  1] =  ρ[t] and U0[t +  1] =  0.

Stationary states for general Φ and μ. A stationary state is a density p[t](V) =  p(V) of membrane 
potentials that does not change with time. In such a regime, quantities Uk and ηk do not depend anymore on t. 
Therefore, the equations (8) and (9) become the recurrence equations:

∑ρ η η= = Φ
=

∞
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(10)k
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η η= − Φ − −U(1 ( )) , (12)k k k1 1

µ ρ= + +−U U I W , (13)k k 1

for all k ≥  1.
Since equations (12) are homogeneous on the ηk, the normalization condition η∑ ==

∞ 1k k0  must be included 
explicitly. So, integrating over the density p(V) leads to a discrete distribution P(V) (see Fig. 1 for a specific Φ ).
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Equations (10–13) can be solved numerically, e. g. by simulating the evolution of the potential probability 
density p[t](V) according to equations (8) and (9), starting from an arbitrary initial distribution, until reaching a 
stable distribution (the probabilities ηk should be renormalized for unit sum after each time step, to compensate 
for rounding errors). Notice that this can be done for any Φ  function, so this numerical solution is very general.

The monomial saturating Φ with μ > 0. Now we consider a specific class of firing functions, the saturat-
ing monomials. This class is parametrized by a positive degree r and a neuronal gain Γ  >  0. In all functions of this 
class, Φ (V) is 0 when V ≤  VT, and 1 when V ≥  VS, where the saturation potential is VS =  VT +  1/Γ . In the interval 
VT <  V <  VS, we have:

Φ = Γ − .V V V( ) ( ( )) (14)r
T

Note that these functions can be seen as limiting cases of sigmoidal functions, and that we recover the determin-
istic LIF model Φ (V) =  Θ (V −  VT) when Γ  →  ∞ .

For any integer p ≥  2, there are combinations of values of VT, VS, and μ that cause the network to behave 
deterministically. This happens if the stationary state defined by equations  (12) and (13) is such that 
Up−2 ≤  VT ≤  VS ≤  Up−1—that is, Φ (Uk) is either 0 or 1 for all k, so the GL model becomes equivalent to the 
deterministic LIF model. In such a stationary state, we have ρ =  ηk =  1/p for all k <  p; meaning that the neurons 
are divided into p groups of equal size, and each group fires every p steps, exactly. If the inequalities are strict 
(Up−2 <  VT and VS <  Up−1) then there are also many deterministic periodic regimes (p-cycles) where the p groups 
have slightly more or less than 1/p of all the neurons, but still fire regularly every p steps.

Note that, if VT =  0, such degenerate (deterministic) regimes, stationary or periodic, occur only for p =  2 and 
W ≥  WB where WB =  2(I +  VS). The stationary regime has ρ =  η0 =  η1 =  1/2 and U1 =  I +  W/2. In the periodic 
regimes (2-cycles) the activity ρ[t] alternates between two values ρ′  and ρ′ ′  =  1 −  ρ′ , with ρ1(W) <  ρ′  <  1/2 <  ρ′ ′   
<  ρ2(W), where:

Figure 1. Examples of stationary potential distributions P(V): monomial Φ  function with r =  1, Γ  =  1, 
μ =  1/2, I =  0 case with different values of W. (a) W2 =  WB =  2, two peaks; (b) W3 =  14/9, three peaks; (c) 
W4 =  488/343, four peaks, (d) W∞ ≈  1.32, infinite number of peaks with U∞ =  1. Notice that for W <  W∞ all the 
peaks in the distribution P(V) lie at potentials Uk <  1. For WB =  2 we have η0 =  η1 =  1/2, producing a bifurcation 
to a 2-cycle. The values of Wm =  W2, W3, W4 and W∞ can be obtained analytically by imposing the condition 
Um−1 =  1 in equations (12–13).
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All these 2-cycles are marginally stable, in the sense that, if a perturbed state ρε =  ρ +  ε satisfy equation (15) then 
the new cycle ρε[t +  1] =  1 −  ρε[t] is also marginally stable.

In the analyses that follows, the control parameters are W and Γ , and ρ(W, Γ ) is the order parameter. We 
obtain numerically ρ(W, Γ ) and the phase diagram (W, Γ ) for several values of μ >  0, for the linear (r =  1) satu-
rating Φ  with I =  VT =  0 (Fig. 2). Only the first 100 peaks (Uk, ηk) were considered, since, for the given μ and Φ , 
there was no significant probability density beyond that point. The same numerical method can be used for r ≠  1, 
I ≠  0, VT ≠  0.

Near the critical point, we obtain numerically ρ(W, μ) ≈  C(W −  WC)/W, where WC(Γ ) =  (1 −  μ)/Γ  and C(μ) 
is a constant. So, the critical exponent is α =  1, characteristic of the mean-field directed percolation (DP) univer-
sality class3,4. The critical boundary in the (W, Γ ) plane, numerically obtained, seems to be Γ C(W) =  (1 −  μ)/W 
(Fig. 2b).

Analytic results for μ = 0. Below we give results of a simple mean-field analysis in the limits N →  ∞  and 
μ →  0. The latter implies that, at time t +  1, the neuron “forgets” its previous potential Vi[t] and integrates only 
the inputs I[t] +  WijXj[t]. This scenario is interesting because it enables analytic solutions, yet exhibits all kinds of 
behaviors and phase transitions that occur with μ >  0.

When μ =  0 and Ii[t] =  I (uniform constant input), the density p[t](V) consists of only two Dirac peaks at 
potentials U0[t] =  VR =  0 and U1[t] =  I +  Wρ[t −  1], with fractions η0[t] and η1[t] that evolve as:

η ρ η η η+ = = Φ + Φ + −t t t I W t t[ 1] [ ] (0) [ ] ( [ ])(1 [ ]), (16)0 0 0 0

η η+ = − + .t t[ 1] 1 [ 1] (17)1 0

Furthermore, if the neurons cannot fire spontaneously, that is, Φ (0) =  0, then equation (16) reduces to:

η ρ η η+ = = Φ + − .t t I W t t[ 1] [ ] ( [ ])(1 [ ]) (18)0 0 0

In a stationary regime, equation (18) simplifies to:

ρ ρ ρ= − Φ +I W(1 ) ( ), (19)

since η0 =  ρ, η1 =  1 −  ρ, U0 =  0, and U1 =  I +  Wρ. Below, all the results refer to the monomial saturating Φ s given 
by equation (14).

The case with r = 1, VT = 0. When r =  1, we have the linear function Φ (V) =  Γ V for 0 <  V <  VS =  1/Γ , where 
V =  I +  Wρ. Equation (19) turns out:

Figure 2. Results for μ > 0. (a) Numerically computed ρ(W) curves for the monomial Φ  with r =  1, 
I =  VR =  VT =  0, and (Γ , μ) =  (1, 1/4), (1, 1/2), (1, 3/4), (1/2, 1/2), and (2, 1/2). The absorbing state ρ0 = 0 looses 
stability at WC and the non trivial fixed point ρ >  0 appears. At WB =  2/Γ , we have ρ =  1/2 and from there we 
have the fixed point ρ[t] =  1/2 and the 2-cycles with ρ[t] between the two bounds of equation (15) (dashed 
lines). (b) Numerically computed (Γ , W) diagram showing the critical boundaries Γ C(W) =  (1 −  μ)/W and the 
bifurcation line Γ B(W) =  2/W to 2-cycles.
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ρ ρΓ − Γ − Γ − − Γ =W W I I( 1) 0, (20)2

with solution (Fig. 3a):
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For zero input we have:

ρ =
− β

W W W
W

( ) ( ) , (22)
C

where WC =  1/Γ  and the order parameter critical exponent is β =  1. This corresponds to a standard mean-field 
continuous (second order) absorbing state phase transition. This transition will be studied in detail two section 
below.

A measure of the network sensitivity to inputs (which play here the role of external fields) is the susceptibility 
χ =  dρ/dI, which is a function of Γ , W and I (Fig. 3b):

χ ρ
ρ

=
Γ −

Γ − Γ + Γ +
.

W W I
(1 )

2 1 (23)

For zero external inputs, the susceptibility behaves as:

χ =
Γ

− γ−W
W

W W( ) 1 ( ) , (24)C

where we have the critical exponent γ =  1.
A very interesting result is that, for any I, the susceptibility is maximized at the critical line WC =  1/Γ , with the 

values:

ρ =
−Γ + Γ + ΓI I I4

2
, (25)C

2 2
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Γ + Γ

I I I

I I

(2 4 )

2 4
,

(26)
C

2 2

2 2

For I →  0 we have ρ ∝ IC . The critical exponent δ is defined by I ∝  ρδ for small I, so we obtain the mean-field 
value δ =  2. In analogy with Psychophysics, we may call m =  1/δ =  1/2 the Stevens’s exponent of the network4.

With two critical exponents it is possible to obtain others through scaling relations. For example, notice that 
β, γ and δ are related to 2β +  γ =  β(δ +  1).

Figure 3. Network and isolated neuron responses to external input I. (a) Network activity ρ(I, W) as a 
function of I for several W; (b) Susceptibility χ(I, W) as a function of W for several I. Notice the divergence 
χC(I) ∝  I−1/2 for small I; (c) Firing rate of an isolated neuron ρ(I, W =  0) for monomial exponents r =  0.5, 1 and 2.
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Notice that, at the critical line, the susceptibility diverges as χ ∝ I1/C  as I →  0. We will comment the impor-
tance of the fractionary Stevens’s exponent m =  1/2 (Fig. 3a) and the diverging susceptibility (Fig. 3b) for infor-
mation processing in the Discussion section.

Isolated neurons. We can also analyze the behavior of the GL neuron model under the standard experiment 
where an isolated neuron in vitro is artificially injected with a current of constant intensity J. That corresponds to 
setting the external input signal I[t] of that neuron to a constant value I =  JΔ /C where C is the effective capaci-
tance of the neuron.

The firing rate of an isolated neuron can be written as:

ρ=F I I F( ) 2 ( ) ; (27)max

where Fmax is an empirical maximum firing rate (measured in spikes per second) of a given neuron and ρ is our 
previous neuron firing probability per time step. With W =  0 and I >  0 in equation (19), we get:

ρ ρ= Φ −I I I( ) ( )(1 ( )), (28)

The solution for the monomial saturating Φ  with VT =  0 is (Fig. 3c):

ρ =
Γ

+ Γ
I I

I
( ) ( )

1 ( )
,

(29)

r

r

which is less than ρ =  1/2 only if I <  1/Γ . For any I ≥  1/Γ  the firing rate saturates at ρ =  1/2 (the neuron fires at 
every other step, alternating between potentials U0 =  VR =  0 and U1 =  I. So, for I >  0, there is no phase transition. 
Interestingly, equation (29), known as generalized Michaelis-Menten function, is frequently used to fit the firing 
response of biological neurons to DC currents48,49.

Continuous phase transitions in networks: the case with r = 1. Even with I =  0, spontaneous collective activity is 
possible if the network suffers a phase transition. With r =  1, the stationary state condition equation (19) is:

ρ ρΓ + − Γ = .W W(1 ) 0 (30)2

The two solutions are the absorbing state ρ0 =  0 and the non-trivial state:

ρ =
−W W
W

, (31)
C

with WC =  1/Γ . Since we must have 0 <  ρ ≤  1/2, this solution is valid only for WC <  W ≤  WB =  2/Γ  (Fig. 4b).
This solution describes a stationary state where 1 −  ρ of the neurons are at potential U1 =  W −  WC. The neu-

rons that will fire in the next step are a fraction Φ (U1) of those, which are again a fraction ρ of the total. For any 
W >  WC, the state ρ0 =  0 is unstable: any small perturbation of the potentials cause the network to converge to the 
active stationary state above. For W <  WC, the solution ρ0 =  0 is stable and absorbing. In the ρ(W) plot, the locus 
of stationary regimes defined by equation (31) bifurcates at W =  WB into the two bounds of equation (15) that 
delimit the 2-cycles (Fig. 4b).

So, at the critical boundary W =  1/Γ , we have a standard continuous absorbing state transition 
ρ(W) ∝  (W −  WC)α with a critical exponent α =  1, which also can be written as ρ(Γ ) ∝  (Γ  −  Γ C)α. In the (Γ , W) 
plane, the phase transition corresponds to a critical boundary Γ C(W) =  1/W, below the 2-cycle phase transition  
Γ B(W) =  2/W (Fig. 4c).

Discontinuous phase transitions in networks: the case with r > 1. When r >  1 and W ≤  WB =  2/Γ , the stationary 
state condition is:

ρ ρΓ − Γ + = .−W W( ) ( ) 1 0 (32)r r r r 1

This equation has a non trivial solution ρ+ only when 1 ≤  r ≤  2 and WC(r) ≤  W ≤  WB, for a certain WC(r) >  1/Γ .  
In this case, at W =  WC(r), there is a discontinuous (first-order) phase transition to a regime with activity 
ρ =  ρC(r) ≤  1/2 (Fig. 4d). It turns out that ρC(r) →  0 as r →  1, recovering the continuous phase transition in that 
limit. For r =  2, the solution to equation (32) is a single point ρ(WC) =  ρC =  1/2 at WC =  2/Γ  =  WB (Fig. 4f).

Notice that, in the linear case, the fixed point ρ0 =  0 is unstable for W >  1 (Fig. 4b). This occurs because the 
separatrix ρ− (trace lines, Fig. 4d), for r →  1, collapses with the ρ0 point, so that it looses its stability.

Ceaseless activity: the case with r < 1. When r <  1, there is no absorbing solution ρ0 =  0 to equation (32). In the 
W →  0 limit we get ρ(W) =  (Γ W)r/(1−r). These power laws means that ρ >  0 for any W >  WC(r) =  0 (Fig. 4e). We 
recover the second order transition WC(r =  1) =  1/Γ  when r →  1 in equation (32). Interestingly, this ceaseless 
activity ρ >  0 for any W >  0 seems to be similar to that found by Larremore et al.42 with a μ =  0 linear saturating 
model. That ceaseless activity, observed even with r =  1, perhaps is due to the presence of inhibitory neurons in 
Larremore et al. model.
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Figure 4. Firing densities (with Γ = 1) and phase diagram with μ = 0 and VT (I) = 0. (a) Examples of monomial 
firing functions Φ (V) with Γ  =  1 r =  0.5, 1 and 2. (b) The ρ(W) bifurcation plot for r =  1. The absorbing state ρ0 looses 
stability after W >  WC =  1 (dashed line). The non trivial fixed point ρ bifurcates at WB =  2/Γ  =  2 into two branches 
(gray lines) that bound the marginally stable 2-cycles. (c) The (Γ , W) phase diagram for r =  1. Below the critical 
boundary Γ  =  Γ C(W) =  1/W the inactive state ρ0 =  0 is absorbing and stable; above that line it is also absorbing but 
unstable. Above the line Γ  =  Γ B(W) =  2/W there are only the marginally stable 2-cycles. For Γ C(W) <  Γ  ≤  Γ B(W) 
there is a single stationary regime ρ(W) =  (W −  WC)/W <  1/2, with WC =  1/Γ . (d) Discontinuous phase transitions 
for Γ  =  1 with exponents r =  1.2. The absorbing state ρ0 now is stable (solid line at zero). The non trivial fixed point 
ρ+ starts with the value ρC at WC and bifurcates at WB, creating the boundary curves (gray) that delimit possible 
2-cycles. At WC also appears the unstable separatrix ρ− (dashed line). (e) Ceaseless activity (no phase transitions) for 
r =  0.25, 0.5 and r =  0.75. The activity approach zero (for W =  0) as power laws. (f) In the limiting case r =  2 we do 
not have a ρ >  0 fixed point, but only the stable ρ0 =  0 (black), the 2-cycles region (gray) and the unstable separatrix 
(traces).
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Discontinuous phase transitions in networks: the case with VT > 0 and I > 0. The standard IF model has VT >  0. If 
we allow this feature in our models we find a new ingredient that produces first order phase transitions. Indeed, in 
this case, if U1 =  Wρ +  I <  VT then we have a single peak at U0 =  0 with η0 =  1, which means we have a silent state. 
When U1 =  Wρ +  I >  VT, we have a peak with height η1 =  1 −  ρ and ρ =  η0 =  Φ (U1)η1.

For the linear monomial model this leads to the equations:

ρ ρ= Γ − −U V( )(1 ), (33)1 T

ρ ρΓ + − Γ − Γ + Γ + Γ − Γ =W W V I V I(1 ) 0, (34)2
T T

with the solution:

ρ Γ =
Γ + Γ − Γ − ± Γ + Γ − Γ − − Γ + Γ

Γ
± W V I

W V I W V I WV WI
W

( , , , )
( 1) ( 1) 4 4

2
, (35)T

T T
2 2

T
2

where ρ+ is the non trivial fixed point and ρ− is the unstable fixed point (separatrix). These solutions only exist for 
Γ W values such that Γ + − − > Γ −W V I W V I( ) 1 2 ( )T T . This produces the condition:

Γ =
− −W V I

1
( ) (36)

C
C T

2

which defines a first order critical boundary. At the critical boundary the density of firing neurons is:

ρ =
−V I

W
,

(37)C
T

C

which is nonzero (discontinuous) for any VT >  I. These transitions can be seen in Fig. 5. The solutions for equa-
tions (35) and (37) is valid only for ρC <  1/2 (2-cycle bifurcation). This imply the maximal value VT =  WC  /4 +  I.

Neuronal avalanches. Firing avalanches in neural networks have attracted significant interest because of 
their possible connection to efficient information processing3–5,7,9. Through simulations, we studied the critical 
point WC =  1, Γ C =  1 (with μ =  0) in search for neuronal avalanches3,9 (Fig. 6).

An avalanche that starts at discrete time t =  a and ends at t =  b has duration d =  b −  a and size ρ= ∑ =s N t[ ]t a
b  

(Fig. 6a). By using the notation S for a random variable and s for its numerical value, we observe a power law 
avalanche size distribution ≡ = ∝ τ−P s P S s s( ) ( )S

S, with the mean-field exponent τS =  3/2 (Fig. 6b)3,9,13. Since 
the distribution PS(s) is noisy for large s, for further analysis we use the complementary cumulative function 

≡ ≥ = ∑ =
∞C s P S s P k( ) ( ) ( )S k s S  (which gives the probability of having an avalanche with size equal or greater 

than s) because it is very smooth and monotonic (Fig. 6c). Data collapse gives a finite-size scaling exponent cS =  1 
(Fig. 6d)15,17.

We also observed a power law distribution for avalanche duration, ≡ = ∝ τ−P d P D d d( ) ( )D
D with τD =  2 

(Fig. 7a). The complementary cumulative distribution is ≡ ≥ = ∑ =
∞C d P D d P k( ) ( ) ( )D k d D . From data collapse, 

we find a finite-size scaling exponent cD =  1/2 (Fig. 7b), in accord with the literature13.

Figure 5. Phase transitions for VT >  0: monomial model with μ =  0, r =  1, Γ  =  1 and thresholds VT =  0, 0.05 
and 0.1. Here the solid black lines represent the stable fixed points, dashed black lines represent unstable fixed 
points and grey lines correspond to the marginally stable boundaries for 2-cycles regime. The discontinuity ρC 
goes to zero for VT →  0.
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Figure 6. Avalanche size statistics in the static model. Simulations at the critical point WC =  1, Γ C =  1 (with 
μ =  0). (a) Example of avalanche profile ρ[t] at the critical point. (b) Avalanche size distribution PS(s) ≡  P(S =  s), 
for network sizes N =  1000, 2000, 4000, 8000, 16000 and 32000. The dashed reference line is proportional to τ−s s, 
with τs =  3/2. (c) Complementary cumulative distribution = ∑ =

∞C s P k( ) ( )S k s S . Being an integral of PS(s), its 
power law exponent is − τs +  1 =  − 1/2 (dashed line). (d) Data collapse (finite-size scaling) for CS(s)s1/2 versus 
function of s N/ c S, with the cutoff exponent cS =  1.

Figure 7. Avalanche duration statistics in the static model. Simulations at the critical point WC =  1, Γ C =  1 
(μ =  0) for network sizes N =  1000, 2000, 4000, 8000, 16000 and 32000: (a) Probability distribution PD(d) ≡  P(D =  d)  
for avalanche duration d. The dashed reference line is proportional to τ−d D, with τD =  2. (b) Data collapse CD(d)d  
versus d N/ cD, with the cutoff exponent cD =  1/2. The complementary cumulative function ≡ ∑ =

∞C d P k( ) ( )D k d D , 
being an integral of PD(d), has power law exponent − τD +  1 =  − 1.
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The model with dynamic parameters. The results of the previous section were obtained by fine-tuning 
the network at the critical point Γ C =  WC =  1. Given the conjecture that the critical region presents functional 
advantages, a biological model should include some homeostatic mechanism capable of tuning the network 
towards criticality. Without such mechanism, we cannot truly say that the network self-organizes toward the 
critical regime.

However, observing that the relevant parameter for criticality in our model is the critical boundary Γ CWC =  1, 
we propose to work with dynamic gains Γ i[t] while keeping the synapses Wij fixed. The idea is to reduce the gain 
Γ i[t] when the neuron fires, and let the gain slowly recover towards a higher resting value after that:

τ
Γ + = Γ + − Γ − Γ .t t A t u t X t[ 1] [ ] 1 ( [ ]) [ ] [ ] (38)i i i i i

Now, the factor τ is related to the characteristic recovery time of the gain, A is the asymptotic resting gain, and 
u ∈  [0, 1] is the fraction of gain lost due to the firing. This model is plausible biologically, and can be related to a 
decrease and recovery, due to the neuron activity, of the firing probability at the AIS47. Our dynamic Γ i[t] mimics 
the well known phenomenon of spike frequency adaptation18,19.

Figure 8a shows a simulation with all-to-all coupled networks with N neurons and, for simplicity, Wij =  W. We 
observe that the average gain Γ = ∑ Γ=t t[ ] [ ]

N i
N

i
1

1  seems to converge toward the critical value Γ C(W) =  1/W =  1, 
starting from different Γ [0] ≠  1. As the network converges to the critical region, we observe power-law avalanche 
size distributions with exponent − 3/2 leading to a cumulative function CS(s) ∝  s−1/2 (Fig. 8b). However, we also 
observe supercritical bumps for large s and N, meaning that the network is in a slightly supercritical state.

This empirical evidence is supported by a mean-field analysis of equation (38). Averaging over the sites, we 
have for the average gain:

τ
ρΓ + = Γ + − Γ − Γ .t t A t u t t[ 1] [ ] 1 ( [ ]) [ ] [ ] (39)

In the stationary state, we have Γ [t +  1] =  Γ [t] =  Γ *, so:

τ
ρ

τ


 +



Γ = .⁎ ⁎u A1

(40)

But we have the relation

ρ = Γ − Γ Γ⁎ ⁎ ⁎C ( )/ (41)C

near the critical region, where C is a constant that depends on Φ (V) and μ, for example, with μ =  0, C =  1 for Φ  
linear monomial model. So:

τ τ



Γ

+ Γ − Γ


Γ =

Γ
.

⁎
⁎ ⁎

⁎
uC uC A

(42)C

Eliminating the common factor Γ *, and dividing by uC, we have:

τ τ


 +



Γ = Γ + .⁎

uC
A

uC
1 1

(43)C

Figure 8. Self-organization with dynamic neuronal gains. Simulations of a network of GL neurons with fixed 
Wij =  W =  1, u =  1, A =  1.1 and τ =  1000 ms. Dynamic gains Γ i[t] starts with Γ i[0] uniformly distributed in [0, Γ max].  
The average initial condition is Γ ≡ ∑ Γ ≈ Γt t[ ] [ ] /2

N i
N

i
1

max , which produces the different initial conditions  
Γ[0]. (a) Self-organization of the average gain Γ [t] over time. The horizontal dashed line marks the value  
Γ C =  1. (b) Data collapse for CS(s)s1/2 versus s N/ c S for several N, with the cutoff exponent cS =  1.
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Now, call x =  1/(uCτ). Then, we have:

Γ =
Γ +

+
.⁎ Ax

x1 (44)
C

The fine tuning solution is to put by hand A =  Γ C, which leads to Γ * =  Γ C independent of x. This fine tuning 
solution should not be allowed in a true SOC scenario. So, suppose that A =  BΓ C. Then, we have:

Γ = Γ
+
+

.⁎ Bx
x

1
1 (45)C

Now we see that to have a critical or supercritical state (where equation (41) holds) we must have B >  1, other-
wise we fall in the subcritical state Γ * <  Γ C where ρ* =  0 and our mean-field calculation is not valid. A first order 
approximation leads to:

Γ = Γ + − Γ + .⁎ A x O x( ) ( ) (46)C C
2

This mean-field calculation shows that, if x →  0, we obtain a SOC state Γ * →  Γ C. However, the strict case x →  0 
would require a scaling τ =  O(Na) with an exponent a >  0, as done previously for dynamic synapses12,13,15,17.

However, if we want to avoid the non-biological scaling τ(N) =  O(Na), we can use biologically reasonable 
parameters like τ ∈  [10, 1000] ms, u =  [0.1, 1], C =  1 and A ∈  [1.1, 2]Γ C. In particular, if τ =  1000, u =  1 and 
A =  1.1, we have x =  0.001 and:

Γ ≈ . Γ .⁎ 1 0001 (47)C

Even a more conservative value τ =  100 ms gives Γ * ≈  1.001Γ C. Although not perfect SOC10, this result is 
totally sufficient to explain power law neuronal avalanches. We call this phenomena self-organized supercritical-
ity (SOSC), where the supercriticality can be very small. We must yet determine the volume of parameter space 
(τ, A, u) where the SOSC phenomenon holds. In the case of dynamic synapses Wij[t], this parametric volume is 
very large15,17 and we conjecture that the same occurs for the dynamic gains Γ i[t]. This shall be studied in detail 
in another paper.

Discussion
Stochastic model. The stochastic neuron Galves and Löcherbach21,41 is an interesting element for studies of 
networks of spiking neurons because it enables exact analytic results and simple numerical calculations. While the 
LSIF models of Soula et al.34 and Cessac35–37 introduce stochasticity in the neuron’s behavior by adding noise terms 
to its potential, the GL model is agnostic about the origin of noise and randomness (which can be a good thing 
when several noise sources are present). All the random behavior is grouped at the single firing function Φ (V).

Phase transitions. Networks of GL neurons display a variety of dynamical states with interesting phase 
transitions. We looked for stationary regimes in such networks, for some specific firing functions Φ (V) with no 
spontaneous activity at the baseline potential (that is, with Φ (0) =  0 and I =  0). We studied the changes in those 
regimes as a function of the mean synaptic weight W and mean neuronal gain Γ . We found basically tree kinds of 
phase transition, depending of the behavior of Φ (V) ∝  Vr for low V:

 r <  1: A ceaseless dynamic regime with no phase transitions (WC =  0) similar to that found by Larremore  
et al.42;

 r =  1: A continuous (second order) absorbing state phase transition in the Directed Percolation universality 
class usual in SOC models2,3,10,15,17;

 r >  1: Discontinuous (first order) absorbing state transitions.

We also observed discontinuous phase transitions for any r >  0 when the neurons have a firing threshold 
VT >  0.

The deterministic LIF neuron models, which do not have noise, do not seem to allow these kinds of tran-
sitions27,30,31. The model studied by Larremore et al.42 is equivalent to the GL model with monomial saturating 
firing function with r =  1, VT =  0, μ =  0 and Γ  =  1. They did not report any phase transition (perhaps because of 
the effect of inhibitory neurons in their network), but found a ceaseless activity very similar to what we observed 
with r <  1.

Avalanches. In the case of second-order phase transitions (Φ (0) =  0, r =  1, VT =  0), we detected firing ava-
lanches at the critical boundary Γ C =  1/W whose size and duration power law distributions present the standard 
mean-field exponents τS =  3/2 and τD =  2. We observed a very good finite-scaling and data collapse behavior, with 
finite-size exponents cS =  1 and cD =  1/2.

Maximal susceptibility and optimal dynamic range at criticality. Maximal susceptibility means 
maximal sensitivity to inputs, in special to weak inputs, which seems to be an interesting property in biological 
terms. So, this is a new example of optimization of information processing at criticality. We also observed, for 
small I, the behavior ρ(I) ∝  Im with a fractionary Stevens’s exponent m =  1/δ =  1/2. Fractionary Stevens’s expo-
nents maximize the network dynamic range since, outside criticality, we have only a input-output proportional 
behavior ρ(I) ∝  I, see ref. 4. As an example, in non-critical systems, an input range of 1–10000 spikes/s, arriving to 
the neurons due to their extensive dendritic arbors, must be mapped onto a range also of 1–10000 spikes/s in each 
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neuron, which is biologically impossible because neuronal firing do not span four orders of magnitude. However, 
at criticality, since ρ ∝ =δI I I( ) 1/ , a similar input range needs to be mapped only to an output range of 
1–100 spikes/s, which is biologically possible. Optimal dynamic range and maximal susceptibility to small inputs 
constitute prime biological motivations to neuronal networks self-organize toward criticality.

Self-organized criticality. One way to achieve this goal is to use dynamical synapses Wij[t], in a way that 
mimics the loss of strength after a synaptic discharge (presumably due to neurotransmitter vesicles depletion), 
and the subsequent slow recovery12,13,15,17:

τ
+ = + − − .W t W t A W t uW t X t[ 1] [ ] 1 ( [ ]) [ ] [ ] (48)ij ij ij ij j

The parameters are the synaptic recovery time τ, the asymptotic value A, and the fraction u of synaptic weight 
lost after firing. This synaptic dynamics has been examined in refs 12, 13, 15 and 17. For our all-to-all coupled 
network, we have N(N −  1) dynamic equations for the Wijs. This is a huge number, for example O(108) equations, 
even for a moderate network of N =  104 neurons15,17. The possibility of well behaved SOC in bulk dissipative sys-
tems with loading is discussed in refs 10, 13 and 50. Further considerations for systems with conservation on the 
average at the stationary state, as occurs in our model, are made in refs 15 and 17.

Inspired by the presence of the critical boundary, we proposed a new mechanism for short-scale neural net-
work plasticity, based on dynamic neuron gains Γ i[t] instead of the above dynamic synaptic weights. This new 
mechanism is biologically plausible, probably related an activity-dependent firing probability at the axon ini-
tial segment (AIS)32,47, and was found to be sufficient to self-organize the network near the critical region. We 
obtained good data collapse and finite-size behavior for the PS(S) distributions.

The great advantage of this new SOC mechanism is its computational efficiency: when simulating N neurons 
with K synapses each, there are only N dynamic equations for the gains Γ i[t], instead of NK equations for the 
synaptic weights Wij[t]. Notice that, for the all-to-all coupling network studied here, this means O(N2) equations 
for dynamic synapse but only O(N) equations for dynamic gains. This makes a huge difference for the network 
sizes that can be simulated.

We stress that, since we used τ finite, the criticality is not perfect (Γ */Γ C ∈  [1.001; 1.01]). So, we called it a 
self-organized super-criticality (SOSC) phenomenon. Interestingly, SOSC would be a concretization of Turing’s 
intuition that the best brain operating point is slightly supercritical1.

We speculate that this slightly supercriticality could explain why humans are so prone to supercritical patho-
logical states like epilepsy3 (prevalence 1.7%) and mania (prevalence 2.6% in the population). Our mechanism 
suggests that such pathological states arises from small gain depression u or small gain recovery time τ. These 
parameters are experimentally related to firing rate adaptation and perhaps our proposal could be experimentally 
studied in normal and pathological tissues.

We also conjecture that this supecriticality in the whole network could explain the Subsamplig Paradox in 
neuronal avalanches: since the initial experimental protocols9,10, critical power laws have been seem when using 
arrays of Ne =  32–512 electrodes, which are a very small numbers compared to the full biological network size 
with N =  O(106–109) neurons. This situation Ne < <  N has been called subsampling51–53.

The paradox occurs because models that present good power laws for avalanches measured over the total 
number of neurons N, under subsampling present only exponential tails or log-normal behaviors53. No model, to 
the best of our knowledge, has solved this paradox10. Our dynamic gains, which produce supercritical states like 
Γ * =  1.01Γ C, could be a solution to the paradox if the supercriticality in the whole network, described by a power 
law with a supercritical bump for large avalanches, turns out to be described by an apparent pure power law under 
subsampling. This possibility will be fully explored in another paper.

Directions for future research. Future research could investigate other network topologies and firing 
functions, heterogeneous networks, the effect of inhibitory neurons30,42, and network learning. The study of 
self-organized supercriticality (and subsampling) with GL neurons and dynamic neuron gains is particularly 
promising.

Methods
Numerical Calculations. All numerical calculations are done by using MATLAB software. Simulation 
procedures: Simulation codes are made in Fortran90 and C+ + 11. The avalanche statistics were obtained by 
simulating the evolution of finite networks of N neurons, with uniform synaptic strengths Wij =  W (Wii =  0),  
Φ (V) monomial linear (r =  1) and critical parameter values WC =  1 and Γ C =  1. Each avalanche was started with 
all neuron potentials Vi[0] =  VR =  0 and forcing the firing of a single random neuron i by setting Xi[0] =  1.

In contrast to standard integrate-and fire12,13 or automata networks4,15,17, stochastic networks can fire even 
after intervals with no firing (ρ[t] =  0) because membrane voltages V[t] are not necessarily zero and Φ (V) 
can produce new delayed firings. So, our criteria to define avalanches is slightly different from previous liter-
ature: the network was simulated according to equation (1) until all potentials had decayed to such low val-
ues that ∑ < −V t[ ] 10i

N
i

20, so further spontaneous firing would not be expected to occur for thousands of 
steps, which defines a stop time. Then, the total number of firings S is counted from the first firing up to this 
stop time.

The correct finite-size scaling for avalanche duration is obtained by defining the duration as D =  Dbare +  5 time 
steps, where Dbare is the measured duration in the simulation. These extra five time steps probably arise from the 
new definition of avalanche used for these stochastic neurons.
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