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1  | INTRODUC TION

The life history of a species, population, or individual refers to the 
timing and magnitude patterns of their major life events, such as 
maturation, reproduction, and longevity (Hughes & Leips, 2017). In 
general, life-history traits are based mainly on quantitative and de-
mographic properties, such as the number of offspring and size-spe-
cific reproductive investment. Together, these traits are directly 

related to two primary components of fitness, survival and repro-
duction (Braendle, Heyland, & Flatt, 2011). Most life-history theories 
attempt to explain how evolution modifies stage-specific stages to 
maximize fitness, given the selection processes imposed by ecolog-
ical challenges (Hughes & Leips, 2017; Stearns, 2000). Because or-
ganisms have limited resources and must allocate them to different 
functions (e.g., growth, reproduction, survival, and maintenance), 
trade-offs and constraints that maximize reproductive success have 
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Abstract
The sun coral Tubastraea coccinea Lesson, 1829 (Dendrophylliidae) is a widely distrib-
uted shallow-water scleractinian that has extended its range to non-native habitats 
in recent decades. With its rapid spread, this coral is now one of the main invasive 
species in Brazil. Its high invasive capability is related to opportunistic characteris-
tics, including several reproductive strategies that have allowed it to disperse rapidly 
and widely. To better understand the reproductive biology of T. coccinea and aid in 
developing management strategies for invaded areas, we investigated aspects of its 
reproductive performance and life cycle, including the effects of colony size, seawa-
ter temperature and salinity, and lunar periodicity on offspring production and larval 
metamorphosis competence. A total of 18,139 offspring were released in different 
developmental stages, mainly from the larger colonies, which also produced larvae 
with longer competence periods. The main reproductive peak occurred during the 
First Quarter and New Moon phases and was highest in water temperatures around 
26°C. Together, these results help to explain the rapid expansion of T. coccinea into 
non-native habitats such as the Caribbean and southwestern Atlantic, and will inform 
actions of the recent Brazilian National Plan for the prevention, eradication, control, 
and monitoring of sun corals.
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been assessed in many studies (e.g., Braendle et al., 2011). By im-
posing specific opportunities for and constraints on reproduction, 
the biophysical properties of seawater and the connectivity of 
marine habitats are the main physical factors affecting marine or-
ganisms (Heyland, Degnan, & Reitzel, 2011). Because fitness is crit-
ical for the dispersal and evolution of sedentary organisms (Isaeva, 
Akhmadieva, Aleksandrova, Shukalyuk, & Chernyshev, 2011; Ritson-
Williams et al., 2009; Shikina & Chang, 2016; Whalan, Johnson, 
Harvey, & Battershill, 2005), these organisms have developed a 
diverse array of reproductive strategies and complex life histories 
(Braendle et al., 2011). One remarkable dispersal strategy is via lar-
vae that may have direct or indirect development, the latter of which 
is involved in metamorphosis, a transformation from the larval to ju-
venile stage (Bishop, Huggett, Heyland, Hodin, & Brandhorst, 2006; 
McEdward, 2000).

In addition to the factors that influence the final stage of lar-
val transport, such as suitable settlement sites and the mechanisms 
underlying metamorphosis (Pineda, Hare, & Sponaugle, 2011), lar-
val dispersal involves spawning, transport, and survival. However, 
natural and human-induced environmental disturbances are altering 
the historical patterns of reproduction, dispersal, and recruitment 
(Baker, Glynn, & Riegl, 2008; Crabbe, 2008; Glynn, Colley, Carpizo-
ituarte, & Richmond, 2017; Graham, Baird, Connolly, Sewell, & 
Willis, 2017; Nyström, Folke, & Moberg, 2000). In times of ever-in-
creasing abiotic challenges, knowledge of life-history traits related 
to reproduction, larval dispersal, and genetic variation is especially 
important for scleractinian corals, which are the major builders of 
coral reefs (Sorek & Levy, 2014).

Similarly to many other cnidarians, scleractinian corals dis-
play a variety of asexual and sexual reproductive strategies 
(Fautin, 2002; Harrison, 2011; Richmond, 1997; Sherman, Ayre, & 
Miller, 2006; Ward, 1992). Asexual strategies including budding, 
fission, polyp bailout, and fragmentation followed by regeneration 
seem to be widespread (Cairns, 1988; Capel, Migotto, Zilberberg, & 
Kitahara, 2014; Highsmith, 1982; Luz et al., 2018; Sammarco, 1982). 
Sexual strategies of scleractinian corals involve either release of 
gametes into the water column (broadcasting) or releasing fully ma-
ture larvae as a result of self-fertilization or outcrossing (brooding). 
Some brooder species release their offspring as fertilized eggs or 
embryos (Vermeij, Sampayo, Bröker, & Bak, 2004) or produce planu-
lae asexually (Ayre & Resing, 1986; Sherman et al., 2006). Although 
shallow-water zooxanthellate scleractinians are well known for their 
synchronized mass-spawning events triggered by lunar and seasonal 
periods (Sorek & Levy, 2014), some species reproduce year-round 
(e.g., Tubastraea coccinea; Glynn et al., 2008) or asynchronously for 
prolonged periods (e.g., Turbinaria reniformis; Harrison et al., 1984; 
Rapuano et al., 2017).

The morphological and molecular characteristics of the first de-
velopmental stages of both broadcasting and brooding scleractin-
ians have been documented for several species (e.g., Fadlallah, 1983; 
Glynn et al., 2017; Hayward et al., 2011; Okubo, Hayward, Forêt, & 
Ball, 2016; Okubo et al., 2013; Strader, Aglyamova, & Matz, 2018). 
In general, newly emerged larvae have just completed gastrulation 

and are round, fragile, and motionless. Mature larvae are active 
and possess an elongated ciliated body with ectoderm, mesoglea, 
and endoderm surrounding a central coelenteron (Fadlallah, 1983). 
These planula larvae may disperse and recruit at long distances from 
or close to their parent colonies (Gleason & Hofmann, 2011). The 
capacity and scale of dispersal of scleractinian larvae are still unclear 
(Ayre & Hughes, 2000; Richmond, 1987). Overall, the transport of 
these larvae depends on multiple abiotic and biotic variables acting 
simultaneously, including currents (Wood et al., 2016), topography 
(Willis & Oliver, 1990), and the length of the pelagic larval period 
(Shanks, 2009). This last depends mainly on the period of larval 
competence, which is the ability to settle/attach and metamorphose 
into the primary polyp stage in response to environmental cues 
(Ben-David-Zaslow & Benayahu, 1998; Bishop et al., 2006; Gleason 
& Hofmann, 2011; Strader et al., 2018; Strathmann, 1986). These 
signals vary widely intra- and interspecifically, even across closely 
related species (Hodin, 2006). Besides, unless the period of larval 
competence is extremely short, dispersal is accompanied by growth 
and development, supported either by energy reserves from the 
mother colony, if azooxanthellate; or by nutrients from symbiotic 
photosynthetic dinoflagellates (Symbiodiniaceae), if zooxanthellate.

Competent larvae of scleractinian corals usually exhibit preset-
tlement behaviors such as elongation, switching from swimming to 
crawling, and aboral substrate attachment (Fadlallah, 1983; Strader 
et al., 2018). Larvae may settle and then re-enter the water column 
multiple times before they finally attach and undergo metamorpho-
sis to the benthic life form (Eckman, 1996). In the absence of a suit-
able environment, nonfeeding larvae enter a state of low metabolism 
and may postpone metamorphosis without affecting their postset-
tlement fitness (Graham, Baird, & Connolly, 2008; Graham, Baird, 
Connolly, Sewell, & Willis, 2013; Graham & Nash, 2013). However, 
metamorphosis is an energy-demanding process, especially due to 
the initiation of calcification and synthesis of new proteins, and the 
available energy for metamorphosis tends to decrease with planula 
age (Edmunds, Cumbo, & Fan, 2013; Richmond, 1987; Rodriguez, 
Sedano, García-Martín, Pérez-Camacho, & Sánchez, 1990; 
Sewell, 2005; Strader et al., 2018; Wendt, 2000). Therefore, azoo-
xanthellate coral larvae such as those of T. coccinea, which do not re-
ceive nutrition from symbiont photosynthetic algae, may deteriorate 
and perish if this process is not accomplished within their compe-
tence period. Alternatively, although their survival and reproduction 
capabilities are still unclear, a few scleractinian species can undergo 
metamorphosis before settlement, extending their planktonic life 
by feeding in the water column (Mizrahi, Navarrete, & Flores, 2014; 
Richmond, 1987).

Tubastraea coccinea and some of its congeners (Dendrophylliidae, 
Scleractinia) invaded the Atlantic Ocean in the 1940s as biofouling 
on ships and oil and gas platforms (Cairns, 1994; Creed et al., 2017). 
Tubastraea coccinea, popularly known as the sun coral, has estab-
lished populations in the Caribbean, Gulf of Mexico, and over 
3,500 km of the Brazilian coast (Boschma, 1953; Cairns, 2001; 
Castro & Pires, 2001; Costa et al., 2014; Fenner, 1999, 2001; Fenner 
& Banks, 2004; de Paula & Creed, 2004; Romano & Cairns, 2000; 
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Sammarco, Porter, & Cairns, 2010; Vaughan & Wells, 1943). Several 
of these invaded areas are experiencing economic and environmen-
tal impacts from this coral (Creed et al., 2017; Luz & Kitahara, 2017). 
One of the important reasons for the invasiveness and rapid spread 
of T. coccinea along the southwestern Atlantic coastline is suggested 
to be the occurrence of multiple primary (Capel et al., 2017) and 
secondary (Capel, Creed, Kitahara, Chen, & Zilberberg, 2019) inva-
sions, along with its diverse reproductive strategies, early maturity 
(Fenner & Banks, 2004; Glynn et al., 2008), rapid growth, and high 
recruitment rate (Costa et al., 2014; Lages, Fleury, Menegola, & 
Creed, 2011). The remarkable regenerative capacity of this species 
appears to be another factor in its invasion success (Luz et al., 2018).

Information regarding T. coccinea life-history traits that poten-
tially maximize its fitness in non-native habitats, such as abiotic and 
biotic processes that affect larval dispersal, is still lacking. Therefore, 
we investigated the effects of colony size, temperature, salinity, 
and lunar periodicity on the reproductive performance of T. coc-
cinea during its main annual reproductive event. We also evaluated 
the succession of developmental stages and larval competence of 
T. coccinea.

2  | MATERIAL S AND METHODS

2.1 | Sampling and specimen maintenance

Ten colonies of T. coccinea were collected by snorkeling, at 
the Ilhabela Yacht Club, São Paulo State, Brazil (23°46′20″S, 
45°21′20″W), in December 2016, and kept in separate 2-L open-wa-
ter system aquaria under environmental temperature at the Centre 
for Marine Biology (CEBIMar), University of São Paulo. Embryonic 
stages and larvae released from each colony were sampled once a 
day and placed in separate aquaria according to their respective re-
lease dates. These larvae were monitored every 24 hr for sampling 
different ontogenetic stages (newly settled, settled, early metamor-
phosis, metamorphosed, and recruit), which were then transferred 
to new aquaria (300-500 ml) according to the stage (also kept sepa-
rated by parent colony). The time for larvae to reach each develop-
mental stage was tracked.

Parent colonies were fed every other day with 50 ml of freshly 
collected zooplankton ranging from 50 to 200 µm in diameter. All 
other ontogenetic stages were kept without food in closed water 
systems filled with 20 µm-filtered seawater at 24°C, which was 
changed every 72 hr.

2.2 | Offspring production as a function of 
biotic and abiotic traits

To assess the reproductive performance of T. coccinea and the 
potential effects of biotic and abiotic factors on its fitness, off-
spring produced from 10 colonies were monitored for 91 days (15 
December–15 March), which coincides with its main reproductive 

period in the southwestern Atlantic (de Paula, Pires, & Creed, 2014) 
and also in the eastern Pacific (Glynn et al., 2008). During the ex-
periment, we tested the number of offspring released (number of 
embryos and larvae per day) as the response variable, and lunar 
periodicity, temperature, and salinity as explanatory variables. 
Temperature and salinity were measured with a YSI Model 30 
Handheld Conductivity, Salinity, & Temperature meter, once a day 
in surface water at the location where the water used in the experi-
ment was obtained.

Our response variable showed an asymmetrical distribution and 
heteroscedasticity, tested with the Bartlett test (Bartlett, 1937) 
and Shapiro–Wilk normality test (Royston, 2006). We therefore 
performed nonparametric analyses with the Kruskal–Wallis test 
(Conover, 1980) and the Spearman rank correlation coefficient. We 
used Dunn's Kruskal–Wallis multiple comparisons (Dunn, 1964) to 
assess significant sources of variation related to lunar periodicity. 
Although T. coccinea has early maturity (Fenner & Banks, 2004; 
Glynn et al., 2008), larger colonies may show better reproductive 
performance (Stearns, 1992). To test this hypothesis, a Spearman 
rank correlation coefficient and linear regression analyses were per-
formed to determine whether the reproductive potential (number 
of offspring released) was correlated to colony size. Colony size was 
measured by the volume and number of polyps. As the colony of 
T. coccinea is phaceloid, with an overall convex shape, its volume was 
calculated using the truncated pyramid formula:

where v = volume; h = height; A = base side; and a = top side.
As the colony volume and number of polyps were correlated 

(rs = .68; N = 10; p = .035), the “size” effect on offspring production 
was measured only by polyp number, as this characteristic is eas-
ier to estimate in the field for management purposes. Last, to check 
whether the life history can determine reproductive performance, 
colonies were sorted by size (in quartiles; small < 38 polyps, large > 52 
polyps, and medium = 38–52 polyps) and the variation in larval re-
lease was measured by using the nonparametric Kruskal–Wallis test 
(Conover, 1980). All statistical analyses were performed in R v.3.2. 
The Agricolae package with “BH” as the adjustment method was 
used for the Kruskal–Wallis analyses (Benjamini & Hochberg, 1995).

2.3 | Life cycle: from larva to recruit

Offspring development from 10 colonies of T. coccinea was ex-
amined and the offspring morphology and behavior described, in-
cluding those larvae that underwent metamorphosis in the water 
column. For this, all newly released larvae were sampled from 
each colony during different planulation events and monitored 
daily. Images of the developmental stage were taken with a Sony 
Handycam HDR-XR520, coupled to a Zeiss Stemi 2000-C stereomi-
croscope. Development was tracked to acquire data on the duration 
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of the different ontogenetic stages and also to estimate larval lon-
gevity and competence.

As ontogenetic development and larval competence are individ-
ual traits (Eckman, 1996), which in turn may be a response of phe-
notypic plasticity and different amounts of energy provided to the 
offspring (Zera & Harshman, 2011), we examined the intraspecific 
variation in the time required to pass through each developmental 
stage under laboratory conditions (24°C). For this purpose, the de-
velopment and larval competence were evaluated according to lar-
val age and life history (sorted by colony size), using the Spearman 
rank correlation coefficient and nonparametric Kruskal–Wallis test 
(Conover, 1980), respectively. All raw data used in the present study 
can be found at:  https://doi.org/10.5061/dryad.zw3r2285p.

3  | RESULTS

3.1 | Environmental conditions

The seawater temperature ranged from 24 to 30°C and the salinity 
from 33 to 35. The lowest mean temperature and salinity were re-
corded in December (24.65 ± 0.4°C and 33.64 ± 0.64, respectively). 
February had the highest temperature (26.47 ± 1.17°C) and inter-
mediate salinity (33.94 ± 0.42). January and March had intermediate 
temperatures (January: 26.05 ± 1.31; March: 26 ± 0.61) but the high-
est salinities (January: 34.1 ± 0.45; March 34.43 ± 0.64).

3.2 | Reproductive performance

Reproductive activity was observed over the 3 months of the ex-
periment. Two main peaks of embryo and/or planula release were 

recorded (Figure 1): a smaller peak at the end of January and early 
February, and a larger peak in early March. Ten colonies of T. coc-
cinea released a total of 18,139 offspring (Figure 2a), including 442 
embryonic stages (Figure 2b) and 17,697 larvae (newly released and 
mature larvae, Figure 2c,d, respectively). The maximum number of 
larvae released during a single event (24 hr) was 1,561 and was from 
a small colony (17.14 cm3; 34 polyps).

Planulation events occurred during different periods of the day 
but preferentially at night, with different stages of larval develop-
ment (newly formed and mature larvae) frequently being spawned 
together by the same colony. Aggregations of newly formed and 
mature larvae were observed in the tentacles of the mother colony 
(Figure 2a), from where some of them were released through a small 
pore at the tip of the tentacle (Online Resources 1 and 2). In some 
cases, mature larvae were observed swimming freely inside the 
mother colony (Online Resource 3) and more sporadically passing 
actively into and out of the mouth of the mother polyp. For those 
offspring not “expelled” from the mother colony, neither through 
tentacles nor from a “water jet” (Online Resources 4, 5, and 6—see 
also Online Resource 7 for larvae actively swimming out of the 
mother colony), active movement of the mother polyp's mesenteries 
exposed the planulae to the water column (Online Resource 8).

Larval release varied among lunar phases (Table 1; Figure 3), 
considering each phase beginning with the first day of each lunar 
phase. The highest numbers of larvae were released in the First 
Quarter (49%) and New Moon phases (31%), followed by the Full 
Moon phase (13%). Embryos were released mainly during the Third 
Quarter phase (67%), although their number did not differ signifi-
cantly from other lunar periods. Although temperature and salinity 
were not measured every day and did not show a significant ef-
fect on planulation, higher numbers of larvae were released when 
the water temperature was 26°C, regardless of the salinity (79%; 

F I G U R E  1   Tubastraea coccinea 
offspring abundance in relation to the 
number of colonies (n = 10) and colony 
size (n large = 4; n medium and small = 3 
each) between 15 December 2016 and 15 
March 2017

https://doi.org/10.5061/dryad.zw3r2285p
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N = 10,456 larvae). In contrast, the number of embryos was cor-
related only with temperature (rs = .32; N = 50; p = .002); embryos 
were released more frequently in conditions of higher tempera-
ture and salinity.

Regarding the effect of colony size on reproductive perfor-
mance, the number of polyps was not significantly related to the 
number of larvae. Colonies of T. coccinea displayed a continuous 
and subtle trend toward asynchrony within peaks of high larval 
release (Figures 1 and 3). Furthermore, a significant variation in 
these events was observed when colonies were sorted by size, as 
a proxy of life history (Table 1; Figure 4). Overall, larger colonies 
(>52 polyps) produced more larvae (~70%) than medium (~14%) and 
small (~16%) colonies. On the other hand, the number of embryos 

released was correlated with the number of polyps (r = .68; N = 10; 
p = .035).

3.3 | Life cycle and larval competence

Tubastraea coccinea breeds continuously throughout the year, but 
releases larvae mostly during its main reproductive period (Glynn 
et al., 2008; de Paula et al., 2014). Surprisingly, we observed colo-
nies releasing offspring in different developmental stages (from 
embryos to mature larvae) simultaneously or within the same re-
productive cycle. The released embryos (Figure 2b) were in several 
stages of embryogenesis, including morulas and spherical embryos 

F I G U R E  2   Developmental stages of Tubastraea coccinea: from adult to recruit. Morphological aspects of (a) adult colony with larvae in 
the tentacles; (b) embryos; (c) newly formed larvae; (d) mature larvae, contracted and elongated; (e) newly settled larva; (f) larva detached 
from substrate; (g) lateral view of group of settled larvae; (h) settled larva; (i) near metamorphosis larva; (j) metamorphosed larva; and (k) 
recruit (h–k show oral sides). Arrows indicate the following: la—larvae; op—oral pore; as—aboral side; re—reforming to flattened form (fl); 
mo—mouth; me—mesentery; te—tentacle; se—calcareous septa; and sk—skeleton. Scale bars represent 0.5 mm

Factor Variable KW Dunn

Lunar periodicity

Embryos Chi-squared = 04.449, df = 3, 
p = .216

—

Larvae Chi-squared = 39.149, df = 3, 
p < .001

N = FQ > F = TQ

Colony size

Embryos Chi-squared = 11.702, df = 8, 
p = .165

—

Larvae Chi-squared = 17.023, df = 2, 
p < .001

L > M = S

Abbreviations: F, Full; FQ, First Quarter; L, large; M, medium; N, New; S, small; TQ, Third Quarter.

TA B L E  1   Kruskal–Wallis test and 
Dunn's post-test for comparisons of 
the number of embryo cells and larvae 
released by Tubastraea coccinea with lunar 
periodicity and colony size (as number 
of polyps: small < 38; medium 38–52; 
large > 52)
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with a closing blastopore. Although later embryos were able to 
resume development in the water column, in aquaria they could 
become trapped by the water surface tension and burst before 
reaching the larval stage. Released near formed larvae (Figure 2c) 
were motionless (Online Resource 9), round, and redder than ma-
ture larvae (Figure 2d), which ranged from yellowish orange to 
orange. Mature larvae were active, with high swimming capacity 

(using cilia and spinning around the oral–aboral axis), rapid body 
contraction/elongation, and eventually switching from swimming 
to crawling behavior and vice versa.

Newly settled larvae (Figure 2e) were those that attached to the 
substrate and began to undergo metamorphosis. These larvae had 
a deformation on their aboral side, which was in contact with the 
substrate. This deformation was retained by the larvae that settled 

F I G U R E  3   Number of offspring in 
relation to colony and lunar period. F, Full; 
FQ, First Quarter; N, New; TC, colony 
number; TQ, Third Quarter Moon phases

F I G U R E  4   Number of offspring (larvae 
and embryos) per polyp, grouped by 
colony size: large (TC2, 6, 7, 10), medium 
(TC3, 8, 9), and small (TC1, 5, 11)
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but later returned to the water column (Figure 2f), and in such cases, 
they often underwent metamorphosis before reattaching to the 
substrate (Figure 5).

Following attachment, which marked the end of the motile stage 
and the beginning of benthic life, the settled individual promptly lost 
the spherical/pear shape and acquired a triangular form. The latter was 
characterized by a flattened aboral side (Figure 2g) and an oral pore 
at the other end (Figure 2h), which later originated the mouth. After it 
settled, the near metamorphosed polyp was radially symmetrical and 
displayed a centrally located mouth encircled by mesenteries, which 
were visible through the transparent body wall (Figure 2i). The appear-
ance of tentacles and skeleton marked the metamorphosed (Figure 2j) 
and recruitment (Figure 2k) stages, respectively. During metamorpho-
sis, tentacles emerged as small balls and then elongated, achieving full 
development mainly at the recruitment stage, when batteries of nema-
tocysts were formed. Although skeleton secretion began to be visible 
during the recruitment stage, the synthesis of the extracellular organic 
matrix preceded this stage, once a thin tissue surrounding the polyp, 
where skeletal crystals were later deposited, was observed in the pre-
ceding ontogenetic stage.

The time required for mature larvae to reach the recruit stage 
under laboratory conditions differed among individuals (p = .9). 
Recruits were observed from the 8th day but were most abundant 
on the 33rd day (~37%; N = 203) after release. Larvae showed a var-
ied competence period (Figure 6), with some starting to settle on the 
same day that they were released, although more often on the 2nd 
day (NS: ~23%; N = 477). The settled stage was reached mainly on 
the 3rd day (SE: ~20%; N = 408). Near metamorphosed and metamor-
phosed stages were observed mainly at the 4th (NM: ~27%; N = 371) 
and 10th days (ME: ~41%; N = 666) after larvae were released, 

respectively (Figure 7). However, several larvae were able to undergo 
metamorphosis even after 40 days (Figure 6); the longest competence 
period observed was 69 days. Some larvae survived in the water col-
umn through the entire period of the experiment (91 days). Therefore, 
T. coccinea larvae may remain in this state longer than 91 days, since 
the remaining larvae were healthy at the end of the experiment.

The larvae showed alternative life cycles and developmental 
stages: (a) larvae that underwent metamorphosis before settlement 
and had half of the body in the larval form, with the other half, usu-
ally the oral side, containing well-formed mesenteries, a mouth, and 
early or well-developed tentacles (Figure 5a–d); (b) near metamor-
phosis, metamorphosed, and recruits developed in the water column 
(Figure 5e,f, and g,h, respectively); iii) near-larvae with two or more 
oral pores (Figure 8a), which developed into a mature, boomer-
ang-shaped larva (Figure 8b–d) or with three distinct elongate “arms” 
(Figure 8e); (d) fusion of two or more larvae (Figure 8f); (e) one larva 
that originated a small primary colony rather than a single primary 
polyp (Figure 7); and (f) one or more larvae that settled on another 
larva or individual in a different stage of development, forming a chi-
meric colony (Figure 9). Most of these water-column recruits were 
able to attach to the substrate a second time and form a primary 
founder polyp or even a small colony.

4  | DISCUSSION

4.1 | Reproductive performance

Nowadays, as a result of its invasiveness capabilities, T. coccinea is 
the most widespread shallow-water scleractinian coral species. It 

F I G U R E  5   Developmental stages of Tubastraea coccinea in the water column: from larvae undergoing metamorphosis, before settlement. 
Morphological aspects of larva undergoing metamorphosis before settlement, in half of the body, either the (a) aboral or (b–d) oral side; 
(e) near metamorphosis; (f) metamorphosed; (g–h) recruits. Arrows indicate the following: op—oral pore; as—aboral side; mo—mouth; me—
mesentery; te—tentacle; se—calcareous septa; and sk—skeleton. Scale bars represent 0.5 mm
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possesses several reproductive strategies that promote its disper-
sal, high abundance, and persistence in non-native habitats, such as 
in the southwestern Atlantic, Gulf of Mexico, and Caribbean (Creed 
et al., 2017; Glynn et al., 2008). However, although the reproductive 
ecology of T. coccinea from native (Glynn et al., 2008) and non-native 
habitats (de Paula et al., 2014) has been studied, there is a lack of 
information regarding planulation events and the influence of biotic 
and abiotic factors on this process. Here, we investigated the effects 
of colony size, temperature, salinity, and lunar periodicity on the re-
productive performance of T. coccinea.

Overall, the larval production of the Brazilian invasive T. coc-
cinea during its annual main reproductive period (18,139, of 
which 442 were embryonic stages and 17,697 larvae) was higher 
than the production estimated for colonies in the Galápagos 
(1,139.00 ± 31.33) and Panama (247.62 ± 3.78) (Glynn et al., 2008). 
Considering the alarming densities of T. coccinea in non-native hab-
itats (de Paula et al., 2014; Silva et al., 2014), which may increase 
more than 70% per year (Lages et al., 2011), there is no doubt that 
the asexual production of a large number of larvae (Capel et al., 
2017, 2019) is aiding its successful spread and colonization of new 

F I G U R E  6   Relationship of Tubastraea coccinea larval competence and metamorphosis with size of mother colony (small, medium, and 
large) measured in relation to period of time (larval age) required to reach early developmental stages: NS—newly settled larvae; and ME—
metamorphosed. Bands indicate 95% confidence interval
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habitats. These high densities lead to substantial changes in the 
structure and function of the native benthic community (de Paula 
et al., 2014; Silva et al., 2014; Silva et al., 2019). For example, at 

Búzios Island, T. coccinea and Tubastraea tagusensis cover the hard 
substrate at many locations, outcompeting native and endemic 
species such as Palythoa caribaeorum (Luz & Kitahara, 2017) and 

F I G U R E  7   Colony of Tubastraea coccinea originating directly from a single larva, through the period of development. Morphological 
aspects of mature larva (ML), newly settled (NS), and settled with two oral pores (SE); near metamorphosis (NM) and metamorphosed (ME), 
with two early polyps; recruit (RE) secreting skeleton on its basal plate and around the calyx margin from each polyp emerged; and primary 
polyp retreated after environmental stress (ST), showing the skeleton growth pattern. Arrows indicate the following: op—oral pore; mo—
mouth; me—mesentery; te—tentacle; nb—batteries of nematocysts; and sk—skeleton

F I G U R E  8   Alternative larval development of Tubastraea coccinea that may originate a small primary colony rather than a single 
primary polyp. Morphological aspects of near formed larvae with two or more oral pores (a), which developed into a mature larva with a 
“boomerang” body form (b–d) or with three distinct elongate “arms” (e); and fusion of two larvae over time (f). Scale bars represent 0.5 mm
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Mussismilia hispida (Creed, 2006), and also changing the soft-bot-
tom seascape (Capel, Creed, & Kitahara, 2020).

Tubastraea coccinea releases offspring at different times of 
the day, but preferentially at night, as also observed by Glynn 
et al. (2008). Although larvae are commonly released from the 
polyp's mouth, it was not uncommon to find large aggregations in 
the gastrovascular cavity, between the mesenteries near the oral 
disk, and inside tentacles, from the tip of which larvae could also 
be released (Figure 2a; Online Resources 1 and 2). While this is the 
first report of such behavior in T. coccinea, larva release via tenta-
cle tips is not an exclusive feature of this species (Fadlallah, 1983; 
Harrison, 2011). For example, the brooder coral Eusmilia fastigi-
ata may spawn gametes or release early-stage embryos through a 
distal pore of its tentacle (Bastidas et al., 2005; Graaf, Geertjes, & 
Videler, 1999; Steiner, 1995); and Stephanocoenia intersepta shows 
intratentacular fertilization, that is, it keeps its eggs inside the tenta-
cles to increase their exposure to spawned sperm and enhance fertil-
ization success (Vermeij, Barott, Johnson, & Marhaver, 2010). In the 
sea pen Umbellula lindahli, mature eggs can be squeezed out through 
small tentacular pores as well (Tyler, Bronsdon, Young, & Rice, 1995).

We also found that T. coccinea releases offspring at different de-
velopmental stages (later embryos, and newly formed and mature 
larvae; Figure 1b,c,d, respectively). This behavior may be a result 
of overlapping gametogenic cycles, which are common in polyps of 
brooding soft and scleractinian corals such as E. fastigiata and Anthelia 
glauca (de Graaf et al., 1999; Kruger, Schleyer, & Benayahu, 1998). 
Although released embryos can continue their development in the 

water column, most of them perish, as also observed for E. fastigiata 
(de Graaf et al., 1999). This high mortality may be explained by the 
lack of cilia in these early embryos (not natant), which have a poorly 
defined cellular layer covering an indistinct yolky mass (de Paula 
et al., 2014). In aquaria, some of these fragile embryos float to the 
surface and are crushed by the force of the water surface tension.

4.2 | Biotic and abiotic effects 
on offspring production

The reproductive pattern of T. coccinea, with a smaller peak of plan-
ulation during the end of January and early February, and a larger 
peak in early March, is consistent with that observed for eastern 
Pacific native populations (Glynn et al., 2008), and also for invasive 
populations at Rio de Janeiro, Brazil (de Paula et al., 2014). These 
events were correlated with lunar cycles (Figure 1), with higher larval 
abundance in the First Quarter and New Moon phases, while em-
bryos were mainly released during the Third Quarter Moon phase. 
Although in smaller numbers, larvae were also released after the Full 
Moon. This synchronicity with lunar phases is similar to observations 
in Taiwan (Lin, 2005), Costa Rica, Panama, and the Galápagos (Glynn 
et al., 2008), and also for other brooding corals such as Seriatopora 
hystrix and Pocillopora damicornis (Fan, Li, Ie, & Fang, 2002).

Despite the influence of the lunar cycle, some intraspecific vari-
ations in the frequency and abundance of offspring release were 
observed (Figure 3). Colonies of T. coccinea have a continuous and 

F I G U R E  9   Chimeric larvae and colonies formed by one or more larvae that settled on another larva (a–c) or on an individual in a different 
stage of development (d), which are able to undergo metamorphosis (d, e) and secrete a skeleton on its basal plate (f–i) in the water column. 
Most of these recruits were able to attach to the substrate a second time (h, i). Arrows indicate the following: op—oral pore; as—aboral side; 
mo—mouth; me—mesentery; te—tentacle; nb—batteries of nematocysts; and sk—skeleton. Scale bars represent 0.5 mm
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subtle trend toward asynchrony within the peaks of higher offspring 
release. Most colonies (all small, three medium, two large) released 
more offspring over 17 days within one of the active reproductive 
periods. The exceptions were the medium (TC9) and large (TC2, TC7) 
colonies that had more than one peak, although with smaller num-
bers during the first peak (Figure 1).

The mean time between planulation peaks was around 12 days, 
which is shorter than the 6 weeks expected to release brooded 
larvae from new fertilizations (Glynn et al., 2008). This indicates 
that T. coccinea populations in invaded areas reproduce continu-
ously, with overlapping different developmental stages of oocytes, 
spermatic cysts, and larvae, as previously observed for native and 
invasive colonies in the eastern Pacific and southeastern Brazil, re-
spectively (Glynn et al., 2008; de Paula et al., 2014). On the other 
hand, the observation of newly formed and mature larvae being re-
leased simultaneously from the same colony, as well as the presence 
of larvae in the tentacles, suggest that T. coccinea may also be able to 
postpone releasing larvae until environmental conditions occur that 
maximize survival of its offspring.

Brooder corals typically have multiple planulation cycles per 
year, which may vary in timing among populations from differ-
ent localities in response to environmental factors (Crowder, Lo, 
Weis, & Fan, 2014; Fan et al., 2002; Harrison & Wallace, 1990). 
Tubastraea coccinea is known to reproduce year-round, with lar-
vae being released mostly during warmer months in localities with 
well-defined seasons (Glynn et al., 2008; de Paula et al., 2014). 
Although we did not measure the seawater temperature and salin-
ity daily, the highest numbers of larvae were released at a seawa-
ter temperature of 26°C regardless of the salinity, while embryo 
cells were released mainly in higher water temperatures and sa-
linity around 35.

Early gamete maturation and planulation events were previously 
observed for corals (e.g., P. damicornis) in periods of higher seawa-
ter temperatures, even over a single reproductive cycle (Crowder 
et al., 2014). Such a shift in timing can reduce larval survival, as in 
the zooxanthellate coral Fungia scutaria (Schnitzler, Hollingsworth, 
Krupp, & Weis, 2012). Therefore, our results indicate that the com-
bination of higher temperatures with high salinity may not be suit-
able for T. coccinea larval development, or even induce premature 
spawning (i.e., the release of embryonic stages before their complete 
formation; reviewed by Loya & Rinkevich, 1980). On the other hand, 
sun corals may release embryos that after a few days develop into 
larvae in the water column (as seen in aquaria) as a possible repro-
ductive strategy for increasing larval dispersal, as seen in several 
broadcaster species as a significant evolutionary trait that provides a 
balance against local mortality (Ritson-Williams et al., 2009). Colony 
size is another factor that might trigger this reproductive effort, 
and then be determinant for intraspecific variation. Even colonies 
as small as two polyps are capable of producing eggs and larvae in 
similar proportions to colonies with up to 10 polyps; the relationship 
between planula number and colony size varies in different localities 
(Glynn et al., 2008). Here, we found no statistically significant trend 
between the number of polyps and the number of larvae. As all the 

colonies studied here were collected from the same location and are 
expected to be clones (Capel et al., 2017), the intraspecific variation 
in reproductive performance may be related to each colony's life his-
tory (e.g., previous stress events).

Overall, larger colonies (>52 polyps) showed better reproductive 
performance (Figure 4) than medium and small ones. An exception 
was a small colony (TC5) that had an exceptional spawning event 
during its second main reproductive peak (Figure 3). This event also 
influenced the estimation of the rate of offspring per range of col-
ony size, which supports the hypothesis that intraspecific variance 
in offspring production can be determined by life history rather than 
by colony size. Since we measured the effect of only a limited range 
of colony sizes (20–91 polyps) on offspring release, further experi-
ments are needed to confirm this hypothesis.

4.3 | Life cycle and larval competence

The life cycle of corals includes a planktonic larval phase that 
is critical for the maintenance of adult populations (Gleason & 
Hofmann, 2011), by replenishing the local area with new genotypes 
or by spreading them over longer distances, supporting reef connec-
tivity and enhancing genetic diversity (Ritson-Williams et al., 2009). 
The combination of hydrodynamics and the time spent in the water 
column is the main mechanism that naturally drives the transport 
and dispersal of coral larvae (Shanks, 2009; Wood et al., 2016). 
Therefore, larval longevity (more than 91 days) and the extended 
period of competence (69 days), together with the high numbers of 
offspring of T. coccinea, confer a high dispersal ability on this inva-
sive coral, which contributes to its rapid distributional expansion in 
invaded habitats.

Some of the T. coccinea larvae deviated from the idealized cycle 
expected for corals (Eckman, 1996; Harrison, 2011; Ritson-Williams 
et al., 2009), which comprises a motile larval phase followed by a 
benthic phase of the recruit to adult stages (Figure 2). Overall, most 
larvae completed development as expected within 2–10 days and 
settled permanently on the substrate, where they grew and com-
pleted their development as a primary polyp (Figure 7). However, 
some larvae underwent a metamorphosis in the water column 
(Figure 5), as previously observed by Richmond (1987), Mizrahi 
et al. (2014), and Barbosa, Vinagre, Mizrahi, and Flores (2019) for sun 
corals, and also for P. damicornis (Richmond, 1985).

This alternative life transition may occur as a response to the 
absence of a suitable substrate or to cues that inhibited normal 
settlement, such as the presence of cyanobacteria, sedimentation 
(Evensen, Doropoulos, Wong, & Mumby, 2019), and/or unfavorable 
water conditions (Ritson-Williams et al., 2009). Although corals 
metamorphosed in the water column have not been observed in the 
field, in the aquaria they were able to feed, secrete a skeleton, and 
even start the benthic/sedentary phase when in contact with the 
substrate. Another remarkable sun coral reproductive strategy was 
the development of fused larvae that started benthic life already 
as a colony. Together, these alternative life cycles indicate wide 
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developmental plasticity in T. coccinea, which probably plays a role in 
increasing its survival, spread, and population growth.

As a possible response to phenotypic plasticity and the amount 
of energy allocated to the offspring (Zera & Harshman, 2011), the 
dynamics of competence and the time spent in each developmental 
stage may vary widely across species and even within a given pop-
ulation (Davies, Meyer, Guermond, & Matz, 2014; Eckman, 1996). 
Larger larvae of P. damicornis, S. hystrix, and S. pistillata have lon-
ger life spans than smaller larvae, which may be advantageous for 
long-distance dispersal (Isomura & Nishihira, 2001). The relative 
amount of energy investment in larvae may vary according to abi-
otic and biotic factors such as environmental stress and colony 
health, age, and size (Glynn et al., 2017; Hartmann, Marhaver, & 
Vermeij, 2018; Viladrich et al., 2017).

Despite the high larval longevity and competence, most T. coc-
cinea offspring settle and undergo metamorphosis in a few days (~3–
18 days; see also Harrison & Wallace, 1990; de Paula et al., 2014). 
However, the duration as motile larva varied by colony size (Figure 6) 
and was longer for the larvae from larger mother colonies, which 
suggests that colonies with 52 polyps or more may invest more en-
ergy in their offspring than the smaller colonies. This tendency may 
be a trade-off between reproduction and survival and/or somatic 
growth of younger (smaller) colonies. Additionally, the larvae from 
smaller colonies usually displayed an aggregated settlement pattern 
near the parental colonies, as observed in several cases in Brazil 
(de Paula & Creed, 2005). Therefore, the release of different larval 
stages in addition to the rapid settlement capacity or longer period 
in the motile stage (in the water column) may represent a reproduc-
tive strategy that contributes to the invasiveness of T. coccinea, once 
it has settled into a new area.

Nevertheless, considering the variation in early developmental 
strategies of T. coccinea, the differences observed in the time needed 
to reach each stage as well as in the larval competence period may 
be the result of self-fertilization, outcrossing, or asexual reproduc-
tion. If so, larvae originating from different reproductive modes may 
possess different amounts of energy reserves.

Independently of the reproductive strategy, early and mature lar-
vae of T. coccinea were found simultaneously in the gastrovascular 
cavity; they were visible near the oral disk, close to the mouth, and 
less frequently inside the tentacles. Mature oocytes and embryos 
were observed at the base of the polyp. A similar distribution has been 
observed in other species of stony corals (e.g., Cladopsammia willeyi 
and Astrangia danae, by Szmant-Froelich, Yevich, & Pilson, 1980) and 
soft corals (A. glauca, by Kruger et al., 1998; and U. lindahli, by Tyler 
et al., 1995). This distribution may allow more rapid expulsion of larvae 
by contraction of the oral disk, when environmental conditions occur 
that maximize larval survival and the chances of successful settlement.
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