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Human learners acquire complex interconnected networks of relational
knowledge. The capacity for such learning naturally depends on two factors:
the architecture (or informational structure) of the knowledge network itself
and the architecture of the computational unit—the brain—that encodes and
processes the information. That is, learning is reliant on integrated network
architectures at two levels: the epistemic and the computational, or the con-
ceptual and the neural. Motivated by a wish to understand conventional
human knowledge, here, we discuss emerging work assessing network con-
straints on the learnability of relational knowledge, and theories from
statistical physics that instantiate the principles of thermodynamics and
information theory to offer an explanatory model for such constraints. We
then highlight similarities between those constraints on the learnability of
relational networks, at one level, and the physical constraints on the devel-
opment of interconnected patterns in neural systems, at another level, both
leading to hierarchically modular networks. To support our discussion of
these similarities, we employ an operational distinction between the model-
ler (e.g. the human brain), the model (e.g. a single human’s knowledge) and
the modelled (e.g. the information present in our experiences). We then turn
to a philosophical discussion of whether and how we can extend our obser-
vations to a claim regarding explanation and mechanism for knowledge
acquisition. What relation between hierarchical networks, at the conceptual
and neural levels, best facilitate learning? Are the architectures of optimally
learnable networks a topological reflection of the architectures of com-
parably developed neural networks? Finally, we contribute to a unified
approach to hierarchies and levels in biological networks by proposing sev-
eral epistemological norms for analysing the computational brain and social
epistemes, and for developing pedagogical principles conducive to curious
thought.

This article is part of the theme issue ‘Unifying the essential concepts of
biological networks: biological insights and philosophical foundations’.
1. Introduction
The human mind is equipped with rich materials and diverse strategies with
which to interpret flows of information into structured units and relations
[1,2]. In many cases, such interpretive inferences are drawn from temporally
extended streams of stimuli where bits of information are presented to our
perceptive apparatus in a sequential manner [3–8]. We read a book or listen
to a lecture composed of word sequences. We listen to a song or instrumental
piece composed of sound sequences. We engage in discussions with sequential
arcs. We perceive a visual scene composed of light and colour sequences.
We walk through the day and experience sequences of heat, air currents and
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human touch. From those one-dimensional streams of infor-
mation we infer the complex structure of the world, and
our potential knowledge thereof [9,10].

In fact, reality is knowable as a set of informational units and
relations among them. It is these units and their relations that
scientists devote their lives to understanding. Henri Poincare
noted in his book Science and Hypothesis (1902) that, ‘The aim
of science is not things themselves, as the dogmatists in their
simplicity imagine, but the relations among things; outside
these relations there is no reality knowable.’ [11, p. xxiv] While
Poincare’s post-Kantian claim may seem eminently reasonable
and straightforward, its implications are perhaps more intri-
guing than he knew. If science is concerned not with reality
itself, butwith the relations among things, then scientific knowl-
edge relies on perpetually fine-tuning the network architectures
of information. That is, what can be known is a network of
relations, and knowledge itself is a network of that information.
John Dewey in his book Democracy and Education (1916)
suggested as much when he wrote that, ‘[K]nowledge is a per-
ception of those connections of an object which determine its
applicability in a given situation. [· · ·] An ideally perfect knowl-
edge would represent such a network of interconnections that
any past experience would offer a point of advantage from
which to get at the problem presented in a new experience.’
[12, p. 116] Scientific knowledge, then, is an increasinglyeffective
network of ideas that model interconnections in the world.

And what is the apparatus by which we process and
construct the relations between things and reason through
those relations (i.e. engage in relation and relational learning)
[13–15]? Our primary computational infrastructure is the
brain [16]. Much of what we now know about the brain relates
to the putative functions of single areas, and has been derived
from lesion and imaging studies in both human and non-
human animals [17,18]. Yet, recent work has noted a marked
increase in explanatory power from circuit-level descriptions
that map the location, transmission, andmanipulation of infor-
mation throughout spatially distributed networks of neural
units [19–21]. Over the past decade or more, the study of the
network architecture of neural circuits has been formalized in
the field of network neuroscience [22], which draws on graph
theory, statistical mechanics and network science to create
and study network models of neural systems [23–25]. In
some ways, this appreciation of the brain as a networked
system is new, particularly in its formal mathematical nature;
yet in other ways, this appreciation is simply a remembrance
of what we have speculated about for almost two centuries
since Schwann’s proposal in 1839 [26], and known decisively
for more than one century as the Neuron Doctrine [27]. In
1906, Cajal and Golgi were awarded the Nobel Prize for Physi-
ology or Medicine for their demonstrative experiments
confirming that nerve cells are the discrete units that make
up brain tissue, and that they comprise a connected network
system by discrete sites of contact.

We pause at this juncture in the ever-vigorous progress of
scientific and philosophical investigation into the nature of
mind and reality. We focus our attention on the networked
nature of knowledge as well as the networked nature of the
computational unit—the brain—that allows the human mind
to process and construct that knowledge.We review recent evi-
dence for network constraints on learnability of information
and network constraints on the architecture of neural circuits
that support that learning.We discuss similarities in those con-
straints and attempt to reason about why there might exist a
marked correspondence inhierarchicallymodularorganization
in both types of networks.Ourdiscussions of the architecture of
knowledge, the architecture of the brain, and their relations
allow us to then explicitly reason about the relationship
between the modelled, the modeller, and the model. That
reasoning leads us to ask how recent empirical evidence
could inform deeper explanations and mechanisms for knowl-
edge acquisition. We engage in an interdisciplinary discussion
of possible epistemological norms for studying brain network
architecture and its role in the acquisition of knowledge net-
works. Finally, we close with a few thoughts on how these
discussions could inform pedagogical principles conducive to
curious thought engendering knowledge acquisition. Because
we come fromquite different areas of inquiry (philosophy, phy-
sics and neuroscience), and becausewe hope that this piecewill
be accessible across fields, we aim for a simple and clear presen-
tation of the ideas, and eschew jargon wherever possible. We
have been free with our citations to ensure that practitioners
inagiven fieldaredirected to relevantwork in theirdisciplinary
domain. Notably, what we provide is a review of extant litera-
tures, selected for their relevance and insight into the network
architectures supporting learnability, upon which future
experimental and theoretical analyses might be built.
2. Network constraints on the learnability of
relational knowledge

Tomake our discussion here a bitmore concrete, let us consider
a professor sitting down at their (likely disheveled) desk to
develop tomorrow’s lecture or discussion plan. For simplicity,
let us ignore the precise topic of the lecture or discussion (and
the related problem of how students learn representations
useful for modelling the world), and instead focus solely on
the structure of the content. Perhaps the content can be quite
easily subdivided into 15 narrowly defined concepts, which
are related to one another in a non-trivial topology. Concepts
1 through 5 may be strongly related, forming a module;
concepts 6 through 10 may be strongly related, also forming
a module; and concepts 11 through 15 may be strongly related,
forming a thirdmodule. But the three modules are not comple-
tely independent of one another; instead, module 1 is
conceptually linked tomodule 2, andmodule 2 is conceptually
linked to module 3, which in turn harks back to module 1.
How does the professor choose to take this potentially high-
dimensional network architecture between concepts, and
translate it to the students when time is one-dimensional and
uni-directional, and thus only one word can be spoken at a
time, and presumably only one concept presented or discussed
at a time? The same challenge is faced by anywriter or speaker:
howmust one take a bit of knowledge, with some inherent net-
work architecture of relations between informational units, and
translate that knowledge into a continuous stream of words?
Will the reader or listener or discussant be able to infer the pat-
tern of relations between units? If so, how? Is there an optimal
mapping of the network into a stream that supports rapid
inference on the part of the receiver or interlocutor?

(a) Statistical learning and the relevance of
transition probabilities

Broadly, the problem of inferring patterns of pairwise depen-
dencies from incoming streams of data is in fact much more
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general than simply listening to a lecture or engaging in a
discussion. Indeed, the capacity to make such inferences
allows us to learn language [28], segment visual events [3],
parse tonal groupings [4], parse spatial scenes [5,29], infer
social networks [6,30] and perceive distinct concepts
[7,8,31,32]. The underlying general learning mechanism is
known as statistical learning, which can be defined as the ability
for humans and other animals to extract statistical regularities
from the world around them to learn about the environment
[33]. For example, a baby can listen to a stream of syllables
and detect the probabilities with which syllables follow one
another. Sets of syllables that follow one another with high
probability are perceived as units (such as words); when one
syllable rarely follows a second syllable, the transition is per-
ceived as a boundary between units (a break between words).
Although first identified in human infant language acquisition,
statistical learning is now thought to be a generalized learning
mechanism that is relevant across information modalities and
operationalized in multiple species [34].

(b) Moving beyond local transition probabilities
While it was clear from its inception that statistical learning
offered a compelling description for sensitivity to pairwise
dependencies between informational units, it was not immedi-
ately clear whether that description could be extended to
explain sensitivity to a complex network structure underlying
sequential input fromourworld [35]. The foundationalwork in
statistical learning manipulated the transition probability
between two adjacent stimuli in a temporal stream. Yet, evi-
dence quickly accumulated that supported the notion that
humans were also capable of learning from the probabilities
between non-adjacent stimuli [36,37], quaintly referred to as
‘learning at a distance’ harking back to the quantum mechan-
ical notion of ‘action at a distance’ [38]. For example, we
come to know not only that ‘Peter’ and ‘Rabbit’ are distinct
words, but also that we are more likely to see or hear those
two words in the same story than to hear ‘Thayne’ and
‘Rabbit’ in the same story. Human sensitivity to structure
beyond adjacent transition probabilities was further under-
scored by pioneering work from Schapiro and colleagues,
who drew a sequence of visual stimuli from a random walk
on a network while keeping all transition probabilities fixed
at a constant value [39]. The network contained three main
modules and the investigators observed that humans were
able to demarcate module boundaries from the temporal
stream, supported by neural activity in the hippocampus [40].

(c) Explicitly probing learnability of network
architectures

Following these important studies that provided initial sugges-
tions that humans were sensitive to a network architecture
guiding the statistics of their experiences, the field faced two
main challenges. First, an experimental paradigm was
needed that could provide an assessment of exactly how
much each relation (or edge) in the network was learned.
Like Shapiro et al. [39], Karuza and colleagues used a task in
which a stream of visual stimuli was constructed by traversing
a given network using a particular type of walk and in which
humans were given a cover task of detecting whether stimuli
were upright or rotated [41]. From the cover task, the investi-
gators were able to extract a reaction time for each transition
between two stimuli; from the type of walk (random, Eulerian
and Hamiltonian), the investigators were able to determine
that the manner in which the network was traversed impacted
human expectations. Second, the field needed a clear demon-
stration that human expectations could be manipulated
differently by different network architectures. Kahn and
colleagues studied human expectations derived from a
stream of stimuli drawn from a randomwalk on three different
network architectures (modular, lattice and random), and
showed that humans reacted with differential swiftness to
sequences constructed from each network type [42]. The
work also mapped the original context of visual stimuli
[6,39,41] to motor commands, thereby demonstrating that
network learning was robust across modalities.

(d) Hallmarks of network learning in humans
Throughout the existing literature, the human capacity to
acquire expectations about a network architecture underlying
a temporal stream of information is particularly marked by
the so-called cross-cluster surprisal [41]: humans react more
slowly to transitions between modules in a network than to
transitions within modules [6,30,41–43]. This finding suggests
that humans are able to infer the presence of higher dimen-
sional topological clusters within one-dimensional streams of
information. As a human behaviour, this effect on reaction
time is particularly striking in light of the fact that the transition
probabilities of all edges are identical, indicating that humans
must be sensitive to a meso-scale or global organization,
unfolding over long time scales within the information
stream. Perhaps even more strikingly, humans react more
swiftly when the stream of information is drawn from amodu-
lar network than when it is drawn from a lattice network
[42,43]. In turn, this behaviour suggests that humans find the
modular architecture relatively easy to learn, although it is as
yet unclear whether that ease is explained by innate knowledge
of certain graphical motifs [1], a flexible learning algorithm
[44–46], or constraints on the computational complexity of
associated cognitive processes [43,47]. The human response to
network-based temporal streams of information is remarkable
when we consider the mental computations that subserve it.
Neither the cross-cluster surprisal effect nor themodular-lattice
effect would be observed from simulated agents with optimal
rationality, who instead would accurately learn the transition
probabilities that are held constant across all edges and all
network architectures in these experiments.

(e) Building mental models of our world
To explain these curious, non-artificial (some would even say
non-optimal) features of humanbehaviour,we turn to the ques-
tion of exactly how humans buildmodels of their world.While
this question has been asked in different ways for millenia [48],
and fromwithin the discipline of psychology for decades [1,2],
here we focus on the specific question of how humans perceive
relational knowledge, building models of network archi-
tectures explaining transition probabilities of sequentially
experienced stimuli. We consider the relatively reasonable
hypothesis that humans seek to minimize both computational
resources and errors, which can be formalized by the free-
energy principle [43]. We then draw on a subfield of theoretical
physics known as statistical mechanics to stipulate amaximum
entropy (minimal complexity) solution, thereby blending prin-
ciples of thermodynamics and information theory. The formal
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mathematical model explains human behaviour by predicting
that humans perform a sort of fuzzy temporal integration,
which serves to strengthen their expectations of edges in local
clusters. Using this model, we can account for both the cross-
cluster surprisal effect and the modular-lattice effect in current
human experiments, and we can further predict human
responses to arbitrary network architectures [43]. In exercising
the model on simulated data, we expect that humans will be
able to learn information most swiftly and accurately on hier-
archically modular networks [49], a prediction that can
be directly tested in future experiments in both real and artifi-
cial learning systems [50]. But first, we turn to the biological
apparatus that allows network learning to occur.
Phil.Trans.R.Soc.B
375:20190323
3. Network constraints on interconnection
patterns in neural systems

As our professor sits down to their dishevelled desk to prepare
tomorrow’s lecture or discussion plan, they may or may not
consider the learning organ in the minds of their students.
That organ—the humanbrain—is a richly structured apparatus
that hasbeenbuilt tomodel theworld. Theacts of buildinghave
occurred slowly over evolutionary time scales, and are also
modulated within an organism’s lifetime by developmental
programmesaswell as theprevailing forcesof the local environ-
ment. As with any remarkably useful tool, there exists a
systematic map between the physical architecture of the brain
and the functions made possible by that architecture. This is
not to say that a single functioncanonlybe supportedoptimally
by a single structure [51,52], but instead to say that there exist
constraints on the class of structures that can or cannot support
a given function [53,54]. For example, the structure of synapses
between neurons in the nematode Caenorhabditis elegans allows
for motoric capabilities and mechanized action [55], while the
structure of primaryafferent connections in theDrosophilaolfac-
tory system explains odour lateralization behaviour [56].
Similarly, in the human, the connection pattern of white
matter tracts linking large-scale brain areas allows for infor-
mation flow between visual and motor cortices supporting
motor skill acquisition [57].While collating thesediscrete obser-
vations can be useful, it would arguably be more satisfying to
identify broad principles that can serve to parameterize the
relation between structure and function in neural systems.
Here, we briefly review the literature on the network structure
of neural systems, and the clear constraints upon it.

(a) Energy expenditure and metabolism
The brain evolves, develops and functions under constraints on
energy expenditure [58–60]. Early work noted that the shape of
neuronal arbours appears to be explained by a minimization
of wiring, which in turn minimizes the energy required for
synaptic communication in local neural circuits [61,62]. At res-
olutions larger than the subcellular scale, the principle of
wiring minimization also explains why the layout of ganglia
in the nematode nervous system requires the least total connec-
tion length out of 40 000 000 alternative layouts [63]. Wiring
minimizationmay be balanced by constraints that are topologi-
cal in nature; for example, early evidence in the rhesusmacaque
demonstrated that neural networks aremore similar to network
layouts that minimize the length of processing paths, rather
than the length of wires [64,65]. In a sparse network, processing
paths allow two units that are not directly connected to never-
theless communicate across a string of direct paths between
serially ordered intermediate units. Minimization of physical
lengths or of processing paths leads to a network topology
marked by (i) strong local clustering, supporting local proces-
sing and (ii) short average path lengths from any point in the
network to any other point, supporting global processing
[66]. The combination of local clustering and short path lengths
is consistent with existing models of small-worldness [67],
which in turn are associated with efficient communication in
many informational systems spanning technology [68], physics
[69], linguistics [70] and biology [23,71].

(b) Information processing and computation
It seems sensible to state that optimal information processing
requires both local and global components, but it is unclear
whether those two constraints are sufficient to produce ideal
neural systems [72,73]. Let us consider information trans-
mission as distinct from processing, and note that reasonable
architectures to support transmission are bipartite structures
[74–76], in which a set of network nodes are strongly and pre-
ferentially connected to another set of network nodes, but
nodes within a set are not connected to each other [77]. Such
bipartite connectivity is observed in neural networks across
C. elegans, Drosophila, the rhesus macaque, the mouse and the
human [78], and offers utility in predicting how the activity
of neural systems responds to perturbations [79]. Next, con-
sider the potential necessity for information broadcast and
receipt; these processes are best supported by core-periphery
architectures [80], in which a densely intra-connected set
of nodes (the core) extends connections to a sparsely intra-
connected set of nodes (the periphery). Core-periphery
organization is noted in the structural networks of neural sys-
tems across several species [78] as well as in functional brain
networks in humans [81–84], allowing for broadcast and
receipt functions [85], error prediction [86] and adaptation
during learning [87]. Together, small-world organization,
bipartitivity and core-periphery structure allow for a diverse
array of informational processes that could support the
function of neural systems as modellers of our world.

(c) Evolution, development, adaptation and learning
A key feature of neural systems that is not directly explained by
the constraints and structural motifs described thus far is their
capacity to evolve, develop and adapt. Evolutionary theory
suggests that such adaptibility is made possible by structural
modularity [88,89], which arises naturally in systems that
must satisfy different goals in a changing landscape [90,91].
Moreover, work in both evolutionary biology and evolutionary
computer science [92] suggests that hierarchical modularity—
the recursive composition of submodules—arises naturally in
these same systems when they evolve under constraints for
wiring minimization [93]. Hierarchical modularity has been
described as the generic architecture of complexity [54], and
is observed beyond the neurosciences, in metabolic, ecological
and gene regulatory networks, and in human-made systems,
such as large organizations and the Internet [93]. The current
structure of the human brain is a reflection of evolutionary
pressures to optimize neural function and constraints from
what other systems and capacities had already developed at
each stage of evolution; recent studies suggest that these
pressures and constraints naturally guide the system towards
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hierarchical modularity [93–98]. In the human brain, hierarch-
ical modularity has been noted in the structural networks
linking large-scale areas [65] and in functional networks
linking these same areas by shared information [99].

Fromapsychological perspective, hierarchicalmodularity is
a natural substrate for the separationof cognitive processes [100]
and a conduit for the specialization of function in distinct
volumes of neural tissue [101]. Yet, it is important to note that
not all of the specifics of the early ideas of cognitive or mental
modularity withstood the test of time or deeper scientific inves-
tigation [100–103]. Those early ideas have been altered and fine-
tuned in the light of new empirical data and the capacity to test
such theories across large cohorts, for example, in themore than
1000 humanswho participated in theHumanConnectome Pro-
ject [104,105]. A recent study used an author-topic model of
cognitive functions across 9208 experiments of 77 cognitive
tasks to demonstrate a strong spatial correspondence between
cognitive functions and brain network modules, suggesting
that each module performs a discrete cognitive function
[106]. A subsequent study further suggested that specific
brain regions tune the connectivity of their neighbouring
regions to be more modular while allowing for the integration
of task appropriate information across communities, in a
manner that facilitates cognitive performance [107]. Such
studies lend support to the notion that a map between cogni-
tive modularity and brain modularity does in fact exist, but
its specific form may be different from that postulated several
decades ago. The existence of such a map also suggests that
adaptible brain modules may support adaptible cognition.
Indeed, the predicted support of modularity for adaptibility
is particularly evident in recent work demonstrating that the
modules within functional brain networks flexibly reconfi-
gured over time in support of human learning [108–111],
planning and reasoning [112], and cognitive flexibility [113].
From a theoretical perspective, the relation between network
modularity and adaptible function can be understood in a
more mechanistic manner by considering the fact that network
architecture directly constrains the trajectories that a system can
take through the adaptation landscape [114].
4. Similarities in constraints, leading to
hierarchically modular networks

If the professor we have been following understood the archi-
tecture of the brain, would that understanding change how
they chose the content and structure of their lecture or discus-
sion plan? Most experts could describe, if asked, the direct
relations between any pair of the 15 concepts they chose to
cover in the class period. In other words, the expert could
see the topic as a fully connected graph if they wished; they
have all of the requisite knowledge. Yet, an expert can also
crystallize that fully connected graph into a sparse network
or spanning tree when they wish to use it, or to communicate
it; a fully connected network is unlikely to be particularly
useful or particularly easy to communicate or apprehend.
Which set of important links between ideas should be
chosen? Which are sufficient to find a path that connects any
pair of ideas in the domain? Should the network architecture
of knowledge to be transmitted and the network architecture
of the brain inform one another, and if so how and why?

The question brings to mind a passage from Aristotle’s
Metaphysics, where he considers precisely what happens to
the mind when it contemplates. He writes, ‘Mind thinks itself
because it shares the nature of the object of thought; for it
becomes an object of thought in coming into contact with
and thinking its objects, so that mind and object of thought
are the same.’ [115, p. 1072] While the notion that mind and
object of thought are the same might initially appear fanciful
and rather arcane, there are manymetaphors and research pro-
grammes that reflect the human intuition that there exists some
structural similarity in how we think about knowledge archi-
tecture and brain architecture. Moreover, emerging evidence
offers preliminary support for one candidate operationaliza-
tion of precisely the notion that mind and object of thought
are intimately connected [39,40,116–118]. When a mind is
shown relational knowledgewith a specified network architec-
ture, brain activity reflects that architecture in a particular
manner. Specifically, the pattern of activity in response to a
given item (network node) is similar to the pattern of activity
in response to another item (network node) to a degree dictated
by the topological distance between the items in the network
[117,118]. One could think of this form of representation as
one in which the brain represents the inter-item distance as a
particular type of relation encoded as a node itself in a labelled
graph. In fact, humans appear to organize conceptual knowl-
edge in the brain in a manner that is similar to how they
organize spatial knowledge [116], coding topological paths
akin to physical distances [40,117]. Suppose that this process
of producing patterns of activity whose relations match the
relations of the items they represent (or the parts of the
world theymodel) occurs consistently over a human’s lifetime,
and in fact also over the course of evolution; thenwhat architec-
turemightmost effectively underlie the active units to optimize
this process?
(a) Concordance between modeller and modelled
The terms reflect, model, process, represent and encode are dis-
tinct and can each separately help us to understand whether
andwhen themodeller and themodelled are somehow concor-
dant. Does a good apparatus display a form that reflects the
form of the material onwhich it works? Not always; the appar-
atus for Millikan and Fletcher’s 1909 oil-drop experiment has a
form far from that of the electron that it is meant to measure
[119]. Does a good modeller display a form that reflects the
form of the subject to bemodelled? Also not always; a 3D prin-
ter has a form unlike all of the models that it can build, barring
one (itself ). Does a representer display a form that reflects the
form of the represented? Sometimes; the form of a stationary
artist in Times Square or an actor in the West End is the same
as the form they represent (although for an alternative view
see [120]). Does a processor display a form that reflects the
form of the processed? Perhaps; very large scale integrated cir-
cuits in computer chips display hierarchically modular
structure [65,121], consistent with the structure of information
that the chips will represent, manipulate, and store [122]. Does
an encoder display a form that reflects the form of the encoded?
Efforts in the field of artificial neural networks are continuing
to develop architectures and models that can encode the
features (both categorical and non-categorical) of an image
across hierarchical layers of the neural network. In some
cases, the encoding in the artificial systemmaps to the structure
in the real image in an interpretable way [123]: for example, a
high-resolution feature is encoded in early layers and a
low-resolution feature is encoded in later layers [124–126].
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Broadly, across modelling, representing, processing and
encoding, the relation between the *er and the *ed can differ.
Thus, whether it is happenstance or meaningful that brains,
learnable networks and knowledge structures have modular
architecture depends upon the nature of the relation between
brain and knowledge. Much of the current thought in neuro-
science and psychology builds upon the notion that the
brain’s principal purpose is to model [127–134]. Thus, a discus-
sion of the architecture of the brain and the architecture of
knowledge would be impoverished without a discussion of
the relation (the act of modelling) that can formally link the
two. And notably, that relation remains to be clarified; decades
of prior work demonstrate that it is non-trivial to successfully
represent relational structure in neural systems [14,135–143].
Such representations may depend upon the nature of the
relations or the content being related, and may manifest dis-
tinctly in the scale accessible to fMRI compared to the scale
accessible to cellular imaging. Finally, such representations
may also differ across regions [118], being precise reflections
of the graph or more akin to a predicate logic.

(b) Correspondence by relation versus by shared
constraint

Does correspondence in architecture tell us something impor-
tant about the nature of modelling in the brain, thus offering
hints regarding explanations and mechanisms for knowledge
acquisition? There may exist multiple reasonable answers to
this question, and those answers might depend on the specific
brain area(s) whose architecture we are considering. Is the
given brain area (or the entire brain) a modeller, representer,
processor, encoder, or all of the above? First, note that to the
degree that the brain represents knowledge, correspondence
between the network structure of neural representations and
the network structure of object relations is perhaps expected
based on recent empirical studies [39,40,116–118] (although
note that further studies are needed that explicitly compare
the neural representations developed in response to different
network structures). Second, to the degree that the brain pro-
cesses information, correspondence between the network
structure of informational connections and the network struc-
ture of the information is also perhaps expected [65,121].
These two correspondences come about owing to the nature
of the functions represent (‘depict’, ‘constitute’, or ‘amount to’
[144]) and process (perform a series of mechanical or chemical
operations on something in order to change or preserve it
[144]). In both cases, a function can lead to a correspondence
in the architecture of the modelled and the modeller. But is
the reverse inference accurate? If a correspondence exists in
architecture between the modelled and the modeller, can
we conclude that the correspondence is owing to a functional
relation? Not necessarily. Perhaps the simplest counter
example is that a modeller can come into existence under
similar constraints to the modelled; in this case, the correspon-
dence in architecture is owing to shared constraints rather than
a functional relation.

(c) Concordant versus discordant constraints
Do there exist shared and divergent constraints on network
architecture in the brain and in knowledge (or in the reality
to which knowledge maps)? Both the world around us and
the world within us must obey the laws of physics, and
therefore exist under marked constraints on energy and ten-
dencies towards entropy. The pressures specifically for
wiring minimization—both to conserve energy and to remain
adaptable in a changing environment—are pervasive across
both natural and human-made systems from genetic regulat-
ory networks to the Internet [93]. Both the brain and the
world around it must maintain robustness over evolutionary
time scales, a constraint that could explain their shared modu-
lar structure [145], and the redundancy evident in distinct
elements serving similar functions within the network [146].
Yet the world and the human brain may not be constrained
by all of the same factors; while the human species (and there-
fore the human mind) must reproduce, must the world
reproduce? Or must knowledge reproduce? Moreover, knowl-
edge of theworld is not exactly the same as theworld itself, and
therefore the constraints that impinge on the nature of the
world might not always perfectly map onto the constraints
that impinge on the nature of knowledge. Any discordances
in constraints between knowledge networks and brain net-
works could explain differences in their architecture or
function. But perhaps more importantly, divergence between
cognitive constructs and neural instantiations could also
allow the two systems to function independently; perfect iso-
morphisms in the topology of two interconnected networks
induce system fragility and vulnerability to control.
5. Epistemological norms for analysing neural
and social epistemes

Are the constraints impinging upon a brain network or a
knowledge network relevant beyond a single individual? Cer-
tainly, there exists a distinction between individual knowledge
and collective knowledge, and a distinction between brain net-
works and social networks. While we grant the distinction
between these entities and the often different analytics required
to study them, their interdigitation is crucial to the advance-
ment of relevant scientific and philosophical inquiry. Here,
we extend the discussion of individual knowledge patterns
andpractices to relational and collective knowledge, in keeping
with the contemporary philosophical turn towards social epis-
temology [147,148] and network epistemology [149–151].
These fields take, as their point of departure, the recognition
that an individual knower cannot ultimately be isolated from
the social environments in which that knower is said to
know. Moreover, we extend the discussion of brain networks
to social networks, in keeping with the contemporary
neuroscientific turn towards social neuroscience [152] and
population neuroscience [153]. These fields recognize that indi-
vidual brain networks shape social networks [154], that social
ties in turn shape the brain [154], and that collective knowledge
can alter individual cognition, from attentional capacities and
memory processes to social perceptions and decisions [155].
We begin our interscale discussion with epistemology.

(a) An expanding epistemology
Traditional epistemology, as crystallized by reigning accounts
in twentieth-century analytic philosophy, makes some
assumptions that, while useful under certain conditions, are
no longer considered adequate to our epistemic realities.
These assumptions include that knowledge is (1) the purview
of an individual human (2) whose beliefs, intentions and
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propositional attitudes are a critical component of that knowl-
edge. Today, however, it is increasingly important—not to
mention useful—to recognize not only the presence of non-
human and/or machinic knowers [156,157] and the reality of
group or collective knowing [158,159], but what might be
called extended knowing [160] that traverses knowers of differ-
ent species, system dynamics and social structures. Such a
recognition necessitates, on the one hand, redefining knowl-
edge not as an individual human’s justified true belief [161]
but in a more generalizable sense as an evidentially supported
explanatory model of some elements of a system [149]. Given
the ways in which these models are shared, as well as
co-constructed, it is equally important to grapple with the
biases implicit in knowledge models in both organic [162]
and computational systems [163,164]. These various tasks of
revisioning epistemology are largely undertaken by the
recent subfields of network epistemology and social epi-
stemology. Building on social epistemology’s insights into
the constitutive effects of social relations, investments and
institutions on knowledge itself [147,165–167], network epis-
temology uses formal network theory to elucidate those
constitutive effects [148–150,168–170]. Together, network
and social epistemology provide a systems-level approach
to the processes of knowledge production, as well as the
structural limitations of those processes.

(b) From representation to network architecture
It is largely recognized, across epistemological literature and
the history of science, that knowledge neither resembles nor
represents, in the technical sense of these terms, things as
they are, but rather interprets and constructs things as they
are experienced [171–175]. Network epistemology reframes
knowledge as a practice of systemmodelling or network build-
ing. As such, it applies a new frame to classic epistemological
issues, including the nature of content and testimony [149],
consensus [168], communication structures [150], factionaliza-
tion [151], belief diffusion [148] and curiosity [9,10].
Understanding knowledge as an increasingly effective net-
work of ideas that models interconnections in the world
does not preclude standards of efficacy in knowledge network
construction or of elegance in the knowledge network architec-
ture, nor does it preclude standards of correctness in
knowledge network acquisition or of effectiveness in knowl-
edge network communication. Network epistemology simply
extends the epistemic systems under consideration and the
questions that can be asked of them. When defining epistemo-
logical norms within this framework, for example, it is
important not only to attend to structural characterizations,
but also functional and causal characterizations. That is, we
must ask, ‘What is the architecture of the network?’ but also
‘What is the function of the network’ and ‘What are its
causes?’ Such causes are not always perfectly explained by
the system’s function, but they can instead be explained by
other forces from the system’s environment. In computational,
collaborative systems, such as brains, computers and human
or non-human collectives, questions of function can be explain-
able as much by optimization requirements as by suboptimal
protocols [150,151].

(c) Model–modeller–modelled
Let us consider an operational distinction between modeller,
model and modelled in the context of our topic of interest.
Consider the ‘modeller’ to be that which models (e.g. the
brain), the ‘model’ to be that which the modeller makes (e.g.
the representation of knowledge that the brain produces) and
the ‘modelled’ to be that which is modelled by the modeller
(e.g. the information or knowledge present in the human
experience). If the brain is taken tomodel theworld, it is incum-
bent to identify the model–modeller–modelled relationship by
which it does so. On the one hand, the form of themodel, mod-
eller andmodelled may be the same; an example is the actor in
theWest End. Themodelled is Hamlet, themodeller is an actor,
and the model is the acted Hamlet. This type of modelling
brings to mind the following passage from Rosenblueth &
Wiener in their 1945 article in the journal Philosophy of Science:
‘That is, in a specific example, the best material model for a cat
is another, or preferably the same, cat.’ [176, p. 320] On the
other hand, the form of the model and modelled may be the
same, but the form of the modeller may be different; an
example is the 3D printer. The modelled is a tree and the
model is a tree, but the printer is in no way a tree. What is
the best way to categorize the brain, as it builds models of
the world by learning knowledge networks?

Any discordant constraints between the two systems might
lead us to posit that themodel–modeller–modelled relationship
that we are facing is of the second sort, wheremodeller is differ-
ent frommodel andmodelled. But let us consider for amoment
whether we see any evidence for the first sort, where model,
modeller and modelled are in some meaningful sense the
same. Consider that an optimal learning system (the brain)
has a modular architecture that allows it to adapt and change,
which is the fundamental essence of learning. And what is
the system learning? For a moment, let knowledge refer to the
knowledge network present in a single mind; it is a subgraph
of the Knowledge network extended across that individual’s
society, which is in turn a subgraph of theKnowledge network
present in the combined humanity of today and yesteryear. Col-
lective knowledge can be viewed as a complex system that also
must be able to adapt and change; whenwe find a new piece of
information, it must be possible to add it to the knowledge net-
work without rebuilding the system from scratch. Otherwise,
knowledge would not serve its purpose, which is to illuminate
the ‘veil interposed between reality and the eye of the [mind]’
[177], allowing humanity to interact with the world while not
perceiving it fully. To the degree that collective knowledge is
an adaptable complex system, itmust displaymodular architec-
ture for precisely the same reason that the brain displays
modular architecture. Thus, we have evidence for the first
type of model–modeller–modelled relationship.
(d) Systemic, network and modular bias
From the vantage point of social network epistemology,what is
known and reflected in a single brain or a network of brains, in
a single computational device or a network of computational
devices, will never be simply the result of immediate inter-
action with perceptions, bits, or data points, but always
also with structural limitations and sedimented frames
[171,178,179]. Knowledge that is created, shared and distribu-
ted across network systems will always reflect the history,
goals and limitations of those systems. This modular bias is
multi-dimensional and multi-vector. In additionally manifest-
ing evolutionary demands across time, modular bias will
manifest current and local demands on organic and inorganic
systems, as well as competing goals and epistemic factions.
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It will also evidence perspectival limitations, including but not
limited to inherited and/or algorithmic bias [180], stereotypes
[181], structured ignorance and other forms of epistemic injus-
tice [182]. To understand and address issues of modular bias in
knowledge network systems and synaptic communication
requires increasingly robust work in the politics of human
and artificial intelligence, particularly focused on social
equity and educational justice.
 .org/journal/rstb
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6. Pedagogical principles conducive to curious
thought

Developing a deeper understanding of the network architec-
tures of knowledge and knowledge-processing systems such
as the brain is of interest in its own right. More than a satisfy-
ing intellectual exercise, however, the acquisition of such
understanding has the potential to inform and transform
our learning environments. As an extension of the robust
educational literature exploring the relationship between
knowledge networks and social networks [183–187], we
posit the relationship between knowledge networks and
neural networks as a new pathway for individualizing, opti-
mizing and diversifying pedagogical techniques. Equipped
with this knowledge, for example, would our professor sit-
ting at their disheveled desk prepare a different sort of
lecture, discussion, or neither? How might we use the exist-
ing laboratory experiments in network learning [6,30,39–
43,49] to guide best practices in how to present or process
information in a way that empowers student learning? As a
start, we predict that a modular network architecture under-
lying information transmission will result in better learning
than random or lattice-like architecture, based on the swifter
human reaction times observed in visual perceptional learn-
ing and visual-motor learning tasks. This prediction could
be tested in classroom experiments where a lecture
is organized around a set of modularly related concepts
versus around a set of linearly related concepts. But beyond
the networks studied thus far (only 3 out of the possible
805 491 k-4 regular architectures of the 1014 15-node 30-edge
graphs), it is important to distill the optimally learnable
graph [49] and to ask whether it has a topology that is
common in language or in nature. Is the architecture of
the optimally learnable graph also the architecture of a
well-written paper or a well-written textbook that effectively
communicates networked knowledge to the reader [188]?

(a) Individualization of knowledge presentation
In exploring the network architectures supporting learnability,
we would be remiss if we did not ask, ‘Supporting learnability
forwhom, how, and inwhat contexts?’ In the search to calibrate
learnability to different systems, with their unique learning
capabilities and developmental trajectories, new queries are
incumbent. For example, do different humans prefer to learn
information on different graph architectures [43] specifically
because of their cognitive apparatus, which in turn is con-
strained by their underlying neural substrate [57,189]? If so,
would presenting information to humans in their preferred
architecture enhance learning? In experimental neuroscience,
it is increasingly clear that marked individual differences
exist in many types of learning and associated cognitive pro-
cesses, such as fear learning [190], social learning [191],
sensorimotor learning [192], language acquisition and proces-
sing [193], media multitasking [194] and executive functions
[195]. Moreover, it is clear that humans differ in their general
statistical learning capacities [196], as well as in their specific
network learning capacities [43]. Such different learning
capacities, strategies and preferences motivate a careful study
of the network architectures of knowledge that are most
easily acquired by a given person. Beyond neuro-typical
humans, it is possible that those with disabilities, disorders,
or other neuro-atypicalities could further benefit from indivi-
dualization of knowledge presentation. Such a benefit is
underscored by the fact that statistical learning as a general
mechanism serves as awindow into developmental disabilities
such as autism spectrum disorder, specific language impair-
ments, Williame’s syndrome and developmental dyslexia
[197]. Even more broadly, it is notable that differences and
dysfunctions of basic learning mechanisms accompany a
wide range of mental disorders including substance abuse,
depression and schizophrenia [198]. Future work could seek
to explain neuro-typical and neuro-atypical individual differ-
ences in network learning by assessing the trajectories of
adaptation that are possible from the underlying neural
network architecture [114].

(b) Exemplifying information-seeking
While we frequently learn from information that is presented
to us by an external agent whose goal is for us to acquire
knowledge, we often learn best when this process stimulates
or supervenes upon an internally driven search for infor-
mation [199–201]. But is this search innate, something we
know how to do without any training [202]? Or is it itself
learned as we watch our caretakers, our friends and our men-
tors exemplify curious search [200]? As a set of investigative
practices, curiosity is ultimately a tool. Just as animal and
human primates deploy hammers as physical tools
[203,204], so they use curious search as an intellectual tool.
In the context of pedagogy, we need to investigate how cur-
ious search can be both facilitated in students and
exemplified by instructors. Whether through lectures, group
discussions, hands-on activities, or student research, curiosity
can be motivated and modelled [9]. From a network learning
perspective, instructors can facilitate student curiosity via a
random walk search on the knowledge network (moving
from disconnected idea to disconnected idea), or a local
walk search on the knowledge network (moving from an
idea to a tightly related idea). Instructors can also exemplify
the richness of other walk topologies (reflecting other curious
typologies), such as a Levy walk in which the probability dis-
tribution of step-lengths is heavy-tailed [205]. On a flat
landscape, the Levy walk can create a small-world network
architecture [205]; by contrast, on the existing knowledge net-
work with a non-lattice topology, a Levy walk can create
other more nuanced structures [206,207]. By testing the effi-
cacy of different techniques for facilitating and exemplifying
patterns of curious thought, we can begin to build a peda-
gogy that more robustly encourages curiosity, thereby
increasing learnability and well-being [208].

(c) Curious practice as knowledge network building
What is the logical consequence of idiosyncratic information
seeking on knowledge networks unfolding over the time
scales of months and years? Preferences for seeking
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information along certain types of relations, or across specific
semantic or conceptual distances, will naturally lead to idio-
syncratic architectures of knowledge networks in individual
human minds [9]. For example, humans who prefer to close
triangles (if A is related to B, and B is related to C, then
they want to understand how A is related to C) will naturally
build a mesh-like knowledge network architecture. It is inter-
esting to ask whether such individual preferences for styles of
knowledge acquisition are evident today or across recent mil-
lenia. A recent historical study of the Greek, Latin, German,
French and English words for curiosity from Plutarch to
today demonstrated the existence of at least three key types
of curious practice, each characterized by a distinct kines-
thetic signature [209]. The busybody seeks disconnected bits
of information similar to trivia, the hunter seeks a specific
bit of information in a focused, linear search, and the dancer
seeks information in local neighbourhoods of knowledge
space intermixed with leaps (of analogical or other reasoning)
to distant knowledge spaces. Each kinesthetic signature
produces a distinct network architecture: respectively a net-
work with many disconnected components, a network with
chain-like architecture, and a network with local clustering
and long-distance connections, leading to small-world mod-
ular architectures [9,10]. Evidence from young children
learning the English language supports the notion that such
learning is most consistent with the last phenotype, being
pocked with gaps in knowledge that are later filled [210].
It would be interesting in future work to determine whether
different styles of gappy learning relate to different styles of
curiosity [211].
7. Conclusion
In this review, we considered the network architectures in both
knowledge and brain that support learning. We began by
reviewing thenetworkarchitecture of knowledge anddiscussed
empirical evidence from behavioural experiments in humans
that different sorts of network architectures are more or less
learnable. Then we reviewed the network architecture of the
brain, which supports that learning. We discussed similarities
and differences in constraints on network architectures in
these two systems. As is clear from the fact that the exposition
is pepperedwith questions,muchwork is still needed in empiri-
cal science and in philosophy separately. But perhaps the most
exciting prospects lie in interdigitating these two perspectives
toguide the field towardsaunitedunderstandingof the individ-
ual and collective mind and its relation to individual and
collective knowledge.
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