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ABSTRACT

Chemical similarity searching is a basic research
tool that can be used to find small molecules which
are similar in shape to known active molecules. De-
spite its popularity, the retrieval of local molecular
features that are critical to functional activity re-
lated to target binding often fails. To overcome this
limitation, we developed a novel machine learning-
based chemical binding similarity score by using var-
ious evolutionary relationships of binding targets.
The chemical similarity was defined by the proba-
bility of chemical compounds binding to identical
targets. Comprehensive and heterogeneous multi-
ple target-binding chemical data were integrated into
a paired data format and processed using multiple
classification similarity-learning models with vari-
ous levels of target evolutionary information. Encod-
ing evolutionary information to chemical compounds
through their binding targets substantially expanded
available chemical-target interaction data and sig-
nificantly improved model performance. The output
probability of our integrated model, referred to as en-
semble evolutionary chemical binding similarity (en-
sECBS), was effective for finding hidden chemical
relationships. The developed method can serve as a
novel chemical similarity tool that uses evolutionarily
conserved target binding information.

INTRODUCTION

Most chemical similarity scores consider the overall struc-
tural similarity based on predefined and equally weighted
structural features (i.e., molecular fingerprints) (1–3). Al-
though these methods have been widely used to search for
similar compounds owing to their fast processing speed and
ease of use (4–7), the simplicity often hinders the detection
of meaningful hits where only a few chemical features are
important for target-binding (6,8,9).

Machine-learning methods have been extensively studied
in the field of cheminformatics. Many sophisticated mod-
els have been proposed using quantitative structure–activity
relationship (QSAR) data for consideration of complex
target-binding molecular features and have been success-
fully applied to many biological areas (4,9–12). QSAR mod-
els are usually built on active and non-active compound sets
defined for a target protein, and the models have been ef-
fective for extracting important spatial features, despite the
two-dimensional nature of some molecular descriptors (13).
However, even with the advantages of QSAR methods, the
pairwise molecular relationships cannot be defined because
they are mostly limited to a predefined target and it is diffi-
cult to consider multiple chemical-target relationships.

Similarity-learning techniques provide context-
dependent pairwise similarity measures using machine-
learning methods (14–16). Similar to other classification
problems, paired data sets are labeled as similar or dissimi-
lar and used to build a model or function which can decide
if new paired data is similar. Metric learning and classi-
fication similarity-learning are two common approaches
that are used to address the similarity-learning problem.
Metric-learning techniques focus their attention on learn-
ing a similarity measure that satisfies the mathematical
properties of a metric distance (17), whereas classification
similarity-learning techniques produce a score, rather than
a metric, that effectively classifies similar/dissimilar objects
(16,18). Classification similarity-learning is particularly
useful when the overall objective is to rank data according
to similarity relationship and the metric properties are not
strictly required to output similarity scores (14).

In our previous study, classification similarity-learning
was applied to small molecule drugs and showed promising
results with regards to finding unknown drug-target interac-
tions and novel pharmacological effects (11). However, de-
spite the initial success, many key issues such as insufficient
chemical-target binding data, unlabeled chemical-target in-
teractions, ambiguous target relationships, and lack of
general-purpose chemical similarity remain unsolved.

Herein, we present a novel evolutionary chemical binding
similarity (ECBS) method using a classification similarity-
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learning framework defined with paired chemical data and
target’s evolutionary relationship (Figure 1). The ECBS
method is designed to encode molecular features enriched in
evolutionarily conserved chemical-target binding relation-
ships, and formulated by the likelihood of chemical com-
pounds binding to identical targets. The inclusion of evolu-
tionary information linked to chemical compounds through
their binding targets (Figure 1A and B) is a unique property
of the ECBS method that enables substantial expansion of
available chemical-target interaction data, contributing to
significant improvement of model performance. Details re-
garding the model construction and performance evalua-
tion are described in the following sections.

MATERIALS AND METHODS

Collection of chemical-target binding data

Chemical structures and target-binding information were
collected from the DrugBank (19) and BindingDB (20)
databases. In the DrugBank database, drug-target interac-
tion data (28 July 2017) were retrieved only for ‘polypeptide’
targets and used to obtain Structure Data Format (SDF)
files for the drugs. In the BindingDB database, the 2D SDF
file was downloaded (BindingDB All terse 2D 2018m3.sdf
updated on 1 April 2018) and parsed to obtain binding
affinity data represented by Ki, IC50, Kd and EC50 values.
To exclude low-affinity promiscuous binding, interactions
were considered only when the affinity determined by any of
the measurements was below 100 nM. As a result, the total
number of small molecules, targets, and interactions were
6671, 4283 and 16 587 in DrugBank, and 587 693, 5425 and
1 018 895 in BindingDB, respectively. The two databases
were integrated after removing redundant small molecules
by comparing InChIKey (21) for the construction of target-
specific ECBS models.

Definition of evolutionarily related chemical pairs

Homologous target proteins usually have evolutionarily
conserved ligand binding sites and perform similar biologi-
cal functions (22). In the present study, it is assumed that
the structural and functional similarity between homolo-
gous proteins can be transferred to their binding chemical
compounds because they are likely to share common three-
dimensional (3D) pharmacophore features to bind similar
structural environments in the conserved pocket (23). Ac-
cordingly, the chemical compounds that bind identical or
homologous targets are considered as ‘evolutionarily re-
lated’, and the chemical pairs which have a common evo-
lutionary target, domain, family, or superfamily annotation
in their binding targets are defined as ‘evolutionarily related
chemical pairs’ (ERCPs) (Figure 1A). The evolutionary in-
formation of targets can vary according to the definition of
homology between targets.

Multiple annotations of evolutionary information to target
genes

To avoid mislabeling in proteomic-scale evolutionary an-
notations for target genes, we incorporated evolutionary

motif, domain, family and superfamily information de-
fined in highly qualified and curated protein databases. The
databases used in this study were UniProtKB (24), PFAM
(25), SMART (26), PRINT (27), Gene3D (28), TIGRFAM
(29), FAMILY (30) and SUPERFAMILY (30). Identifiers
for target genes were unified by UniProtKB entry name. The
InterPro (31) database (protein2ipr.dat) was used to map
UniProtKB entry names to the protein databases.

The Superfamily (1.75) server provided hidden Markov
models (HMMs) pre-built for 2478 sequenced genomes,
which enabled flexible structural protein domain anno-
tation for the target genes using the SCOP family and
superfamily ID. The HMM library (http://supfam.org/
SUPERFAMILY/downloads/license/supfam-local-1.75/)
in the Superfamily database was applied to all target
sequences using the script ‘superfamily.pl’ (downloaded
from the Superfamily server) with default options to
annotate family and superfamily-level description to
targets. In summary, target genes were annotated by
diverse evolutionary information such as a sequence-based
motif, domain, family, and structure-based family and
superfamily information.

Feature vector generation for representing a chemical pair

Structural information (formatted by the SDF file) for each
chemical compound was converted to chemical binary fin-
gerprints using ChemmineR and ChemmineOB cheminfor-
matics packages in R (32). A fingerprint is a collection of
predefined features regarding a local fragment found within
a structure and is typically represented by a bit-string where
1 and 0 indicate ‘existence’ and ‘absence’ of each feature.
MACCS (256 bits) and FP4 (512 bits) fingerprints avail-
able in the ChemmineOB package were concatenated to rep-
resent each chemical compound using a 768-bit numeric
vector. The fingerprints with empty values for all drugs
in DrugBank were discarded to reduce the dimension of
feature space, which eventually generated a 386-bit feature
vector representing an individual chemical compound. The
feature vector for a chemical pair was subsequently gen-
erated by element-wise summation of the chemical finger-
prints as follows.

Vi j = Vji = Vi + Vj ,

where Vi is a fingerprint for chemical i and Vj for chemical
j.

The element-wise summation of Vi and Vj generated Vij,
a feature vector for a chemical pair, where the elements 0,
1 and 2 indicate ‘none’, ‘different’, and ‘common’ features,
respectively.

Classification similarity-learning for modeling chemical
binding similarity

The collected chemical pair, target, and evolutionary data
(Figure 1A) were used to build ECBS models by classifica-
tion similarity-learning. Specifically, an ECBS model was
designed to classify ERCPs from ‘unrelated chemical pairs’
and so the output value by the ECBS model represented a
chemical similarity score prioritizing the selection of ER-
CPs. The model was trained as follows:

http://supfam.org/SUPERFAMILY/downloads/license/supfam-local-1.75/
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Figure 1. Overview of evolutionary chemical binding similarity (ECBS) method. (A) The simplified chemical-target-evolutionary relationship is used as
an example for a schematic description of different ECBS models. The ‘C’ in the first layer means a chemical compound, the ‘T’ means a target, and the
‘F’ represents arbitrary evolutionary information (e.g. family). The C-T connection is defined by the direct binding between C and T, and T-F is defined
by the evolutionary class information F of the target T. The chemical pairs are classified based on the evolutionary relationship of binding targets. For
example, C1–C2, C3–C4 and C5–C6 are evolutionarily related chemical pairs (ERCPs) by the common binding targets, and C1–C3, C1–C4, C2–C3 and
C2–C4 are also ERCPs defined by F1. The other unrelated chemical pairs are considered as negative data. (B) The conceptual classification scheme for
different ECBS models is depicted using the example in (A). In the QSAR-like model, active molecules are defined for the target T1 and the classification
model (dotted line) clusters them together in chemical feature space. In the Target-ECBS model, the ERCPs defined by the multiple targets (T1, T2 and T3)
will be clustered by the model, but the ERCPs by T1 and T2 are likely to have closer distances in chemical feature space because of the similar molecular
features for binding to the evolutionarily conserved binding pocket defined by F1. On the other hand, the Family-ECBS model starts to consider the ERCPs
defined by evolutionary information of the targets (chemical pairs in the green background). These additional ERCPs will make an enhancement effect to
locate the F1-related chemical compounds in close proximity by presenting evolutionarily conserved features more evidently. The TS-Family-ECBS model
is a target-specific Family-ECBS model that only considers the ERCPs defined from the targets evolutionarily related to the predefined target T1 (square
box). Therefore, the model construction procedure is identical to the Family-ECBS model except that C5–C6 is excluded because the target T3 has no
evolutionary relationship to T1 or T2. Compared to the target-specific model, the Target-ECBS and Family-ECBS are categorized as a unified model,
because it considers multiple and heterogeneous chemical-target binding information altogether.

Training data: {V11, V12, V13, . . . , Vnm}, where Vnm is a
feature vector for a chemical pair consisted of Vn and Vm.

The data label lnm for Vnm is defined as follows:

lnm =
{

1 (positive data) if EVX(Vn) = EVX(Vm)
0 (negative data) otherwise ,

where EVX(Vn) represents an evolutionary annotation X for
the targets of a chemical compound Vn. Accordingly, the
data label can be defined in many different ways according
to the evolutionary information used to train ECBS models.
For example, in the Target-ECBS model (Figure 1B), ER-
CPs (positive data) are defined by the identity of binding
targets, whereas in Family-ECBS model, ERCPs are defined
by the chemicals that have common ‘Family’ annotation in
the binding targets.

Target-specific ECBS model is designed to overcome the
data size limitation of the unified ECBS model. The model

requires a predefined target (e.g. T1 for TS-Family-ECBS in
Figure 1B) and the positive data (ERCPs) are only defined
for the targets evolutionarily related to the predefined tar-
get. Thus, in the target-specific model, for a given target T,
the label lnm for Vnm is defined as follows:

lnm =
{

1 (positive data) if EVX(Vn ) = EVX(Vm), EVX(Vn ) ∩ EVX(Vm) � T

0 (negative data) otherwise
,

where EVX(Vn) ∩ EVX(Vm) � T means that the predefined
target T should have the common evolutionary annota-
tion X for the targets of a chemical compound Vn and
Vm. Schematic model description for each ECBS variant is
shown in Figure 1. Details are in the Results section.

Sampling unrelated chemical pairs

Sampling negative data can be important to determine
the model quality (33,34), because the current chemical-
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target binding data is highly imbalanced, with much larger
amounts of unrelated chemical pairs (negative data). Thus,
a procedure for sampling unrelated chemical pairs was de-
signed to balance with the positive data (ERCPs) and to
avoid possible overfitting towards the abundant negative
data.

Specifically, six negative chemical pairs for each positive
pair were generated by sampling chemical pairs which are
structurally similar but evolutionarily unrelated to the pos-
itive pair. The chemical database was first scanned to find
chemical compounds structurally similar but evolutionar-
ily unrelated to a positive chemical pair Pa–Pb. Next, three
molecules (Na1, Na2 and Na3) most similar to Pa were paired
with Pb, resulting in three negative chemical pairs Pb–Na1,
Pb–Na2 and Pb–Na2. An identical procedure for Pb gen-
erated another three negative chemical pairs Pa–Nb1, Pa–
Nb2 and Pa–Nb2. The generated negative data were excluded
if 2D structure similarity was too high (Tanimoto coefficient
> 0.85) or evolutionarily related by at least one of the evo-
lutionary databases.

Random forest classifier for ECBS model generation

Various machine learning techniques have been successfully
applied in bio- and cheminformatics. However, in this study,
available methods were limited because a large amount of
paired chemical data (positive pairs: NC2 + negative pairs:
6 x NC2) hindered efficient parameter tuning and model
training. Therefore, we chose to use ‘ranger’, a fast im-
plementation of random forest classifier, because it fea-
tures less-adjustable parameters, fast runtime, and efficient
memory usage particularly suited for high-dimensional data
(35). For training the ECBS models, ranger parameters were
set with the following options: num.trees = 200 or 500,
save.memory = TRUE, and down-weighting negative sam-
ples by 0.35 with the case.weights option. Feature vectors for
ERCPs (positive data) and unrelated pairs (negative data)
were generated and trained to predict the data labels accord-
ing to different evolutionary information of target genes,
each of which resulted in X-ECBS model where X repre-
sented arbitrary evolutionary information used to train the
model.

Generation of an ensemble ECBS model

An ensemble ECBS (ensECBS) classifier integrating all X-
ECBS models was built by ranger package based on the out-
put scores from the individual X-ECBS models (Figure 2).
The ensemble model was trained as follows:

Training data: {X1-ECBSnm, X2-ECBSnm,..., Xj-
ECBSnm}, where Xj-ECBSnm represents a similarity
score for a chemical pair Vn and Vm calculated by the Xj-
ECBS model trained by evolutionary information Xj. The
label lnm for a chemical pair Vn and Vm is defined as follows:

lnm =
{

1 (positive data) if EVTarget(Vn) = EVTarget(Vm)
0 (negative data) otherwise

where EVTarget(Vn) represents a target identity for a chemi-
cal compound Vn.

The predicted scores for the cross-validation test set by
each X-ECBS model were used to train the ensECBS model.

Figure 2. The model structure of the ensemble ECBS model. An input
chemical pair is scored by the individual X-ECBS models defined by dif-
ferent evolutionary relationship (‘X’ represents target, domain, family, and
superfamily in this case). The scores from all X-ECBS models are inte-
grated by the ensemble model to generate a final chemical binding similar-
ity score.

Specifically, all the test scores from the cross-validation pro-
cedures were combined and split into five sets. One set (20%)
was only used to train the model to avoid possible overfit-
ting problem, and the rest (80%) was tested for model vali-
dation. The procedure was repeated five times with the iden-
tical ranger parameters used to train X-ECBS models. Fur-
thermore, the trained model was further validated with an-
other independently generated dataset (test set generation is
described in the following section). The test results for the
cross-validation set and the independent set were used to
estimate the prediction performance of the ensemble ECBS
models (Table 1). To check the robustness of the ensemble
models, the whole test procedure was repeated 100 times
and the stability of the model performance was confirmed
(Supplementary Figure S1).

The target-specific ensemble model (TS-ensECBS) inte-
grating all target-specific ECBS (TS-X-ECBS) and unified
ECBS (X-ECBS) models was built (Supplementary Figure
S2) and tested in the same manner. One difference was that
the TS-ensECBS model included additional data size infor-
mation into the training data to reduce target-specific bias.
The training data for a given target T were defined as fol-
lows.

Training data: {TS-X1-ECBSnm,...,TS-Xi-
ECBSnm, X1size,...,Xisize, X1-ECBSnm,...,Xj-ECBSnm},
where TS-Xi-ECBSnm represents a similarity score for a
chemical pair Vn and Vm calculated by the TS-Xi-ECBS
model built for a target T, Xisize represents a trained data
size of the TS-Xi-ECBS model, and Xj-ECBSnm represents
a similarity score for a chemical pair Vn and Vm calculated
by the unified Xj-ECBS model.

The inclusion of the amount of evolutionary information
(Xisize) in the feature vector was to down weight the scores
calculated by the TS-X-ECBS models which were built on
a very small amount of evolutionary data. Each type of
evolutionary information contributed very differently to the
model’s accuracy, which correlated to the amount of avail-
able information in the training dataset (Supplementary
Figure S3). The output scores (Xj-ECBSnm) from the uni-
fied X-ECBS models were included to compensate for pos-
sible defects of the TS-X-ECBS models caused by the lim-
ited usage of chemical-target binding information (See the
Results section for a comparison between the target-specific
and unified model).
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Table 1. Summary of ECBS model performance according to different model type and test set

Test set Cross-validation set Independent set

Performance (AUC) PR ROC PR ROC

Ensemble models TS-ensECBS 0.8555 0.9672 0.8181 0.9316
(avg. TS-X-ECBS*) (0.7013) (0.9337) (0.5962) (0.8169)
ensECBS 0.6964 0.8872 0.7704 0.8895
(avg. X-ECBS*) (0.6545) (0.8778) (0.7350) (0.9064)

Single evolutionary models Target-ECBS+ 0.5609 0.8086 0.7307 0.8839
Pfam-ECBS 0.5891 0.8331 0.6909 0.888
Family-ECBS 0.6487 0.8762 0.7026 0.8979
Superfamily-ECBS 0.6438 0.8745 0.6937 0.8915
TS-Target-ECBS 0.6663 0.9047 0.5332 0.7536
TS-Pfam-ECBS 0.6904 0.9281 0.4396 0.6930
TS-Family-ECBS 0.6933 0.9305 0.4088 0.6319
TS-Superfamily-ECBS 0.5689 0.8604 0.4011 0.6787
TS-SMART-ECBS 0.6086 0.8557 0.4600 0.7355
TS-PRINT-ECBS 0.6083 0.8558 0.4423 0.7002
TS-TIGR-ECBS 0.3465 0.6875 0.3095 0.6329
TS-Gene3D-ECBS 0.4950 0.8069 0.4049 0.6740

Ligand-based structure similarity LIGSIFT (ShapeSim) 0.2187 0.5604 0.3733 0.6135
LIGSIFT (ChemSim) 0.2204 0.5571 0.3794 0.6178
Lisica (2D) 0.3314 0.6500 0.5395 0.7437
Lisica (3D) 0.3244 0.6490 0.5534 0.7531
2D structure similarity 0.2537 0.5716 0.4865 0.7225

*All single ECBS scores are averaged to compare with the ensemble models.
+Reference original method, Park et al. (2011).

Cross-validation test set for evaluating ECBS models

A test chemical pair dataset was generated by splitting all
binding targets into 12 sets. Among them, 11 sets were used
to train the model, and the remaining one was used to vali-
date model performance (12-fold cross-validation). For ex-
ample, in Figure 3, a target T1 is selected as a test set, so
the chemical pair C1–C2 (dotted line in Figure 3A) which
commonly binds to T1 is assumed to be unknown (test
chemical pair). On the other hand, the other chemicals such
as C3, C4, C5 and C6 are used to train ECBS models by
defining ERCPs (Figure 3B) based on the chemical-target-
evolutionary relationships in Figure 3A.

According to the model type and definition of evolution-
ary information (Figure 1B), each ECBS model differently
uses the chemical-target-evolutionary relationships in the
training procedure. For instance, Target-ECBS only con-
siders C3–C4 (by T3) and C5–C6 (by T4) as positive data
(ERCP) for training, whereas Family-ECBS additionally
considers C2–C3 and C2–C4 as positive data by F1 family
annotation (Figure 3B). On the other hand, target-specific
(TS-) ECBS models only consider the targets evolutionarily
related to the predefined target T1 to define ERCPs, which
is why TS-Target-ECBS for T1 only uses C3–C4 as positive
data without C5–C6. The negative data are generated by
sampling the chemical pairs which are structurally similar
but evolutionarily unrelated to the corresponding ERCPs.

The cross-validation by splitting targets instead of chem-
ical pairs was to test the effectiveness of evolutionary infor-
mation by assuming that all direct chemical binding infor-
mation for a test target is unknown. Without direct target
binding information, chemical similarity scores will be esti-
mated only through the indirect evolutionary information,
which is very hard to achieve by traditional QSAR methods.

Figure 3. Cross-validation test set for evaluating the ECBS models (A) The
simplified chemical-target-evolutionary relationships similar to Figure 1A
are defined to schematically show how the ECBS models are differently
trained and how the test chemical pairs are generated by splitting the tar-
get set. For clarity, the ERCPs (positive data in training) and their rela-
tionships are also represented by a network where the blue edge represents
the ECRPs defined by target identity, the green edge represents the ER-
CPs defined by evolutionary information F1, and the dotted edge is the
test chemical pair. Arbitrary unrelated chemical pairs (negative data) are
shown by grey nodes and edges. (B) For the cross-validation, binding tar-
gets are split into test and training set (1:11). In the example where T1 is
selected as the test target, all ERCPs defined by T1 (i.e. C1–C2) are con-
sidered as a blind test set common for all ECBS models. To predict the test
data, each ECBS model differently organizes the training set by the dif-
ferent definition of ECRPs (Figure 1B). For example, Target-ECBS only
considers C3–C4 and C5–C6 as ECRPs, whereas Family-ECBS addition-
ally considers C2–C3 and C2–C4 through the F1 information. On the other
hand, the target-specific models exclude C5–C6 in the training set because
T4 is not annotated by F1.
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Independent test set for evaluating ECBS models

Another test set was independently generated by using
drug-target binding data recently updated in DrugBank.
The newly updated data in the file downloaded in Decem-
ber 2018 (the previous version was retrieved in July 2017)
included 360 drugs, 202 targets, and 915 drug-target inter-
actions. Among them, only the targets whose TS-X-ECBS
model was built with more than two chemical compounds
were considered for comparison. As a result, the indepen-
dent test set contained 1538 ERCPs defined by target iden-
tity (positive data). The fourfold unrelated chemical pairs
(negative data) were generated in the same way used to build
the cross-validation set. Any redundant chemical pairs to
the cross-validation or training set were deleted from the
test set.

Performance evaluation by precision-recall curve

Area under the curve (AUC) values in precision-recall (PR)
and receiver operating characteristic (ROC) curves were cal-
culated to estimate the prediction performance. It is well-
known that the ROC (true positive rate vs. false positive
rate) is inappropriate to test highly imbalanced data with a
much higher amount of negative samples, because the false
positive rate is significantly affected by high true negative
(TN) values. However, the PR curve is negligibly affected
by a large number of negative samples, because precision
depends on the true positive (TP) and false positive (FP)
values (36).

Precision = TP
TP + FP

Recall = TP
TP + FN

The higher sensitivity of the PR curve towards posi-
tive samples makes it more suitable for the evaluation of
model performance by focusing on positive samples. The
‘PRROC’ R package was used to calculate AUC values in
the PR and ROC curves (37).

Chemical structure similarity

The 386-bit fingerprint representing a chemical pair was
identically used to calculate 2D chemical structure similar-
ity using the Tanimoto coefficient (i.e. ratio of intersection-
bits over union-bits). LiSiCA (Ligand Similarity using
Clique Algorithm) (38) and LIGSIFT (39) were used with
default options to calculate conformational ligand shape
similarity. Because both methods are sensitive to 3D confor-
mations of chemical structures, conformers for each chem-
ical compound were generated using BEST method in Dis-
covery Studio software (Dassault Systemes BIOVIA, Dis-
covery Studio Modeling Environment, Release 4.5, 2015)
with default options (RMSD cut-off: 0.2 Å). At the same
time, the energy-minimized structure by CHARMm force
field was also obtained for each compound. For a chem-
ical pair Vn and Vm, the low energy 50 conformers of
Vn were compared to the energy-minimized structure of
Vm by LIGSIFT and LiSiCA, and the maximum value was

considered as a representative similarity score for the chem-
ical pair. For LIGSIFT, ShapeSim and ChemSim scores
were used to calculate similarity scores, and for LiSiCA, 2D
and 3D options were separately applied with -d option.

Virtual screening by ECBS and in vitro kinase binding assay

To screen new inhibitory chemical compounds for
serine/arginine protein kinase 1 (SRPK1) and SRPK2, we
used the TS-ensECBS models built for the targets to screen
MarinLit (40) and Maybridge chemical database (screening
collection). The ECBS scores between all chemicals in the
database and NCC007 (41) were calculated using the
respective TS-ensECBS model. The NCC007 is a recently
found chemical compound initially discovered to have dual
inhibition activities for casein kinase I� (CKI�) and I�
(CKI�) but also show unexpected inhibition for SRPK1
and SRPK2 (41). The candidate molecules most similar to
NCC007 by the ECBS scores were retrieved and tested by
in vitro kinase binding assay.

The KINOMEscan kinase assay provided by DiscoverX
was used to measure competitive binding strength of the
candidate molecules for SRPK1 and SRPK2. In the assay,
high-affinity chemical compounds that prevent SRPK bind-
ing to the immobilized ligand reduce the amount of SRPK
on the solid support, whereas low-affinity compounds have
no effect. Thus, a higher percentage of SRPK dissociated
from the immobilized ligand implies higher binding affinity.
Details for the assay is described on the company website.

RESULTS

The underlying principle of evolutionary chemical binding
similarity

In general, machine learning-based classification is de-
signed to transform labeled samples originally located in
a hardly-distinguishable feature space into a more clearly-
separable space by adjusting the sample distances according
to classification boundaries (14,42). Similarly, well-trained
classification similarity-learning models should maintain
close distances between identically labeled (similar) sam-
ples compared to those of differently labeled (dissimi-
lar) samples by extracting effective distinguishing features
(14,43). Moreover, formulation of similarity in a classifica-
tion similarity-learning framework should allow a group of
samples sharing common critical features to be clustered
together at close distances in a transformed feature space
even for mislabeled or weakly related samples (16,44). In
the present study, the intrinsic property of classification
similarity-learning was used to define target-centric chemi-
cal binding similarity.

We implemented the classification similarity-learning
models in various formats according to the input data
type, model type, and evolutionary information (Figure
1B). The details of different ECBS models will be discussed
with the simplified chemical-target-evolutionary relation-
ships shown in Figure 1A. In addition, the schematic figure
is shown together for each ECBS model (Figure 1B) to rep-
resent how the classification similarity-learning conceptu-
ally works for the chemical pairs to calculate ECBS scores.
In Figure 1A, the chemical-target relationship is defined by
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direct binding and the target-evolutionary relationship by
annotated groups of homologous targets that have a com-
mon ancestry. Because of the diverse definition of evolu-
tionary information, multiple ECBS models were built and
labeled as X-ECBS model, where X represented arbitrary
evolutionary information used to train the model.

QSAR-like

A QSAR model is typically built by collecting active and
inactive chemical compounds for a predefined target. The
activity can be determined by either phenotypic profile or
direct target-binding, and the classification model is con-
structed to prioritize active compounds sharing pharma-
cophore features for the target. Thus, the resulting QSAR
model is expected to group the active compounds together
in chemical feature space (Figure 1B). The input data type
of QASR model is a set of chemical compounds, and the
model is built for a predefined single target (i.e. target-
specific) without consideration of evolutionary informa-
tion.

Target-ECBS

In contrast to QSAR models, the input data type of all
ECBS models are chemical pairs required to apply clas-
sification similarity-learning. In the ECBS models, chem-
ical pairs are categorized into positive and negative pairs,
where the former represents ERCPs that bind either iden-
tical or evolutionarily related target, and the latter repre-
sents evolutionarily unrelated chemical pairs. The Target-
ECBS model defines the positive pairs only by target iden-
tity. For example, in Figure 1A, the chemical pairs, C1–C2
(by T1), C3–C4 (by T2) and C5–C6 (by T3) are consid-
ered as positive pairs and are likely to be grouped together
in arbitrary feature space by the classification similarity-
learning model. Because target T1 and T2 are evolutionarily
related by F1 (family-level annotation), C1–C2 and C3–C4
will likely share evolutionarily conserved molecular features
necessary for target binding, and thus, it should be straight-
forward for a similarity-learning classifier to cluster C1, C2,
C3 and C4 in close proximity (Figure 1B). The C5–C6 de-
fined by T3 will be clustered by themselves in isolated fea-
ture space with coupled negative data. As a result, chemical
compounds from T1 and T2, and those from T3, respec-
tively, will have high chemical binding similarity.

Accordingly, the Target-ECBS model can consider mul-
tiple targets at the same time through the unified classifi-
cation similarity-learning framework, which ‘intrinsically’
reveals hidden ERCPs such as C1–C3, C1–C4, C2–C3 and
C2–C4 without specifying F1 information (target identity is
the only information used to train the model). The Target-
ECBS model is used as a reference method to test the effec-
tiveness of evolutionary information.

Family-ECBS

The Family-ECBS model starts to explicitly consider evolu-
tionary information to estimate chemical binding similarity.
In Figure 1A, the chemical pairs defined by evolutionarily
related targets are C1–C3, C1–C4, C2–C3 and C2–C4 (by

F1). Because the Family-ECBS model uses Family infor-
mation to define ERCPs, the four chemical pairs are addi-
tionally considered as positives (shown in the green back-
ground in Figure 1B), which results in bigger cluster con-
sisted of all F1-related chemical compounds by the classifi-
cation similarity-learning model. Thus, the additional ER-
CPs defined by Family information are expected to reinforce
the clustering effect in chemical feature space by presenting
conserved molecular features for target-binding more evi-
dently and by enriching the chemical-target binding infor-
mation at multiple levels of evolutionary information. The
ERCPs in Figure 1B (C1–C3, C1–C4, C2–C3 and C2–C4)
are likely to share an abstract form of evolutionarily con-
served molecular features, and this additional information
can be useful to improve ECBS model performance when
combined with the target-based molecular features.

TS-Family-ECBS

The TS-Family-ECBS model is a target-specific Family-
ECBS model where positive chemical pairs are defined only
from the targets evolutionarily related to a predefined tar-
get. For example, in Figure 1A where T1 is specified as the
predefined target, the TS-Family-ECBS model only defines
the chemical pairs evolutionarily related to T1 as ERCPs.
Thus, all the chemical pairs defined by C1, C2, C3 and C4
are considered as ERCPs by target (T1, T2) or family (F1)
but C5–C6 is excluded.

Although the TS-Family-ECBS model is target-specific,
it is still applicable to the case that chemical binding infor-
mation for a predefined target is completely unknown be-
cause ERCPs can be also defined from evolutionarily re-
lated targets (e.g. C3–C4 by T2). The strengths and weak-
ness of the unified (X-ECBS) and target-specific (TS-X-
ECBS) models will be discussed in the following section.

The unified and target-specific ECBS models

All X-ECBS models were based on drug-target binding in-
formation in DrugBank because incorporating BindingDB
data caused a practical memory problem during the model
training procedure due to the quadratic growth of the paired
chemical data. The number of available chemical-target in-
teractions in DrugBank was 16 587 but increased to 1 018
895 by combining with BindingDB (ca. 60-fold increase).
The big chemical dataset was not well tolerated by the uni-
fied X-ECBS models, and so the target-specific X-ECBS
(TS-X-ECBS) model was proposed to overcome the data
size limitation.

Because the TS-X-ECBS models were built for a subset
of targets, the ERCP data size could be significantly re-
duced without losing a lot of information regarding po-
tentially related chemical pairs, and so the incorporation
of BindingDB data became feasible. Plenty of chemical-
target binding data for natural products and synthetic com-
pounds in BindingDB other than drugs (45) was expected
to improve the performance of ECBS models. Moreover,
because of the reduced training data size, supplementary
evolutionary information defined by SMART (26), PRINT
(27), Gene3D (28), and TIGRFAM (29), could be adopted
to maximize the use of evolutionary relationship data and
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diversify target-specific evolutionary information in addi-
tion to the PFAM, Family and Superfamily information.
However, the prior target-specification can be a weakness of
TS-X-ECBS models. If a predefined target lacks evolution-
ary information and has no homologous targets, the TS-X-
ECBS model will be almost identical to the typical QSAR
model.

On the other hand, in the construction of ensemble
model, all X-ECBS models are considered to have equiva-
lent weight, so the output scores from each X-ECBS model
are directly used as training data for constructing the sec-
ondary ensemble model (ensECBS) (Figure 2). However,
the reliability of the output scores from each TS-X-ECBS
model can vary according to a predefined target. For in-
stance, if the predefined target is not annotated by evolu-
tionary information Xj, the prediction accuracy of the TS-
Xj-ECBS model will be very low for the target, because of
the small amount of training data. To overcome the prob-
lem, information on the size of training data and output
scores from the unified X-ECBS models for each target
was additionally included in the training data to construct
the ensemble model of target-specific ECBS models (TS-
ensECBS) (Supplementary Figure S2).

Hidden evolutionary chemical relationship can be revealed by
ECBS models

The principal assumption of the ECBS models is that clas-
sification similarity-learning for the unified paired chemical
data derived from heterogeneous target-binding informa-
tion will compulsively cluster similar target-binding chem-
ical compounds, maintain close distances, and eventually
provide an effective chemical binding similarity score. The
clustering effect is also expected to enable detection of novel
ERCPs.

To examine the assumption, we tested whether the basal
Target-ECBS model could detect unknown ERCPs. Specif-
ically, all-versus-all ECBS calculations for 1778 approved
drugs (1 579 753 pairs) were performed using Target-ECBS
and 2D structure similarity, respectively. Then, we focused
on the drug pairs that had no common binding targets but
showed high ECBS scores (i.e. false positives by the defi-
nition of Target-ECBS model) and checked how many of
them bind to evolutionarily related targets. The drug pairs
whose targets are not identical but evolutionarily related in
at least one of the evolutionary databases were assumed to
be a potential binding molecule for the respective target, be-
cause of the evolutionarily conserved structure-function re-
lationship in homologous proteins. All drug pairs used to
train the Target-ECBS model were excluded from the anal-
ysis.

The results showed that the drugs pairs binding to evo-
lutionarily related targets had higher similarity scores than
unrelated pairs with a significant population difference (P-
value < 2.2e–16 by Student’s t-test) by both Target-ECBS
and 2D structure similarity (Supplementary Figure S4).
When the detection ratio for ERCP was compared for the
high-rank drug pairs, the Target-ECBS model detected ER-
CPs with a significantly higher ratio (e.g. 88% for top 100
pairs and 74% for top 1000), whereas 2D structure similar-
ity showed low detection ratio (42% for the top 100 and 50%

Figure 4. Hidden evolutionary chemical relationship revealed by Target-
ECBS model. The ratios detecting ERCPs (whose targets are not identical
but evolutionarily related) are compared between Target-ECBS and 2D
chemical structure similarity. It is assumed that the ERCPs are potential
target-binding molecules even though it is not experimentally validated.
The chemical pairs are sorted by each similarity score and the ratio of ER-
CPs within ranks is plotted. The Target-ECBS model better describes the
potential target-binding chemicals with high ERCP ratio.

for the top 1000) (Figure 4). Overall results suggested that
the assumption for the clustering effects between evolution-
arily related chemical compounds is valid and effective by
the classification similarity-learning models.

ECBS model performance for cross-validation and indepen-
dent test set

Two test sets were separately generated to estimate the
prediction performance of ECBS models. One is a cross-
validation set (Figure 3) and another is an independent test
set created by extracting the recently updated drug-target
information in DrugBank. The former is a comprehensive
test set covering most chemical pairs in the database, and the
latter is a much smaller test set that consists of completely
unseen data. Overall model performance was estimated and
compared by AUC values in the PR curve.

The test results for the cross-validation set (Figure 5A)
showed that ECBS models clearly outperformed the meth-
ods based on global structure similarity, such as LIGSIFT,
LiSiCA and 2D structure similarity. Among the ECBS
models, both ensECBS and TS-ensECBS showed better
performance than Target-ECBS and TS-Target-ECBS, re-
spectively, suggesting that evolutionary information was
effective to improve the model performance. The TS-
ensECBS model showed the best performance and clear
separation of ERCPs (Supplementary Figure S5), likely
thanks to the richest training information including X-
ECBS models.

The single evolutionary ECBS models other than Target-
ECBS or TS-Target-ECBS model were designed to be en-
sembled with the target-based models, not to be used solely.
As shown in Figure 3, the evolutionary models were trained
to predict ERCPs as well as the common target-binding
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Figure 5. Test performance of ECBS models for (A) the cross-validation set and (B) the independent set are shown by the PR curve. The methods based
on chemical structure similarity (LIGSIFT, LiSiCA and 2D structure similarity) are shown for comparison.

chemical pairs. However, the identical test set with the
Target-ECBS model was used to evaluate the model for
comparison (Table 1). This extended definition of ERCPs
in the evolutionary ECBS models might hinder the accurate
prediction of the chemical pairs binding to common targets
but the ensemble procedure was expected to resolve these
issues by integrating all the information.

Another test using the independent set showed compa-
rable results despite the smaller data size (Figure 5B). One
difference was the low performance of the TS-Target-ECBS
model, suggesting that the performance of target-specific
models can vary according to the selection of targets. How-
ever, the unified X-ECBS and the ensemble ECBS models
consistently showed reasonable performance. The AUC val-
ues in PR and ROC curves for all individual and ensemble
ECBS models are summarized in Table 1.

Virtual screening using ECBS

Recently, we identified a novel dual inhibitor, NCC007, for
CKI� and CKI�, and demonstrated its functional role to
control circadian rhythms through the CKI inhibition (41).
Interestingly, comprehensive kinase profiling of NCC007
unexpectedly suggested that NCC007 also binds to SRPK1
and SRPK2, a potential therapeutic target for neovascular
eye disease (46). Inspired by the finding, a virtual screening
procedure was devised using ECBS and applied for SRPK1
and SRPK2 as another blind test. The TS-ensECBS mod-
els were built for SRPK1 and SRPK2, respectively, each of
which was used to scan a virtual chemical library to find new
chemical compounds evolutionarily related to NCC007. A
total of five chemical compounds selected by TS-ensECBS
were ordered and tested by in vitro kinase binding assay.

The assay results revealed that the TS-ensECBS model
successfully discovered new SRPK inhibitors with high ac-
curacy (Figure 6). Out of five tested compounds, three for
SRPK1 and one for SRPK2 showed promising binding
affinity. Because none of the chemicals are known for SRPK

inhibitor so far, they might serve as a novel lead compound
for neovascular eye disease in the future.

DISCUSSION

Unique characteristics of different evolutionary information

We find that evolutionary information has the following dis-
tinctive features: (i) different hierarchical levels defining an
evolutionary class (e.g. motif, domain, family, and super-
family), (ii) source information used to extract evolution-
ary relationship (e.g. sequence or structure-based) and (iii)
unique target annotation coverage.

Specifically, evolutionary information of target genes has
been defined at multiple levels such as a motif, domain,
family, and superfamily. A motif is the smallest unit to de-
fine evolutionary relationships between targets, because it
is mostly represented by a short nucleotide or amino acid
pattern mediating a common function. A family represents
a group of proteins that descend from a common ancestor
and therefore are likely to share evolutionarily conserved
structure, function, and sequence that possibly consist of
multiple domains. A superfamily is a high level classifica-
tion that the common ancestry is inferred by 3D structure
similarity, even if no sequence similarity is evident. One
superfamily often contains several protein families. There-
fore, motif, domain, family, and superfamily information
can provide a variety of chemical-target binding features
which are evolutionarily conserved at different hierarchical
levels.

In the present study, seven protein databases, PFAM,
SMART, TIGRFAM, PRINT, Gene3D, Family, and Su-
perfamily, were used to represent diverse evolutionary fea-
tures for targets. Because there is the possibility of generat-
ing unclear evolutionary relationships with single motif in-
formation, the PRINT database, which characterizes a fam-
ily based on protein fingerprints (a group of conserved mo-
tifs), was only used to represent motif information. PFAM,
TIGRFAM and SMART were used to provide a sequence-
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Figure 6. Blind test by virtual screening for SRPK1 and SRPK2 using TS-
ensECBS. NCC007 is used to screen a virtual chemical library to identify
novel compounds similar-binding to NCC007. The TS-ensECBS models
built for SRPK1 and SRPK2, respectively, are used to calculate chemi-
cal similarity scores. The chemical compounds with high ECBS score are
further validated by in vitro kinase binding assay. Three (MarinLit-14196,
CD09767, XBX00307) for SRPK1 and one (XBX00307) for SRPK2 are
confirmed to have considerable binding affinity.

based annotation of domain or family, whereas Gene3D
and Superfamily 2.0 databases were to provide structural
information at the SCOP family/superfamily and CATH
domain level.

In addition, the target annotation coverage varied ac-
cording to the annotation coverage of each database. For
example, the PFAM, Family, and Superfamily information
annotated more than 74% of targets, whereas SMART,
TIGRFAM, PRINT and Gene3D showed <50% target an-
notation coverages (Supplementary Figure S6). It seemed
that the target annotation coverage of each of evolution-
ary information was related to the performance of each
X-ECBS model. For instance, the TS-TIGR-ECBS model
based on TIGRFAM information showed the lowest per-
formance for both test sets (Table 1), which is likely due to
the least evolutionary information annotated for targets.

Contribution of evolutionary information

The contribution of each evolutionary information was
quantitatively estimated by analysing variable importance
(Gini index) during the cross-validation procedure which
was performed to test the TS-ensECBS model. The variable
importance (a total decrease in node impurity) measures
how effectively the output scores from each ECBS model
contribute to classifying the training data in the construc-
tion of the ensemble model. The node impurity values were
retrieved from the iterative cross-validation procedures and

Figure 7. Contribution of evolutionary information in the construction of
the ensemble ECBS models. (A) The contribution of each evolutionary in-
formation is estimated by calculating variable importance (Gini index) in
the construction of the TS-ensECBS model. (B) The correlations between
different ECBS models are represented by calculating Pearson’s r for the
predicted scores for the cross-validation test set.

summarized in Figure 7A. In the result, Family, Target, and
PFAM information consistently represented high impor-
tance regardless of the model type. In contrast, TS-SMART,
TS-TIGR, TS-PRINT and TS-Gene3D (G3DSA) showed
low importance probably due to the low model perfor-
mance (Table 1) and target coverage (Supplementary Fig-
ure S6). Interestingly, the variable importance of superfam-
ily information varied according to the model type. The
Superfamily-ECBS model represented higher importance
than the TS-Superfamily-ECBS model, which might be re-
lated to the higher model performance of the Superfamily-
ECBS model for both test sets (AUC 0.64 versus 0.57 for the
cross-validation set and 0.69 versus 0.40 for the independent
set). The reason for the performance difference is not clear
but we think that superfamily-based evolutionary annota-
tion generates ambiguous target relationships irrelevant to
chemical binding property (one superfamily is often linked
to many motifs, domains, and families). This noisy data
might decrease the performance of the TS-Superfamily-
ECBS model. The unified models such as Superfamily-
ECBS could be more robust to the noisy information be-
cause they take full advantage of the clustering effect shown
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in Figure 1B by considering all chemical-target binding in-
formation together.

Complementarity of the unified and target-specific ECBS
model

The unified (X-ECBS) and target-specific (TS-X-ECBS)
model differently encode evolutionary information to the
output similarity scores by the distinctive model design
(Figure 1B). To check the complementarity of the ECBS
models, pairwise Pearson correlation coefficients between
all ECBS scores were calculated using the predicted scores
for the cross-validation test set (Figure 7B).

Mostly, the correlations within the same model type (i.e.
either unified or target-specific) are much higher than those
between different types. Among the unified ECBS models,
PFAM-ECBS, Family-ECBS and Superfamily-ECBS have
a high correlation (>0.88), whereas Target-ECBS has a rel-
atively different score distribution compared to others. It
suggested that domain, family, and superfamily informa-
tion should be distinct from the target information, which
might help to improve model performance as shown in the
variable importance analysis (Figure 7A). In contrast to the
unified models, TS-Target-ECBS is highly correlated to the
other evolution-based target-specific models, probably be-
cause of the restriction of evolutionary information to a pre-
defined target.

In summary, various ECBS models encoded different
evolutionary information, which showed distinct score dis-
tributions, except for a few cases mentioned above. Espe-
cially, all unified ECBS models showed high variable impor-
tance in the construction of the TS-ensECBS model, sug-
gesting their complementarity to the target-specific ECBS
models.

Evolutionarily related chemical pairs highlight the conserved
molecular binding features

A target ‘Cholera enterotoxin subunit B’ (ctxB, Uniprot
ID P01556) was used to show how ERCPs help to im-
prove model quality. The ctxB was selected because both
TS-Target-ECBS and TS-ensECBS showed high accuracy
in the cross-validation test set (AUC 0.72 and 0.96 for TS-
Target-ECBS and TS-ensECBS, respectively) with a moder-
ate number of test and training data (14 drugs in the blind
test set and 7 drugs in the training set). The test and trained
chemical pairs for ctxB were categorized into ‘test’ (dotted
in red), ‘trained by target’ (solid blue line), and ‘trained by
evolution’ (solid green line) in Figure 8.

Because all drugs binding to ctxB were included as a blind
test set (see Figure 3 for the test set generation), similarity
scores for the ‘test’ pairs would be inferred only by the indi-
rect information related to ctxB. For example, two known
targets of DB02213 are ctxB and heat-labile enterotoxin B
chain (eltB, UniProt ID: P32890), both of which are evolu-
tionarily related by the common PFAM (PF01376, Entero-
toxin b), PRINT (PR00772, enterotoxin B), Family (50204,
Bacterial AB5 toxins B-subunits) and Superfamily (50203,
Bacterial enterotoxins) although the source organisms are
different (ctxB is from Vibro cholerae serotype O1 and eltB
from Escherichia coli). In this case, the TS-Target-ECBS

model would consider the ‘trained by target’ chemical pairs
defined by eltB as ERCPs for model training (e.g., DB03421,
DB04040, DB03446, DB03242 and DB04396).

However, the TS-ensECBS model would consider ad-
ditional ERCPs such as DB02213-DB08501, DB02213-
DB04465 and many others for DB03077, DB03721 and
DB02379, depending on their evolutionary relatedness. The
targets of DB03077, DB03721 and DB02379 are cholera en-
terotoxin B-subunit (Q57193), enterotoxin type B (P01552),
and Shiga-like toxin 1 subunit B (P69178), respectively, all
of which belong to the same bacterial enterotoxin superfam-
ily (50203) without a common target. The evolutionary in-
formation contributed to generate more ERCPs (‘trained by
evolution’ pairs), which resulted in the densely connected
network that consisted of similar-binding chemical com-
pounds (Figure 8). The number of ERCPs significantly in-
creased by consideration of superfamily information, and
so the important molecular features should be enriched and
emphasized in the model training procedure. As expected,
the ERCPs shared a few functional moieties such as the ben-
zamide or galactopyranosyl groups representing the con-
served molecular features for target-binding.

In summary, the target-binding information of ctxB can
be highly limited if the target identity is only considered
to build an ECBS model. The inclusion of many ERCPs
will make the relationships (or distances) between similar-
binding chemical compounds much closer by providing
densely connected ERCPs and therefore highlighting the
conserved molecular binding features.

CONCLUDING REMARKS

Categorization of paired chemical data based on evolution-
ary target-binding information enabled the use of classifica-
tion similarity-learning method to develop novel chemical
binding similarities. Two major factors are closely related to
the performance improvement of the ensemble ECBS mod-
els compared with the original Target-ECBS that only used
target-binding information of drugs. Incorporating more
chemical-target binding data from BindingDB was very ef-
fective to improve the model performance, suggesting the
possibility of further improvement with future data genera-
tion. More importantly, collecting targets’ evolutionary in-
formation from a variety of curated databases was critical,
as it reflected the diverse evolutionary relationship of tar-
gets at multiple levels such as a motif, domain, family, and
superfamily.

The target-binding information of chemical compounds
is valuable to infer functional activity, because chemical-
target interactions are directly linked to biological func-
tions but are difficult to predict from a chemical structure
alone. Evolutionarily related targets contain broad func-
tional information thanks to the well-maintained structure-
function relationship, particularly in the evolutionarily con-
served binding pockets in homologous proteins (47). It has
been consistently discussed that the evolution rate in the
functionally important regions, such as enzyme active site, is
much slower than the surface region (23). The ECBS mod-
els encode this evolutionary target-binding information into
pairwise chemical relationships, where the similarity scores
can compare more complicated binding properties between
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Figure 8. Enriched chemical features by evolutionarily related chemical pairs (ERCPs). All the chemical compounds used to predict the chemical pairs
commonly binding to ‘cholera enterotoxin subunit B’ (ctxB) are represented by the network as in Figure 3A. In the network, the blue edges represent the
ERCPs defined by target identity, the green edges represent the ERCPs defined by evolutionary information (motif, domain, family, and superfamily are
mixed for clarity), and the red dotted edges are the blind test set which commonly binds to ctxB. The 2D chemical structures for the nodes are shown
together, and the arbitrary unrelated chemical pairs are represented by grey nodes and edges.

chemical compounds. Accordingly, we expect that ECBS
can be widely used with applications such as large-scale
ligand-based screening, target-specific ligand identification,
drug-repositioning, and general chemical binding similarity
calculations by modeling functional similarity.
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