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Statistical distractor learning modulates perceptual sensitivity
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The present study used perceptual sensitivity (d′) to
determine the spatial distribution of attention in
displays in which participants have learned to suppress a
location that is most likely to contain a distractor.
Participants had to indicate whether a horizontal or a
vertical line, which was shown only briefly before it was
masked, was present within a target shape. Critically,
the target shape could be accompanied by a singleton
distractor color, which when present appeared with a
high probability at one display location. The results
show that perceptual sensitivity was reduced for
locations likely to contain a distractor, as d′ was lower
for this location than for all other locations in the
display. We also found that the presence of an irrelevant
color singleton reduced the gain for input at the target
location, particularly when the irrelevant singleton was
close to the target singleton. We conclude that, through
the repeated encounter with a distractor at a particular
location, the weights within the attentional priority map
are changed such that the perceptual sensitivity for
objects presented at that location is reduced relative to
all other locations. This reduction of perceptual
sensitivity signifies that this location competes less for
attention than all other locations.

Introduction

When we search the environment for relevant
information, we are constantly trying to minimize
the interference caused by visual distractors. Such
distractors appear especially difficult to ignore when
their features stand out. A continuous debate in the
attention literature centers around the question of
whether salient stimuli involuntarily attract attention
or whether such automatic attentional capture can

be avoided (Luck, Gaspelin, Folk, Remington, &
Theeuwes, 2021). Although there continue to be
opposing viewpoints in this debate, there is a growing
consensus that human observers, often implicitly, learn
from regularities in the environment that can reduce
the interference caused by salient distractors (Chelazzi,
Marini, Pascucci, & Turatto, 2019; Theeuwes, 2019;
van Moorselaar & Slagter, 2020). For example, there
are now many reports of observers being sensitive
to imbalances in the spatial distribution of salient
distractors such that distractors are more efficiently
ignored when presented more often at one location
than at all other locations (Di Caro, Theeuwes, &
Della Libera, 2019; Ferrante, Patacca, Di Caro, Della
Libera, Santandrea, & Chelazzi, 2018; van Moorselaar,
Daneshtalab, & Slagter, 2021; Wang & Theeuwes,
2018b; Wang & Theeuwes, 2018c).

In a series of experiments, Theeuwes and colleagues
(Failing, Wang, & Theeuwes, 2019; Wang & Theeuwes,
2018b; Wang & Theeuwes, 2018c) employed the classic
additional singleton task and showed that statistical
regularities regarding the location of the salient
distractor affected attentional selection. Critically,
participants responded faster and more accurately to
the target singleton when the salient distractor singleton
was presented at a high-probability location relative
to the other, low-probability locations. This finding
was interpreted as evidence that, when presented
at the high-probability location, the color singleton
distractor caused less attention capture than when
presented at any of the regular locations. Also, if the
target happened to be presented at the location that
was most likely to contain a distractor, participants
were relatively slow in responding to the target. On the
basis of these studies, it was concluded that, through
statistical learning, relative to all other locations the
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location that is likely to contain a distractor becomes
suppressed (Ferrante et al., 2018; Wang & Theeuwes,
2018b; Wang & Theeuwes, 2018c; Zhang, Allenmark,
Liesefeld, Shi, & Muller, 2019). It should be noted
that this learned suppression is instantiated relatively
quickly and then remains stable as long as the spatial
imbalance is incorporated across visual searches (Lin,
Li, Wang, & Theeuwes, 2021).

Unlike the notion that distractor suppression is
usually reactive, resulting from (rapidly) disengaging
attention from an attended location (Moher & Egeth,
2012; Theeuwes, 2010), it is more likely that, when
statistical learning is involved, suppression is proactive;
that is, the high-probability distractor location is
already suppressed prior to the onset of the search
display (Huang, Vilotijević, Theeuwes, & Donk, 2021;
Wang, van Driel, Ort, & Theeuwes, 2019). Although
virtually all studies up to now have assumed that learned
spatial suppression operates on a pre-selective stage
of priority computation (e.g., Ferrante et al., 2018;
Sauter, Liesefeld, & Müller, 2019; Sauter, Liesefeld,
Zehetleitner, &Müller, 2018; Wang & Theeuwes, 2018b;
Wang & Theeuwes, 2018c), it should be noted that
the vast majority of these studies relied on response
time (RT) measures, which critically do not allow for
a separation between perceptual and decision-level
effects of attention. Indeed, the suppression of the
high-probability distractor location is inferred on the
basis of RTs to the target singleton, which are faster
when a distractor is presented at this high-probability
location and critically slower when a target happens to
be presented at this location.

Even though these RT measures are compelling,
reduced perceptual sensitivity for signals presented
at the high-probability location relative to all other
locations would provide unequivocal evidence in
support of suppression. Therefore, in this study we
used measures derived from signal detection theory
(SDT) to determine perceptual sensitivity (d′), which is
assumed to represent the sensitivity of the system to the
occurrence of a signal, expressed in signal-to-noise ratio
units (Green & Swets, 1966; Macmillan & Creelman,
2004). If the sensitivity at the high-probability location
is reduced, it would provide direct evidence for a
mechanism of perceptual suppression unrelated to
effects that operate at post-selective stages, such as
quicker attentional disengagement at high-probability
distractor locations and slower disengaging from
distractors at low-probability locations (Sauter,
Hanning, Liesefeld, & Müller, 2020).

Using a signal detection version of the additional
singleton task, Theeuwes, Kramer, and Kingstone
(2004) (see also Theeuwes & Chen, 2005) showed lower
visual sensitivity (d′) on distractor-present displays,
indicating that the singleton distractor cost could
not be attributed to operations occurring after initial
selection but rather modulated target detectability by

reducing the gain for inputs at the target location.
Moreover, it was shown that this effect was driven
by distractors in close proximity to the target, as
distractors farther away from the target did not affect
target detectability (d′). Therefore, here we not only
investigated whether statistical distractor learning
modulated target detectability but also examined the
statistical learning effect as a function of the distance
between targets and distractors.

For this purpose, in an online study, we employed
a method similar to that used by Theeuwes et al.
(2004). Participants were required to make a two-choice
forced decision regarding the presence of a specific
orientation of a target bar in displays with and without
a colored distractor. Critically, when present, this
colored singleton appeared with a higher probability at
one specific location. If statistical distractor learning
indeed operates on a pre-selective stage of priority
computation, we would expect visual sensitivity (d′)
to be lower when a target happens to appear at the
high-probability distractor location, and we would
expect sensitivity to be higher for distractors at
high-probability relative to low-probability locations.

Methods
Participants

Data collection continued until we collected 48
complete datasets (i.e., datasets where the experiment
was aborted before completion were ignored), a sample
size that was based on an a priori power analysis
(α = 0.05, power = 0.95) based on the main effect
of distractor presence as reported in Theeuwes et
al. (2004). The final sample contained 48 first-year
students (40 female; mean age = 21.1 years; range,
17–40) who participated for research credits. One
dataset was excluded because the participant performed
the experiment twice, and three subjects were replaced
because average accuracy across conditions was more
than 2.5 SD below the grand mean. The ethical
committee of the Faculty of Behavioral and Movement
Sciences at Vrije Universiteit approved the study, which
conformed to the tenets of the Declaration of Helsinki,
and participants provided digital informed consent via
Qualtrics (Qualtrics, Provo, UT) prior to participation.

Task, stimuli, and procedure

As the experiment was conducted online, and we
thus had no control over the experimental setting, for
replication purposes we report pixels and RGB values
to describe the stimuli. The experiment was created in
OpenSesame 3 (Mathôt, Schreij, & Theeuwes, 2012)
using OSWEB (versions 1.3.11 and 1.3.131) and run
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Figure 1. Experimental paradigm. (A) Graphical illustration of the sequence and timing of stimulus events presented on each trial. For
each display participants had to indicate whether a given orientation (e.g., horizontal) was present within the unique shape singleton
(in this case, a diamond). The singleton distractor color, when present, was more likely to appear in one location along the imaginary
circle. (B) Schematic representation of the spatial regularities of the distractor. Percentages at each location represent the
probabilities of the distractor (D) and the target (T) appearing at a given location.

using JATOS (Lange, Kühn, & Filevich, 2015) on
desktop computers or laptops.

Each trial started with a 500-ms fixation display
that consisted of a white circle on a black background.
Subsequently, a 100-ms search display appeared with
eight equidistant shapes in a circular configuration
around fixation (radius, 224 pixels). Each display
contained a circle (radius, 45 pixels) among diamonds
(100 × 100 pixels), or vice versa, each with a red
(255/0/0) or a green (0/146/69) outline on a black
background. On distractor-present trials (66.7%),
the outline of one of the homogeneous shapes had
a different color than the other stimuli in the display
(i.e., red or green). Critically, when present, this
singleton distractor appeared with a higher probability
(65%) at one of the eight locations.2 Collapsed across
distractor-present and distractor-absent trials, targets
appeared equally often on all locations (Figure 1B). A
horizontal or vertical white (255/255/255) target bar
(counterbalanced across trials) was consistently placed
inside the target shape singleton (i.e., unique shape),
whereas another horizontal or vertical bar (selected at
random) appeared at random in one of the neutral
stimuli. That is, the non-target line never appeared
inside the singleton distractor. Finally, a masked
display, in which a set of six white line segments (60
pixels; 0°–180° in steps of 30°) were placed at the center
of each stimulus, was shown until response.

Participants were instructed to keep their eyes at
fixation and to indicate via button press whether
the target orientation (i.e., horizontal or vertical;
counterbalanced across participants) was present (press
“P”) or absent (press “A”) inside the target shape. The
line length (start value, 40 pixels; minimum length, 2
pixels; maximum length, 60 pixels) of the lines inside

the search display was adjusted every four trials based
on average accuracy in the preceding 16 trials: +4 pixels
for accuracy below 65% (i.e., six or more errors); +2
pixels for accuracy below 70% (i.e., five errors); −2
pixels for accuracy above 80% (i.e., three errors); and
−4 pixels for accuracy above 85% (i.e., two or fewer
errors). Doing so ensured that performance remained
near 75% correct. In case of an incorrect response, the
fixation circle turned into a cross for 495 ms, whereas it
remained white for 250 ms in case of a correct response.

Participants were encouraged to respond as
accurately as possible and completed seven blocks of
120 trials each (trial order randomized), which were
preceded by a series of 20 practice trials. The practice
block, in which the line length was not adjusted,
continued to repeat until average accuracy was above
66%. Halfway through each block, participants were
given the opportunity for a short break, and at the
end of each block they received feedback on their
performance (i.e., mean accuracy and mean response
time), and they were encouraged to take a break. After
the last block, participants were first asked whether
they noticed that one location had a higher distractor
probability. Subsequently, a display with white circles,
each with a unique identifier, corresponding to one of
the search locations was shown, and participants had
to indicate (and, if necessary, guess) which location
they believed contained the singleton distractor most
frequently throughout the experiment.

Data analysis

Visual search performance was measured using signal
detection theory (Green & Swets, 1966; Macmillan
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& Creelman, 2004), where the sensitivity index (d′)
measures the discriminability between a target signal
(i.e., target orientation) and noise (i.e., the non-target
orientation). The d′ was calculated for each participant
per condition of interest making use of the log-linear
approach to control for extreme rates (Hautus, 1995)
after excluding responses shorter than 200 ms and
longer than 2000 ms (4.8%). The Z-transformed
probabilities of reporting the target orientation as being
present when it was indeed present (hit) and when it
was actually absent (false alarm) were calculated using
the norm.ppf function in scipy (Virtanen, Gommers,
Oliphant, Haberland, Reddy, Cournapeau, & Bright,
2020).

Statistics

Calculated d′ values were analyzed with repeated-
measures ANOVAs, where reported p values were
Greenhouse–Geiser corrected in case of sphericity
violations, followed by planned comparisons with
paired t-tests using JASP software (JASP Team, 2018).

Results and discussion

Overall, performance was at 70.6% correct, indicating
that at least for a subset of participants the staircase
procedure resulted in ∼5% lower accuracy than
intended, arguably because line length (M = 41.5;
range, 13.5–58.9) was virtually at the ceiling (>53.0)
for a small subset of participants (n = 8). Critically,
however, as the same staircase procedure was used
across conditions, and conditions varied randomly
across trials, condition differences cannot be explained
by systematic differences across conditions resulting
from the staircase procedure. Before examining d′
across conditions, we first analyzed averaged response
times to exclude any alternative explanation in terms
of a speed–accuracy trade-offs.3 Critically, distractors
were more efficiently ignored at high-probability relative
to low-probability locations, t(47) = 2.9, p = 0.005,
d = 0.43, demonstrating that reduced sensitivity at
the high-probability distractor location could not be
attributed to a speed–accuracy trade-off (Table 1).

Distractor condition M SD

Absent 646.9 171.1
High-probability location 652.4 178.0
Low-probability location 664.1 185.0

Table 1. Mean response times and standard deviations across
distractor conditions.

Reduced sensitivity at the high-probability
distractor location

To establish attentional suppression (i.e., reduced
perceptual sensitivity) at the high-probability location,
we contrasted d′ for targets at low- and high-probability
distractor locations (Figure 2A). In doing so, we
made sure that all trials with a distractor at the
high-probability distractor location were excluded from
the analysis, such that any observed differences could
not be explained by reduced distractor interference at
that location (van Moorselaar, Lampers, Cordesius, &
Slagter, 2020). A planned comparison confirmed that
signal sensitivity was reliably lower at high-probability
relative to low-probability distractor locations, t(47) =
2.3, p = 0.024, d = 0.34, consistent with the notion that
the high-probability distractor location was suppressed.
Counter to the typical additional singleton paradigm,
here only two out eight stimuli had an embedded
line figure, which may have resulted in relatively large
compatibility effects (Schreij, Owens, & Theeuwes,
2008), with overall responses being fastest when the line
orientations within the two stimuli were compatible.
Although this was indeed the case, a control analysis
showed that compatibility did not interact with target
position, nor did distance between the line elements
modulate the effect of interest (for a detailed analysis,
see Supplementary Material SA).

Target sensitivity increases with increasing
target–distractor distance

Following the finding by Theeuwes et al. (2004)
that target detectability (d′) was selectively affected
by distractors in close proximity to the target, we
further examined how the reduced sensitivity at the
high-probability distractor location was influenced by
distractors that were in close proximity to the target
compared with those that were farther away. For this
purpose, after again excluding all trials with distractors
at high-probability locations, we entered d′ estimates
into a repeated-measures ANOVA with within-subject
factors of target position (high-probability location,
low-probability location) and target–distractor distance
(0, 1, 2, 3), where distance was quantified by the
number of elements between singletons. As visualized
in Figure 2B, it appeared that reduced signal sensitivity
at high-probability distractor locations, with the main
effect of target position, F(1, 47) = 8.8, p = 0.005, n2p =
0.16, was most pronounced when distractors appeared
in close proximity to the target. Critically, however,
this was not supported by a reliable interaction, F(3,
141) = 0.6, p = 0.63, n2p = 0.012, BF01 = 22.4, and
a Bayesian analysis showed that the absence of an
interaction was 22 times more likely than suppression
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Figure 2. Statistical learning results in reduced sensitivity for targets at high-probability distractor locations. (A) d′ as a function of
target position. (B) d′ for targets at high-probability (black) and low-probability (gray) distractor locations as a function of distance
(measures as the number of elements between singletons) between targets and distractors. In all analyses, displays with distractors
at high-probability distractor locations were excluded. All error bars here and in subsequent plots represent 95% within-subject
confidence intervals (Morey, 2008).

at the high-probability location being modulated by
target–distractor distance. Nevertheless, we interpret
this null finding with caution, given that the experiment
was not specifically designed to examine this effect,
resulting in a relatively low number of observations
per cell. As also visualized in Figure 2B, the main
effect of target position was, however, accompanied
by a main effect of distance, F(3, 141) = 3.2, p =
0.024, n2p = 0.064, which was characterized by a linear
trend, t(141) = 3.5, p < 0.001 (collapsed over all
target positions). Replicating Theeuwes et al. (2004),

relative to distractor-absent displays distractors in close
proximity to the target reduced target detecttability,
t(47) = 2.6, p = 0.012, d = 0.38 (95% confidence interval
[CI], 0.04–0.28) for distance 0; t(47) = 2.9, p = 0.005,
d = 0.42 (95% CI, 0.05–0.27) for distance 1 (collapsed
over all target positions). This was not the case for more
distant distractors, t(47) = 1.3, p = 0.19, d = 0.19 (95%
CI, −0.05 to 0.23), BF01 = 2.8 for distance 2; t(47) =
−1.9, p = 0.064, d = −0.27 (95% CI, −0.32 to 0.00),
BF01 = 1.2 for distance 3 (collapsed over all target
positions).

Figure 3. Learned distractor suppression increases target sensitivity. (A) d′ as a function of distractor condition. (B) d′ for distractors at
high-probability (black) and low-probability (gray) distractor locations as a function of distance (measures as the number of elements
between singletons) between targets and distractors. Please note that matching conditions in Figures 2B and 3B are not exactly
overlapping given that the gray line in panel B contains targets at both high- and low-probability distractor locations, whereas this is
not the case in Figure 2B.
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Suppressed distractors increase target
sensitivity

In the previous analyses we intentionally excluded
all trials with distractors at high-probability distractor
locations to examine how statistical learning modulated
sensitivity at the target location. Next, we investigated
distractor costs as a function of distractor position.
As visualized in Figure 3A and shown in Table 2, d′
was higher on distractor-absent than on distractor-
present trials, but critically only for distractors at
low-probability locations. This was confirmed by a
repeated-measures ANOVAwith a within-subject factor
of distractor condition (high-probability location,
low-probability location, absent), which yielded a
main effect, F(1, 47) = 4.5, p = 0.013, n2p = 0.088.
Subsequent planned pairwise comparisons confirmed
that d′ was reliably reduced relatively to distractor
absent trials on low-probability, t(47) = 2.5, p = 0.015,
d = 0.36, but critically not at high-probability distractor
locations, t(47) = 0.3, p = 0.78, d = 0.04, BF01 = 6.1.
Moreover, there also was a reliable difference between
d′ at high- and low-probability locations, t(47) = 2.6, p
= 0.014, d = 0.37, confirming that the high-probability
distractor location was suppressed. Also, in line with
the target-tuned analysis, although distractors close to
the target again resulted in more distractor interference
with a main effect of target–distractor distance, F(2,
115) = 9.0, p < 0.001, n2p = 0.071, this target–distractor
distance effect did not interact, F(2, 106) = 0.7, p
= 0.50, n2p = 0.007, BF01 = 14.0, with the observed
benefit for distractors at the high-probability distractor
location with a main effect of distractor position, F(1,
47) = 6.4, p = 0.015, n2p = 0.015.

A control analysis, in which we excluded all trials
in which the distractor location repeated (18.8%),
replicated the main effect of distractor position as
shown in Figure 3A, F(1, 47) = 4.0, p = 0.021, n2p =
0.079, with sensitivity again being significantly higher
at high-probability relative to low-probability distractor
locations, t(47) = 2.4, p = 0.023, d = 0.34, indicating

d′ Hit rate False alarm rate

M SD M SD M SD

Distractor condition
No distractor 1.15 0.27 0.73 0.07 0.30 0.06
High-probability distractor 1.16 0.23 0.74 0.07 0.30 0.06
Low-probability distractor 1.06 0.25 0.73 0.08 0.33 0.08

Target position
High-probability location 0.98 0.54 0.70 0.11 0.34 0.10
Low-probability location 1.17 0.26 0.74 0.07 0.30 0.07

Table 2. Mean d′, hit rate, and false alarm rate per distractor
condition and target position as calculated with the log-linear
approach (Hautus, 1995).

that intertrial priming effects could not account for the
observed suppression (Maljkovic & Nakayama, 1994).

Awareness of the high-probability distractor
location

Finally, we examined whether participants noticed
that distractors appeared with higher probability
at a given location. Although 13 subjects indicated
that they noticed the spatial imbalance of distractor
locations, only two of them actually indicated the
correct high-probability distractor location (in total,
10 subjects indicated the correct location). Also, the
overall pattern of results was the same irrespective
of whether the analyses were limited to subjects who
did or did not correctly indicate the high-probability
distractor location. This suggests that the observed
effects largely reflect implicit statistical learning rather
than a deliberate strategy resulting in an overt shift of
attention away from the high-probability distractor
location. Indeed, exploratory control analyses indicated
that reported results reflected learned suppression of
the high probability location, rather than secondary
suppression stemming from a strategic overt shift of
attention away from this location (Supplementary
Material SB; see also van Moorselaar et al., 2021; Wang
& Theeuwes, 2018a; Wang & Theeuwes, 2018b; Wang
& Theeuwes, 2018c) for studies that did monitor eye
movements).

General discussion

The present study shows that statistical regularities
regarding the location of the distractor influence visual
selection via suppression of locations that frequently
contain a distractor. Previous studies, largely relying on
RT measures, have shown that such regularities affect
both attentional capture by the distractor and efficiency
of target selection (e.g., Failing et al., 2019; Wang &
Theeuwes, 2018b; Wang & Theeuwes, 2018c). Based on
these findings, it is argued that repeated encounters with
a distractor at a given location cause lingering biases on
a spatial priority map such that that location competes
less for attention. Instead of claiming that suppression
is reactive (Moher & Egeth, 2012; Theeuwes, 2010), due
to statistical learning suppression becomes proactive
(Huang et al., 2021; Wang et al., 2019). Here, we
provide unequivocal evidence for the idea that the
high-probability distractor location is suppressed by
showing reduced perceptual sensitivity for signals
presented at the high-probability location relative
to all other locations. At the same time, our results
demonstrate that on top of the effect of statistical
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learning there was an effect of display configuration,
with target sensitivity being lowest in displays with
nearby distractors.

Counter to previous studies here we relied on a
metric (d′) derived from SDT (Green & Swets, 1966;
Macmillan & Creelman, 2004), which is thought
to solely reflect perceptual effects of attention and
hence, unlike RT measures, is insensitive to effects
originating at post-selective stages. Consequently, the
finding that d′ is reduced in displays with targets at
high-probability distractor locations and is increased
in displays with distractors at that location cannot
be explained by post-capture processes. As a result
of statistical learning, which occurs with little, if any
explicit knowledge, weights within the spatial priority
map are adjusted such that the high-probability
distractor location is inhibited. Without such a learned
bias, irrelevant singletons in a search display reduce
the gain for input at the target location (Theeuwes &
Chen, 2005; Theeuwes et al., 2004), but this distractor
cost is less pronounced, and in the current study even
absent, when the distractor singleton is presented at
the high-probability location. Critically, we found that
input gain was also reduced for targets appearing
at high-probability distractor locations, providing
unequivocal evidence in support of learned suppression
operating on a pre-selective stage of priority
computation.

In addition to the effects of statistical learning,
our findings also confirm that attentional selection
of an object is accompanied by the suppression
of stimuli in close proximity to the selected object
(Caputo & Guerra, 1998; Mounts, 2000a; Mounts,
2000b). Consistent with Theeuwes et al. (2004)
the reduced sensitivity at the target location as a
function of distractor presence was solely driven by
distractors presented near the target and not by more
distant distractors. Given our display configurations,
distractors and targets that were separated by more
than two neutral items had a higher chance of being
presented in different than in separate hemifields and
thus were less likely to share receptive fields higher up
in the processing hierarchy (Sereno & Kosslyn, 1991;
Torralbo & Beck, 2008). It has been argued that, to
alleviate potential ambiguities in perceptual coding, an
inhibitory surround accompanies the selected object
that attenuates competition from neighboring objects
(Luck, Girelli, McDermott, & Ford, 1997; Mounts,
2000a; Tsotsos, Culhane, Wai, Lai, Davis, & Nuflo,
1995). Alternatively, the target–distractor distance
effect could also be explained by a saliency account
(Theeuwes, 2004), in which an element surrounded
by a homogeneous local environment (as is the case
with distant distractors) is more salient than when
two singletons are presented nearby, rendering the
local environment less homogeneous. According to
Nothdurft (1993) saliency depends on local feature

contrast, which refers to how different an item is from
nearby surrounding items.

Irrespective of the underlying mechanism, however,
the current findings suggest that the effect of
target–distractor distance is independent from the effect
of lingering biases due to statistical learning. Although
one should always be careful when interpreting a
null finding, as visualized in Figures 2B and 3B,
reduced sensitivity for targets with nearby distractors
was additive to rather than interacting with learned
proactive suppression at the high-probability distractor
location. Although it should be noted that our design
may have been underpowered to detect an interaction
and this finding thus warrants further confirmation,
additivity in this case arguably indicates that these
two attention factors independently affect two distinct
selection stages (Sternberg, 1969). Whereas statistical
learning proactively shapes the priority map, the
upcoming display configuration additionally shapes the
priority gain at different locations, and the combination
of these priority landscapes ultimately shapes the
efficiency of attentional selection.

It is important to realize that, in the current
experiment, participants were not able to make a
saccadic eye movement. Indeed, the display was only
presented for 100 ms, which is too short to make an
directed eye movement (Heeman, Van der Stigchel,
Munoz, & Theeuwes, 2019). Nevertheless, it could be
argued that fixation position was shifted away from the
high-probability distractor location in anticipation of
search display onset. Although we cannot indefinitely
rule out an alternative explanation in terms of overt
shifts of attention, we believe this to be unlikely,
as previous work has already demonstrated that
statistical distractor learning is robust when fixation
is experimentally controlled via an eye tracker (van
Moorselaar et al., 2021; Wang & Theeuwes, 2018a;
Wang & Theeuwes, 2018b). Moreover, control analyses
in the review process showed that the reported distance
effect was not exclusive to targets and distractors at
the high-probability location but was evident across all
display positions. All in all, we are therefore confident
that the suppression effect due to statistical learning
is purely attentional and not confounded by any eye
movement artifacts.

Keywords: statistical learning, suppression, attention,
visual search
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Footnotes
1Due to frequent experiment crashes resulting from memory problems in
version 1.3.11, we updated the OSWEB version during data collection.
2The high-probability location was assigned on basis of the subject
identifier code as determined by Qualtrics. The final dataset had on
average six observations per display location (range, three to eight).
3As in our previous work, search times analyses were limited to data of
correct trials only. RTs were filtered in a two-step trimming procedure.
Trials with RTs shorter than 200 ms or longer than 2000 ms were excluded,
after which data were trimmed on the basis of a cutoff value of 2.5 SD
from the mean per participant.
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