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In this paper, a mathematical model describing the human immunodeficiency virus (HIV) pathogenesis with adaptive immune
response is presented and studied. The mathematical model includes six nonlinear differential equations describing the interaction
between the uninfected cells, the exposed cells, the actively infected cells, the free viruses, and the adaptive immune response. The
considered adaptive immunity will be represented by cytotoxic T-lymphocytes cells (CTLs) and antibodies. First, the global
stability of the disease-free steady state and the endemic steady states is established depending on the basic reproduction number
Ry, the CTL immune response reproduction number R}, the antibody immune response reproduction number RY, the antibody
immune competition reproduction number Ry, and the CTL immune response competition reproduction number R. On the
other hand, different numerical simulations are performed in order to confirm numerically the stability for each steady state.
Moreover, a comparison with some clinical data is conducted and analyzed. Finally, a sensitivity analysis for R, is performed in

order to check the impact of different input parameters.

1. Introduction

The human immunodeficiency virus (HIV) is a virus that
gradually weakens the immune system since it targets the
principal vital immune cells. It is considered as the main cause
for several deadly diseases after the resulting acquired im-
munodeficiency syndrome (AIDS) is reached. With 36.7
million people living with HIV, 1.8 million people becoming
newly infected with HIV, and more than 1 million deaths
annually, HIV becomes a major global public health issue [1].

In the last decades, many mathematical models describing
HIV dynamics were developed [2-11]. With the three main
dynamics compartments that are free viruses, healthy CD4"
T cells, and infected CD4" T cells, the first viral dynamics was
presented and studied in [2]. Including the exposed cells as a
new fourth compartment, a modified HIV viral model was
tackled in [8]. More recently, the model describing HIV viral

dynamics with another fifth compartment representing the
cytotoxic T-lymphocytes (CTL) cells is formulated and
studied in [9]. The authors study the global stability of the
endemic states and illustrate the numerical simulations in
order to show the numerical stability for each problem steady
state. Notice that the adaptive immunity has two main arms
that are cellular and humoral responses. The first one is
mediated by CTL cells that play a crucial role in the infection
by killing infected cells, while the second arm is mediated by
the antibodies which are proteins that are produced by B cells
and are specifically programmed to neutralize the viruses [12].
In this paper, we extend the recent work [9] by incorporating
to the model this other main component of the adaptive
immune response. The dynamics of the HIV infection model
including these two arms of the adaptive immune response
will be governed by the following nonlinear system of dif-
ferential equations:
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x+v
kyxv
§ = —dys — kys,
Ty TS
1 y=kys—dsy-pyz, (1)

v=ay—-du-qvw,

w = gvw — hw,

| 2=cyz-bz.

With the initial conditions, x(0) = x, s(0)=s,,
y(0) = yo, v(0) =v, w(0)=uw,, and z(0) =z, In this
model, x, s, y, v, w, and z denote the concentration of
uninfected cells, exposed cells, infected cells, free viruses,
antibodies, and CTL cells, respectively. Susceptible host cells,
CD4" T cells, are produced at a rate A and die at a rate d;x
and become infected by virus at a rate k;xv/(x + v). The
exposed cells die at a rate (d, +k,)s. The infected cells
increase at rate k,s and decay at rate d, y and are killed by the
CTL response at a rate pyz. Free viruses are produced by
infected cells at a rate ay and decay at a rate d,v and are
killed by the antibodies at a rate gvw. Antibodies develop in
response to free viruses at a rate gvw and decay at a rate hw.
Finally, CTLs expand in response to viral antigen derived
from infected cells at a rate cyz and decay in the absence of
antigenic stimulation at a rate bz. Note that this model (1),
includes the saturated rate, called the saturated mass action
[11], which describes better the rate of viral infection. Such
HIV viral dynamics is illustrated in Figure 1. The model (1)
extends the recent work [9] by adding a new compartment
which is the adaptive immune response. In addition to the
mathematical analysis of this new model, we will compare
our simulations with some clinical data and we will perform
a sensitivity analysis of our parameters.

The rest of the paper is organized as follows. The analysis
of the model is described in Section 2. In Section 3, we il-
lustrate numerical simulations and compare the model so-
lution to some clinical data. We conclude in the last section.

2. Analysis of the Model

2.1. Positivity and Boundedness. For the problems dealing
with cell population evolution, the cell densities should
remain nonnegative and bounded. In this section, we will
establish the positivity and boundedness of solutions of the
model (1). First of all, for biological reasons, the parameters
X0 So» Vo» Vo> Wy and z, must be larger than or equal to 0.
Hence, we have the following result:

Proposition 1. For any initial conditions (xg,Sy> Yo
Vo> Wo» Zg)> system (1) has a unique solution. Moreover, this
solution is nonnegative and bounded for all t > 0.
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Proof. By the classical functional differential equations

theory (see for instance [13], and the references therein), we

can confirm that there is a unique local solution

(x(1),s(t), y (), v(t), w(t),z(t)) to system (1) in [0,t,,).
We have the following:

X0 =A20,

| klxv>0
Sleo = >
P
Yo = ky$=0,

(2)

Z|,.o =0>0,

this shows the positivity of solutions for ¢ € [0,t,,). For the
boundedness of the solutions,

X:x+s+y+£z, (3)
c

then, we have

X:/\—dlx—dzs—d3y—l%pz

(4)
<A -6X,
where § = min(d,,d,,d5,b). So,
A
ot ot
X(t)<X(0)e +5(1 -e)
R (5)
X(0)e™ + %,
<X(0)e ™ + 5
Similarly, let us consider
q
V=v+-uw; 6
P (6)
therefore,
. hq
V=ay-dy-—w
g (7)
<ay -4V,
where « = min (d,, h), then,
a
VO VO + 1yl (8)

this proves that the solutions x (), s (t), y (t), v(t), w(t), and
z(t) are bounded. Hence, every local solution can be pro-
longed up to any time t,, > 0, which means that the solution
exists globally. O

2.2. Steady States. System (1) has an infection-free equi-
librium E; = (1/d,,0,0,0,0,0), corresponding to the
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F1GURE 1: Schematic of the model under consideration.

maximal level of healthy CD4" T-cells. By simple calcula-
tion, the basic reproduction number of (1) is given by
ak,k, k, a 1

R, = =k —X—,
0 dyd, (dz + kz) ldz +k, * d; * d, ©)

where k,/(d, + k,) is the proportion of the exposed cells to
become productively infected cells, a/d; is the number of
free virus production by an infected cell, and 1/d, is the
average life of virus. From a biological point of view, R,
stands for the average number of secondary infections
generated by one infected cell when all cells are susceptibles.
Depending on the value of this basic reproduction number
Ry; in other words, depending on these three biological
proportions, we will study the stability of the free-disease
and the endemic equilibria. Indeed, it is easy to see that when
Ry>1, system (1) has four of them. The first endemic
equilibrium is E, = (x,,s;, y,,v;, Wy, 2;), where

B A

Cdy +ky (1= (1/R,))

X1

) M, (1= (1/Ry))
e (dy +k,) (dy + ki (1= (1/Ry)))

_ Ad4(R0_ 1)
Y17 ad, + ak, (1 - (1/R,))’ (10)
o MR-
Yd +k (1= (URy))
w; =0,
z,=0

We define the antibody immune response reproduction
number by
w _ gV g/\ (RO - 1)
Ry ==—= , 11
VS T dh bk, (1= (URy) (1)

where 1/h is the average life of antibodies cells and v, is the
number of free viruses at E,. For the biological significance,
RY represents the average number of the antibodies activated
by virus when the viral infection is successful in the absence
of CTL immune response.

Furthermore, we introduce the CTL immune response
reproduction number given by

R - Y cAd,(Ry— 1) ) (12)

b abd, +abk, (1 - (1/Ry))
where 1/b represents the average life of CTL cells and y, is
the number of infected cells at E,. Hence, R represents the
mean of CTL immune cells activated by an infected cell
when the viral infection is successful in the absence of the
antibody immune response. The second endemic equilib-
rium is

Ey = (x5, 89, Y2, V2 W), 2,), (13)
where
_ —abd, — abk, + \cd, + VA
Y27 2cd,d, ’
. ak,b(-abd, - abk, + Acd, + VA)
> cd,(dy + k,) (abd, — abk, + Acd, + VAY
b
Y2 = Z
L _ab
*dd,
w2 = 0,

- d, ((Ry — 1) (—ak,b + Acd, + VA) — abd, (R, + 1))
: p(abd, — ak,b+ Acd, + VA) ’
(14)



with A = (abk, — Acd,)* + a’b?d; + 2a*b*d, k, + 2Mabcd, d,.
We introduce the antibody immune competition re-
production number given by
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represents the average number of the antibodies activated by
virus when the viral infection is successful in the absence of
CTL response. The third endemic equilibrium is

RY = 9% _ abg’ (15) E; = (X3, 53, ¥3, V3, W3, 23)s (16)
h  cdh
where
with 1/h represents the average life of antibodies and v, is the
number of free viruses at E,. For biological point of view, R}
. _—dh—-kh+Ag+ VB
> 2d,g ’
o kih(-d,h—kh+Ag+/B)
> g(dy+ky)(dh—kh+Ag+VB)
yy = kik,h(~d\h —k,h+Ag + V/B)
*dyg(dy +ky)(dih—kyh+ Ag + VB) (17)

V3 =—,

g

o, = %Ry =1)(kih +1g + VB) - dih(Ry + 1))

q(d,h—kh+1g++B) ’

z3 =0,

with B = (hk, — Ag)* + d>h? + 2k,d, h*k, + 2Agd, h.
We define the CTL immune competition reproduction
number R of our model by
R ckikyh (—=dh —kih+ Ag + VB)
" b bdyg(d,+k,)(dh—kh+Ag+VB)

(18)

with 1/b represents the average life of CTL cells and y; is the
number of infected cells at E;. Hence, R represents the

_—dh-kih+1g+ VB
B 2d,g

. kih(-d,h —kh+Ag + VB)

* 7 g(d, +ky)(d,h—k,h+Ag + VBY

Xy

>

b
V4= p
_h
v, = py
w, = abg — cdh _ dy (RY - 1),
chq q

average number of CTL immune cells activated by an in-
fected cell when the viral infection is successful in the ab-
sence of the antibody immune response. The last endemic
equilibrium is

Ey = (X4 Y Var Wy Z4)5 (19)

where

(20)

. (ckykyh —bdyg(d, + k) (kyh + Ag + VB) — d h(ck;k,h + bdsg (d, + k,))

* pbg(d, +k,)(dh—kh+ g+ V/B) ’

d3 z
=32 (RE-1).
p(s )
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We observe that the second endemic state E, = (x,,
Va5 Vo, Wy, Z,) exists when R > 1. We explain the existence of
this endemic equilibrium E, as follows. We recall first that,
in this state, both the free viruses and CTL cells are present.
Assume that R, >1, in the total absence of CTL immune
response, the infected cell load per wunit time is
A, (R, — 1)/ (ad, + ak, (1 — (1/R,))). Via the six equations
of model (1), CTL cells are reproduced due to infected cells
stimulated per unit time being (cAd, (R, —1)/(ad;+
ak, (1 - (1/Ry)))) = cy;. The CTLload during the lifespan of
a CTL cellis (cAd, (R, — 1)/ (abd,+ abk, (1 - (1/R))))) = Rj.
If (cAdy(Ry—1)/(abd, +abk,(1- (1/R)))))>1, we wil
have the existence of the endemic equilibrium E2. We
observe also that the third endemic state E;=
(x3, ¥3, v3, W3, 23) exists when RY >1. We explain the ex-
istence of this endemic equilibrium E; as follows. We recall
first that, in this state, both of the free viruses and antibodies
are present. Assume that R, > 1, in the total absence of the
antibody immune response, the viral load per unit time is
ARy —1)/(d; +k; (1= (1/Ry))). Via the six equations of
model (1), antibodies are reproduced due to free viruses
stimulation per wunit time is (gA(R,-1)/(d, +k,
(1= (1/Ry)))) = gv,. The viral load during the lifespan of
virion is (gA(Ry —1)/(dh+ hk, (1- (1/Ry)))) = R}. If
(gA(Ry — 1)/ (d h + hk, (1- (1/Ry)))) > 1, we will have the
existence of the endemic equilibrium E3. Similarly, one can
see that E, = (x4, ¥4 V4 Wy, 24) exists when R >1 and
RY > 1.

2.3. Global Stability of the Disease-Free Equilibrium. For the
global stability of the disease-free equilibrium, we have the
following result.

Proposition 2. If Ry<1, then the endemic point E; is
globally asymptotically stable.
Proof. Let the following Lyapunov functional be

d2+k2y+d3(d2 +k2)v
k, ak,

Z(x,y,vw,z) =s+

(21)
+ﬂd3(dz+k2)w+£dz+kzz
g ak, c k,

The time derivative is given by

d, +k, +d3(d2+k2)1}

3(x,s,y,v,w,z)=s'+ K, y ok

+Qd3(d2+kz)u-j+

P d, + kzz,
g ak, c

k,

1xv

L(x,5, v, w0, 2) = —(dy + ky)s + kz (kys —dsy)

d+k

2

+ 4 (d; +k;) (ay —dy — qvw)

2 pyz

ak,

L4 d;(d, + k) B
giakz (gvw — hw)
LPdtk
c

(cyz bz),
2
kyxv dsdzv_@d3(d2+kz)w

g » ¥ b
(52 v,w,2) = x+v a g ak,

_bpdytky
c k 2

dyd, (d, +k,) v

g s> Yoo Vo W Sk -
(x, y, 8, v, w,2) <kyv ak,

_dd, (d +k2)(R W

(22)

If R, < 1, then & <0. Moreover, # <0 when v = 0. The
largest compact invariant is

E={(x,s,y,vw,2) | v=0} (23)

According to LaSalle’s invariance principle [14], we have
lim, v (t) = 0. The limit system of equations is



(X =A-dx,
S =—d,s — ks,
1V =ks—dsy - pyz, (24)
w = —hw,
{ 2 =cyz - bz.

We define

d, +k,
k, ”

1 X
ff(x,s,y,w,z)=<x—x0—x01n )+s+
X0 X0

+Qd3(d2+k2)w+d2+k2 p,

g ak, k, ¢
(25)
Since x, = A/d,, then
; _a(2- X %) _di(datky)
Z(x,s,y,w,z)—dl(z xo x) i y
q hd, (d, +k2)w_d2 +k, psz
g ak, k, ¢
(26)

Since the arithmetic mean is greater than or equal to the
geometric mean, it follows that

X X
2—-—-—-—x<0. (27)
Xy X

Therefore, £ <0, and the equality holds if x = x, and
s=y=w =z =0, which complete the proof. O

2.4. Global Stability of Infection Steady States. In this sub-
section, attention is focused on the stability of the infection
steady states.

For the first endemic equilibrium E,, we have the fol-
lowing result.

Proposition 3. If Ry>1, R{ <1, and RY <1, then the en-
demic point E, is globally asymptotically stable.

Proof. Let the following Lyapunov functional be
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Y (dy+ky)s

g 59y Y Vi Wy = - P YN
(%, 8, y,v,w,2) = x x1+jx1k1uvl/(u+vl)

du+s-s;

s
- s 1In—
S1

d2+k2( y)
+—=—=(y-y, -y, In =
k, Y= 1" 9

Pty 2)

ak, v,
L4 d3(d2+k2)w+£ d2+kzz.
g ak, c k,

(28)
we have then

. . X+v . ..
L5,y vhw,2) =% —(dy +ky)s; % +§— 1§
kyxvy s

d2+k2<. b2 )
+— R —
k, 4 }’y

+d3(d2+k2)(v_ﬁv>

ak, v
L4 d3(d2+k2)u,)+£ d2+k2z'.
g ak, c ky
(29)
On the other hand, we have

(A =dx; +(d, +ky)sy,

kixv

B (4, s,

S1_ dsd,
1v, ak,’ (30)

Y1 _ @

v, a’

si_ds

ook
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Hence,

. kyxv x+v
ZL(x,8, 9, v, w,2) :<)L—d1x—xl+v><l —(dy +k,) 1)

+ kv (dy +ky)s
y
s kyxv B
s <x+v (4 +k2)s)
d, +k,

+ ==

X (kys —dsy - pyz)
2

d, +k;, y,
ST (s —doy —
A y(zs 3y~ pyz)

+%k:k2)(ay—d4v—qvw)
di(d,+k,) v
—%ﬂ;‘(w—dw—qvw)
bk
g ak,

+£d2+
c

k,
k—z (cyz - bz),

S'Z(x,s,y,v,w,z) =A-dx—(d,+k,) X h

PRSNG|
Yk, xv,

~<A—d1x—k1xv>
X+v

s kxv
< <x+v>+(d2+k2)51

d, +k,

+ k2 py,z+

d, +k,)d
(2k2)3y1
2

~(dy +k )s&_dsdzx(dz‘*kz)v
2 2 y ak2

d, +k,)d
+—( 2 k22) 3)’1_(dz+k2)5%

_dyd, (dy +ky) v qgh d, (dy +ky) w
ak, g ak,
ds(d, + k) 1 w—d2+k2 b—pz.
ak, k, ¢

(31)

Thus, this fact implies that

F (%5, 9w, 2) = A —dyx — (dy + ky)s 0L s
5 kyxv,
kyxv,
. (A —dyx - klf”) - klfv +dys,
XtV S X+V

_dsd, (dy +ky) v ds(d, +k,) Vi
ak, k,

v
+d3(d2 +k,) _gh ds (dy +k,)

ak, " g ak, v

+ ds(d, + k)

b
+pz| y;—— )
ak, qrw+p (J’l c)
(32)
Since
(A —dx =dx; +(dy + ky)s; —dyx,
A—dyx—(dy+ k), (A —dyx - X
! 20T e xy, Y
:%Mo_i_ﬁﬁiﬁ+iﬂi)
X, X XtV X+
+ +
+(d2+k2)sl<l nxth VX Vl)
X X +v, v X+v
sy kyxv S XV X +v;

- +(d, +ky)s; = — d, +k
s(x+v> (dy + ko)s, S XV X+ (dy +ka)sy
+(dy +ky)sy,

(33)

We have

c.?(x,s,y,v,w,z)=dlxl<1—i—ﬁx-H/1 u)
X, X XtV X 4w

(34)
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Therefore,
. dV 2
oM (4 x)
x(x; +v))
v v Xx+v, x+v
+(dy +ky)s;| -1 - —+— 1,
v, oV XHV O X+
X, x+v, § XV x,+v
+(d, + ky)s, it SRARLIG Soe WAt LIS §
X X +V, S XV, X+V

Sy, I xX+v
1y W o x+v

ds(d, +ky) h w d,+ky, b
A2 ) © -1 Z
: S (RY 1)+ 2 O

R -1),
akz (1 )

(35)

which implies that

dv,

g A
x(x; +v))

(x_xl)z

—(dy + kz)ﬁ(#ﬂiﬂ)

X X+Vv, S XV x +v
S XV X+

sy, YV X+v
S1Yy v ox+v;

+d3 (dy+ky) b

Squ(R! - 1)

+wéPZ(RT_ 1).
c

ak,
(36)

Since the arithmetic mean is greater than or equal to the
geometric mean, it follows that
s X1 XtV S XV X4V sy yn
S XV X+V sy oyvox+v

(37)

and we know that R <1 and R¥ <1, then L<0, and the
equality holds when x =x,, y=y,, v=v,, w=w,, and
z = z,. By the LaSalle invariance principle [14], the endemic
point E, is asymptotically stable when R, > 1.

For the second endemic equilibrium E,, we have the
following result. t

Proposition 4. If Ry>1, R;>1, and RY <1, then the en-
demic point E, is globally asymptotically stable.

Proof. Let the following Lyapunov functional be
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¥ (dy +ky)s, du+s

Z(X,Sa)’)%w)z) =X=X; - JX kluvz/(u+vz)

s
-5, =5, In —
52

d, +k, ( y )
+—=y-y,—y,In =
k, Y=Y2=)2 ¥,

. ds(d, + k,) +(d, + ky) pz,
ak,

v
x| v—v,—v,In —
V2

+4 d;(d, +ky) +(d, + k) pz, w

g ak,
+£d2+k2(z—z2—zzlni),
c K Z3
(38)
then, we have
. , X+v, . . S,
.Sf(x,y,s,v,w,z):x—(d2+k2)szk1xvzzx+s—fs

d2+k2(. ¥, )
+— _ =
k, 4 }’y

+ ds(dy +ky) +(d; + ky) pz, (1}_ QI}>

ak, %

W4 ds(dy +ky) +(d; + ky) pz, w
g ak,
SLhtk (z‘—@z').
c k z
(39)
We know that
(A =d,x, +(d, + k,)s,,
kix,v, = (x5 +v,) (dy + ky)sy,
S _4 p%
1) ky,  k, (40)
Y2 _
v, a’

S _ dsd, + d,pz,
lv, ak, ak,’

s0, we have
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. k,
L5 yrnz) =A—dix -2 X2 0 i)+ (dy +hy)sy) ~ 22 (d, 1k, )5—( xv—(d2+k2)s)
X, + v, v, x+v
+ dzl;" k, (kys —dsy - pyz) - dy+k;y yy (kys —dsy — pyz) + ds(d, +k,) ';C(dz +ky)pz,
2 ky 'y ax,
(41)
x(ay —dyw - quw) - dy(dy +ky )ak(d thk)pz v (ay dy — quw)
2
+gd3(d2+k2)+(d2+k2)pz2 (ng_hw)_l_gﬂ( z — bz ) pZZ (CyZ bZ)
g ak, ¢ ky cz
On the other hand, we have
(A—dx=(d\x, +d, +k;)s, — dx,
A —dyx - (d, +k2)52x”2 <A—d1x—k1”) =d1x2<1—i—ﬁ X1V KT )
xX+v Xy X XptVy X, +V2
+(d, +k)52< Xy X+, lx+v2>
X X4V, Vy X4V
Sy [ kyxv B LS5 XV X+,
s (x+ v) +(dy +ky)s, = (dy + k2)52<1 N >>
d, +k,)d d, +k,)d;d
(2k22) ,—(dy +ky) yz_(zakzz)szxv
s v d,+k v (d,+k
=(d, +k2)52<1 - &__) + ( 2k 2) 22V~ (@ 2)Pzz)’2’
2 Y W 2 2
) (42)
dyd; (d, +k2) d 3(dy +ky) V2 I "
ak, k, =(d2 1 k)5 | 1 v
d, +k d, +k
k), v (k)
2 2
(dy +ky) pz, (dy +ky)pzy v, _(dy+ky)pzry
ak2 (ay d4V) ak2 v (ay d4V) - k2
(datk)pzyy, v (dy+ky)pzay v, + (dy + ky)pzyy,
k, v, k, v k, ’
(dy + k) pz, (dy + ky)pzy v, Zpdy+k
0 oy - ) - BT s ) 5 (oyz-bo
(dz + kz) v (dz + kz) (dz + kz) v, (dz + kz) _
+ K Pz, 2, k bz ys + K pzy Y k, bz Yy, =
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This fact implies that
: dv, 2
L=-—*= —

x (x, + Vz)(x %2)
x(v-v, )2 )

v, (x+v,) (x+v)

—-(d, + kz)sz<

Xy X+ V Sy XV X5tV
+(dz+k2)sz<5——2—2——2—g (43)

S XpV, X+V

Sy, Yv, x+v
Y YoV X+,

h d, (dy +ky) +(dy + Ky) pzy qw

RY —1).
g ak2 (2 )

+
Since the arithmetic mean is greater than or equal to the

geometric mean, it follows that

Xy X+V, S, XV Xp+V, S v
5 X2 XFVa S XV WV, SVa YV XEV
S XV, X4V SV YV X+,

(44)
and we know that R¥ < 1 which means that L <0, and the
equality holds when x = x,, s =5, ¥y = ¥,, V=V, W = w,,
and z = z,. By the LaSalle invariance principle [14], the
endemic point E, is asymptotically stable.

For the third endemic equilibrium E;, we have the
following result. (W

Proposition 5. If Ry>1, R§<1, and RY > 1, then the en-
demic point E; is globally asymptotically stable.

Proof. Let the following Lyapunov functional be
¥ (dytky)ss

xy kyuvs/ (u+vy) duts

Z(x,sy,vw,2) =x—x3—J

s
- 53— s;ln —
S3

d, +k, < y )
+ == y—y,—y,In =
k, Y=V3— Vs ¥,

+ d;(d, + k)
ak,

x(v—v3—v31n %)Jr%kjkﬁ

g w
A w-ws —waln —
(w w; —w;ln 3)

Ltk
c k,
(45)
Then, we have
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X+ Vs
kyxv,

(d2+k2)(- )’3-)
+— —_
K y y}’

L (%5, 0w, 2) = % — (dy + k)52 54 §— 2§
S

+d3(d2+k2) <1}_V3 1}> +d3(d2 +k,)

ak, v ak,

(46)

this fact implies that
X+ Vs
kyxv,

-<A—d1x— klxv) 83 kyxv

X+v S X+v

Z(x,5 pvw,2) =A—d,x - (d, +k,)s;

+(dy +ky)s;

dy(d, +k
+73( > 2)y3—(d2+k2)s%

ky
_dyd; (dy + ky) v
ak,
_ ds(d; +ky) ﬁy + dsd, (d, + kz)v3
k, v ak,
ds(d, + k)
ok qwsv
d;(d, +k
+ 3(a2k2 Z)qv3w3
(d, +k,) B b
+ k2 PZ y3 c .
(47)
We know that
(A =dx;+(d, +ky)s;,
kix3vs = (x5 +v3) (dy + ky)s3,
S _ds
b y3 k2’ (48)
s _da aws
v, a a’
S2_ dyd, + dyqu,
| v, ak, ak,
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So, we have

(A —dx=d x5+ (d, + ky)s; —dx,

X+ v k,xv
A - —(d, +ky)ss—=( A —d,x — =d 1-—-=
dyx—(dy + 2)s3k1xv3 ( 1% t v) 1x3<

vV X+,
+_
V3 X4V

_S_3(k1XV) +(d2+k2)53 — (d2+k2)53<1 _Sjﬁx?’—w)’

s\x+v S X3V3 xX+V

X3 X+ Vs

+(dy + k2)53<1 -=

X X3+ Vs

X X3 X+
X3 X X3+V;

’ (dy +k,)d, V3 ( S )’3)
~= 2 2y —(d,+k,)sZ==(d, +k))s;| 1 -— 22,
k, )’3(2 z)y(z 2)3 5
dyd, (d, + k) ds(d, + k,) v dyd, (d, +k,) ds(d, + k,)
ak, Y k, v ak, "3 ak, TWsV
v oV y
=(d, +k,)s 1——3)
(@ vk 1% 2
Then, we have
: dyvs 2
L=—"2 —
x(x3+"3)(x %)
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X+ vy
+—
X3+ V3

(49)

dy(d, +k
+ 3(a2k2 Z)qv3w3

Proposition 6. If Ry>1, R;>1, and RY > 1, then the en-
demic point E, is globally asymptotically stable.

Proof. Let the following Lyapunov functional be

x(v =) )

vy (x+v3)(x+v)

-(d, + k2)53<

X3 X+V3 S3 XV X3+V;

(50)

S X3V3 X+V

Sy; yv; X +v
S5y yv o x+vy)

+de+k2
c k,

pz(R5 - 1).

Since the arithmetic mean is greater than or equal to the
geometric mean, it follows that
X3 X+V3 S5 XV X3+V; S vy XtV
5_%3 35 3T Vs SVs _YVs <0,
S5y Y3V X+
(51)

X X3+Vy S X3V3 X4V

and we know that RZ < 1, then L <0, and the equality holds
when x = x5, s =53, ¥y = y3, V= V3, W = w;, and z = z;. By
the LaSalle invariance principle [14], the endemic point E; is
asymptotically stable when R, > 1.

Finally, for the last endemic equilibrium E,, we have the
following result. O

Z(x,8,y, v, w,2) =x—x4—J

¥ (dy+ky)sy

x, kyuvy/ (u+v,) duts

s
—s;—s,In —
S4

d, +k, ( y >
+—=——=\y—ys—y,In =
k, Y=Vis— Vs Ve

+ ds(d, +ky) +(d, + k) pzy
ak,

v
x| v-—v,—v,In —
Va

+ ds(d, +ky) +(d, + k) pzy
ak,

g w
- —w, —w,ln —
(w w, —wyln 4)

+BM<Z—Z4—Z4IH i).

c k, Z4

(52)
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Then, we have

) X+
L (x5 y,vw,2) = A —d\x—(d, + k2)54leV:

-<A—d1x— klxv> 8y kyxv

xX+v S X+v
+(dy +ky)s,

ds(d, +ky) Va4
+— 2y —(dy,+ k)5
k, ¥y = (dy + k) y
_dsd, (dy +ky) +dy(d, + ky) pz, Y
ak,

_ds(dy+ky) +(dy + ky)pzy vy
k V7
2

dyd,(dy + k,) +d, (d, + kz)PZ4V
ak, ¢

+

ds(d, +ky) +(d, + k) pzy

- ak, qw,v
+ ds(dy +ky) +(dy + k) pzy Qaw,s
ak,
d, +k
+ %PZU@-
2
(53)
We know that
(A =dx, +(d, + ky)sy
kyxyvy = (x4 +vy) (dy + ky)s45
S _dy P2
d y4 kZ k2 (54)

)’4_d4 qWy
—= 4+
v, a a

S4 _ dsd, . d,pz, + dsqu, 4 PA7aWs
L vy ak, ak, ak, ak,

>

Computational and Mathematical Methods in Medicine

then,
A—dx=(dx,+d, +ky)s, —d,x,

X+ kxv
A-d,x—(d, +k r-dx-—2
1% = (dy + 2)S4k1xv4< 1% )

X x4 X+ xX+v
=dx[1-=—-2 4~ 4
x, +v4

VX +
+7
X X4+Vy Vg X+V

—(") o (dy 4 k)sy = (d + k),

S\ X+Vv

15 XV Xat vy
s x4v, x+v )
4 + ko) + d2]:2k2 pysza—(dy + kz)%s

kz P2
(55)

=(dy+ k2)54(1 -2 i>’

Y S4

dyd,(dy +ky) +dy(dy + ky) pz4 v
ak,

_ds (dy +ky) +(d, + ky)pzy Vg
k v
2

+ dyd,(dy +k,) +d,(d, + kz)PZ4V
4
ak,

ds(d, +ky) +(d, + ky) pz4 qu
ak,

4V

+ ds(d, + k,) +(dy + k,) pzy v
ak,

4 Wy
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TaBLE 1: Parameters and their symbols and default values used in the suggested HIV model.

Parameters Units Meaning Value References
A cells yl™" day™ Source rate of CD4" T cells [0, 10] [15]
k, plvirion™ da)f1 Average of infection [2.5%107%,0.5] [9]
d, day™ Decay rate of healthy cells 0.0139 [9]
d, day'1 Death rate of exposed CD4" T cells 0.0495 [9]
: +
K, day™! The rate that exposed cells become infected CD4 11 [9]
T cells
d, day™ Death rate of infected CD4" T cells, not by CTL killing 0.5776 [9]
. . . R
B day™! The rate of production the virus by infected CD4 [2,1250] [9]
T cells
d, dayi1 Clearance rate of virus [0.3466, 2.4] [9]
Q plvirion days™ Killing rate of antibody 0.5 [16]
G lvirion days™ Activation rate CTL cells 10711, 1074 [16]
H day™ Death rate of antibody 0.1 [16]
P plcell " day™ Clearance rate of infection 0.0024 [17]
C cells cell ™ day™ Activation rate CTL cells 0.15 [17]
b day'1 Death rate of CTL cells 0.5 [17]
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T 800 = 10
o] o
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FIGURE 2: The behavior of the disease for A = 10, d; = 0.0139, k; = 0.04, d, = 0.0495, k, = 1.1, d5 = 0.5776, a = 2, d, = 0.6, g = 0.05,
g=10""h =01, p=0.0024, c=0.15 and b = 0.5.
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Figure 3: The behavior of the disease for A =2, d; = 0.0139, k; = 0.05, d, = 0.0495, k, = 1.1, d5 = 0.5776, a = 100, d, = 0.6, g = 0.05,
g=10", h=0.1, p=0.0024, c = 0.15, and b = 0.5.
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FiGure 4: Continued.
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FIGURE 4: The behavior of the disease for A = 10, d; = 0.0139, k, = 0.05, d, = 0.0495, k, = 1.1, d5 = 0.5776, a = 100, d, = 0.6, g = 0.05,

g=10""h=0.1, p=0.0024, c=0.15, and b = 0.5.

This fact implies that

: dyv
Z(x,8,y,w,2) = —m(x -x,)°

Since the arithmetic mean is greater than or equal to the
geometric mean, it follows that
Xy X+Vy S, XV X4 +Vy SV, YV

5 - ——bFr = — === =<,
S X4V, XAV Sy YV X+V,

(57)

which means that # <0, and the equality holds when x = x,,
S=584 Y=Y V=V, wW=w,, and z = z,. By the LaSalle
invariance principle [14], the endemic point E, is globally
asymptotically stable when R, > 1. O

3. Numerical Results

For our numerical simulations, system (1) is solved using the
Runge-Kutta method iterative scheme. The numerical
ranges of our parameters are given in Table 1. Figure 2 shows
the behavior of disease during the first 60 days of obser-
vation. From this figure, we observe that the solution
converges to the point E §= (827.22,0,0,0,0,0). With these
chosen parameters, we have R, = 0.22 < 1, which proves that
E; is stable. This supports our theoretical findings. Figure 3
shows the behavior of the disease during 60 first days. From
this figure, we observe that the solution of (1) converges
towards the point E; = (33.17,1.33,2.54,4.24 x 10,0, 0).
With these chosen parameters, we have R, =13.81>1,
Ri=7.64%x10"<1, and RY =4.24x10®%<1. This fact
supports that E; is stable. Figure 4 shows the behavior of
disease during 60 days. We observe that the solution of (1)
converges towards the endemic point E, = (1.96x
10%,6.32,3.33,5.55 x 10%,0,6.28 x 10%). In this figure, we
have R, = 13.81> 1, R = 3.81>1,and RY = 5.55x 10® <1,
which supports the fact that E, is stable. Figure 5 shows the
behavior of disease during the first 60 days of observation.
We clearly see that the solution of (1) converges towards the
endemic point E; = (32.07,1.35,2.57,1000, 4.45,0). With
the chosen parameters, we have R,=2.39x10?>1,
R =0.77<1, and R} = 9.61 > 1; this supports the stability
of E;. In addition, Figure 6 shows the behavior of disease for
the first 60 days. We remark that the solution converges
towards the last endemic point E, = (1.77 x 10%,6.55,
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FiGure 5: The behavior of the disease for A =2, d; = 0.0139, k; = 0.05, d, = 0.0495, k, = 1.1, d5 = 0.5776, a = 500, d, = 0.6, g = 0.05,
g=10"% h=0.1, p=0.0024, c = 0.15, and b = 0.5.
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FiGgure 6: Continued.
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FiGure 6: The behavior of the disease for A = 10, d, = 0.0139, k, = 0.05, d, = 0.0495, k, = 1.1, d5 = 0.5776, a = 800, d, = 0.6, g = 0.5,

g=10"% h=0.1, p=0.0024, c = 0.15, and b = 0.5.

3.33,1000, 4.46, 6.61 x 10%). With the used parameters, we
have R, =75.31>1, R; =3.74>1, and Ry = 3.03>1; this
confirms the theoretical result concerning the stability of E,.

3.1. Comparison with the Clinical Data. First, define the
following objective function:

J= 5 Ylog (+(6) - log (516"

(58)

where v(t;) represents the virus concentration at time ¢;
using the mathematical model (1) and V(¢;) represents the
virus concentration clinical data at time ¢; [18].

The numerical simulations are performed and compared
to three patients’ data picked from [18]. The data were from
the University of Washington study [7] and from the Aaron
Diamond AIDS Research Center (see Table 2).

In Figure 7, the dots show the evolution of the infection
during the first 120 days for the first patient [18], while the
solid curve represents the numerical simulation of our
suggested model. The error between the numerical simu-
lation and the clinical data is approximately J ~ 2.378 x 10~
which indicates that the numerical simulation is a good
approximation of the clinical data. Figures 8 and 9 show a
comparison between the clinical data (dots) and the
mathematical model (solid line), and the error is approxi-
mately J =~ 843x 1072 and ] = 1.64 x 107", respectively.
These three results indicate that our mathematical model can
fit the clinical data of different patients for the first days of
observations. However, the limit of our model is to predict a
long time behavior of the infection disease.

TaBLE 2: The used clinical data [18] for Figure 7 (A), for Figure 8
(B), and for Figure 9 (C).

Clinical day test Viral load (virions per ul)

A

22 27.7
43 210
78 85.9
106 81.1
B

0 228.8
2 599.2
14 169.6
21 93.7
42 165.6
98 127
C

0 1350.6
9 337.2
12 340.6
16 202.3
19 169.7
23 141.4
26 56.48
30 182.75
50 267
60 182.7

3.2. Sensitivity Analysis. Using the method outlined in [19],
we perform a sensitivity analysis using partial rank corre-
lation coeflicients (PRCC) to identify the main drivers of the
basic reproduction number R,. Parameters were tested
within the ranges given in Table 1.
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FIGURE 7: Comparison between the mathematical model (solid
line) and the clinical data of the first patient [18] (dots). The used
parameters for the model are A =10, d, =0.0139, k, = 0.05,
d, =0.0495, k,=1.1, dy=0.5776, a =850, d, =0.6, q=0.5,
g=12x10"3 h=0.1, p=0.0024, c = 0.15, and b = 0.5.
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FiGure 8: Comparison between the mathematical model (solid
line) and the clinical data of the fifth patient [18] (dots). The used
parameters for the model are A =10, d, =0.0139, k, = 0.05,
d, =0.0495, k, = 1.1, dy =0.5776, a =650, d, =0.6, q=0.5,
g =107, h=012, p=0.0024, c = 0.15, and b = 0.5.
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FiGure 9: Comparison between the mathematical model (solid
line) and the clinical data of the seventh patient [18] (dots). The
used parameters for the model are A = 10, d, = 0.0139, k, = 0.05,
d, =0.0495, k, = 1.1, dy =0.5776, a =600, d, =0.6, q=0.5,
g =107, h=0.182, p=0.0024, c = 0.15, and b = 0.5.
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FIGURE 10: Sensitivity analysis of R to different input parameters
of the model.

In Figure 10, we observe that a and k, is highly
positively correlated with R,. However, d, has a strong
negative correlation with R,,. The other parameters k,, d,,
and d; present a weak correlation with R;. From the
biological point of view, the sensitivity analysis shows
that an increase of production rate of the virus by infected
cells a or an increase of the infection rate k, leads to
an increase of the basic reproduction number R,.
However, an increase in the clearance rate of virus d,
leads to a significant decease of the basic reproduction
number R,.

4. Conclusion

In this paper, we have presented and studied a mathematical
model describing HIV viral infection with saturated rate in
the presence of the adaptive immune response. This adaptive
immunity is represented by CTL immune response and
antibodies. By using suitable Lyapunov functionals, the
global stability of each equilibrium has been established.
More precisely, the disease-free equilibrium is globally as-
ymptotically stable when the basic reproduction number is
below unity (R,<1). Also, the endemic steady state E, is
globally asymptotically stable when R,>1, R{<1, and
RY < 1. In presence of the adaptive immune response gov-
erned by competition between CTL and antibody responses,
system (1) admits three infection steady states. The first
infection steady state E, is with only the presence of CTL
response which is globally asymptotically stable if Rf > 1 and
RY < 1. The second infection steady state E; is with only the
presence of the antibody response which is globally as-
ymptotically stable if RY >1 and Rj < 1. The third infection
steady state is E, with the activation of the antibodies and the
CTL response at the same time. In this case, this equilibrium
E, is globally asymptotically stable when Ry >1 and R >1.
In addition, different numerical simulations are performed
in order to confirm the theoretical findings and to show that
the adaptive immune response is responsible to reduce the
viral load, increase the uninfected cells, and decrease the
infected cells. Moreover, a comparison with some clinical
data shows that our suggested model can be considered as a
good approximation of the clinical tests especially for the
first days of observation.
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