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In this paper, a mathematical model describing the human immunodeficiency virus (HIV) pathogenesis with adaptive immune
response is presented and studied.*emathematical model includes six nonlinear differential equations describing the interaction
between the uninfected cells, the exposed cells, the actively infected cells, the free viruses, and the adaptive immune response. *e
considered adaptive immunity will be represented by cytotoxic T-lymphocytes cells (CTLs) and antibodies. First, the global
stability of the disease-free steady state and the endemic steady states is established depending on the basic reproduction number
R0, the CTL immune response reproduction number Rz

1, the antibody immune response reproduction number Rw
1 , the antibody

immune competition reproduction number Rw
2 , and the CTL immune response competition reproduction number Rz

3. On the
other hand, different numerical simulations are performed in order to confirm numerically the stability for each steady state.
Moreover, a comparison with some clinical data is conducted and analyzed. Finally, a sensitivity analysis for R0 is performed in
order to check the impact of different input parameters.

1. Introduction

*e human immunodeficiency virus (HIV) is a virus that
gradually weakens the immune system since it targets the
principal vital immune cells. It is considered as themain cause
for several deadly diseases after the resulting acquired im-
munodeficiency syndrome (AIDS) is reached. With 36.7
million people living with HIV, 1.8 million people becoming
newly infected with HIV, and more than 1 million deaths
annually, HIV becomes a major global public health issue [1].

In the last decades, manymathematical models describing
HIV dynamics were developed [2–11]. With the three main
dynamics compartments that are free viruses, healthy CD4+
Tcells, and infected CD4+ Tcells, the first viral dynamics was
presented and studied in [2]. Including the exposed cells as a
new fourth compartment, a modified HIV viral model was
tackled in [8]. More recently, the model describing HIV viral

dynamics with another fifth compartment representing the
cytotoxic T-lymphocytes (CTL) cells is formulated and
studied in [9]. *e authors study the global stability of the
endemic states and illustrate the numerical simulations in
order to show the numerical stability for each problem steady
state. Notice that the adaptive immunity has two main arms
that are cellular and humoral responses. *e first one is
mediated by CTL cells that play a crucial role in the infection
by killing infected cells, while the second arm is mediated by
the antibodies which are proteins that are produced by B cells
and are specifically programmed to neutralize the viruses [12].
In this paper, we extend the recent work [9] by incorporating
to the model this other main component of the adaptive
immune response. *e dynamics of the HIV infection model
including these two arms of the adaptive immune response
will be governed by the following nonlinear system of dif-
ferential equations:
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_x � λ − d1x −
k1xv

x + v
,

_s �
k1xv

x + v
− d2s − k2s,

_y � k2s − d3y − pyz,

_v � ay − d4v − qvw,

_w � gvw − hw,

_z � cyz − bz.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

With the initial conditions, x(0) � x0, s(0) � s0,
y(0) � y0, v(0) � v0, w(0) � w0, and z(0) � z0. In this
model, x, s, y, v, w, and z denote the concentration of
uninfected cells, exposed cells, infected cells, free viruses,
antibodies, and CTL cells, respectively. Susceptible host cells,
CD4+ T cells, are produced at a rate λ and die at a rate d1x

and become infected by virus at a rate k1xv/(x + v). *e
exposed cells die at a rate (d2 + k2)s. *e infected cells
increase at rate k2s and decay at rate d3y and are killed by the
CTL response at a rate pyz. Free viruses are produced by
infected cells at a rate ay and decay at a rate d4v and are
killed by the antibodies at a rate qvw. Antibodies develop in
response to free viruses at a rate gvw and decay at a rate hw.
Finally, CTLs expand in response to viral antigen derived
from infected cells at a rate cyz and decay in the absence of
antigenic stimulation at a rate bz. Note that this model (1),
includes the saturated rate, called the saturated mass action
[11], which describes better the rate of viral infection. Such
HIV viral dynamics is illustrated in Figure 1. *e model (1)
extends the recent work [9] by adding a new compartment
which is the adaptive immune response. In addition to the
mathematical analysis of this new model, we will compare
our simulations with some clinical data and we will perform
a sensitivity analysis of our parameters.

*e rest of the paper is organized as follows. *e analysis
of the model is described in Section 2. In Section 3, we il-
lustrate numerical simulations and compare the model so-
lution to some clinical data. We conclude in the last section.

2. Analysis of the Model

2.1. Positivity and Boundedness. For the problems dealing
with cell population evolution, the cell densities should
remain nonnegative and bounded. In this section, we will
establish the positivity and boundedness of solutions of the
model (1). First of all, for biological reasons, the parameters
x0, s0, y0, v0, w0, and z0 must be larger than or equal to 0.
Hence, we have the following result:

Proposition 1. For any initial conditions (x0, s0, y0,

v0, w0, z0), system (1) has a unique solution. Moreover, this
solution is nonnegative and bounded for all t≥ 0.

Proof. By the classical functional differential equations
theory (see for instance [13], and the references therein), we
can confirm that there is a unique local solution
(x(t), s(t), y(t), v(t), w(t), z(t)) to system (1) in [0, tm).

We have the following:

_x|x�0 � λ≥ 0,

_s|y�0 �
k1xv

x + v
≥ 0,

_y|s�0 � k2s≥ 0,

_v|v�0 � ay≥ 0,

_w|w�0 � 0≥ 0,

_z|z�0 � 0≥ 0,

(2)

this shows the positivity of solutions for t ∈ [0, tm). For the
boundedness of the solutions,

X � x + s + y +
p

c
z, (3)

then, we have

_X � λ − d1x − d2s − d3y −
bp

c
z

≤ λ − δX,

(4)

where δ � min(d1, d2, d3, b). So,

X(t)≤X(0)e
− δt

+
λ
δ

1 − e
− δt

 

≤X(0)e
− δt

+
λ
δ
.

(5)

Similarly, let us consider

V � v +
q

g
w; (6)

therefore,

_V � ay − d4v −
hq

g
w

≤ ay − δV,

(7)

where α � min(d4, h), then,

V(t)≤V(0) +
a

α
‖y‖∞, (8)

this proves that the solutions x(t), s(t), y(t), v(t), w(t), and
z(t) are bounded. Hence, every local solution can be pro-
longed up to any time tm > 0, which means that the solution
exists globally. □
2.2. Steady States. System (1) has an infection-free equi-
librium Ef � (λ/d1, 0, 0, 0, 0, 0), corresponding to the
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maximal level of healthy CD4+ T-cells. By simple calcula-
tion, the basic reproduction number of (1) is given by

R0 �
ak1k2

d3d4 d2 + k2( 
� k1

k2

d2 + k2
×

a

d3
×

1
d4

, (9)

where k2/(d2 + k2) is the proportion of the exposed cells to
become productively infected cells, a/d3 is the number of
free virus production by an infected cell, and 1/d4 is the
average life of virus. From a biological point of view, R0
stands for the average number of secondary infections
generated by one infected cell when all cells are susceptibles.
Depending on the value of this basic reproduction number
R0; in other words, depending on these three biological
proportions, we will study the stability of the free-disease
and the endemic equilibria. Indeed, it is easy to see that when
R0 > 1, system (1) has four of them. *e first endemic
equilibrium is E1 � (x1, s1, y1, v1, w1, z1), where

x1 �
λ

d1 + k1 1 − 1/R0( ( 
,

s1 �
λk1 1 − 1/R0( ( 

d2 + k2(  d1 + k1 1 − 1/R0( ( ( 
,

y1 �
λd4 R0 − 1( 

ad1 + ak1 1 − 1/R0( ( 
,

v1 �
λ R0 − 1( 

d1 + k1 1 − 1/R0( ( 
,

w1 � 0,

z1 � 0.

(10)

We define the antibody immune response reproduction
number by

R
w
1 �

gv1

h
�

gλ R0 − 1( 

d1h + hk1 1 − 1/R0( ( 
, (11)

where 1/h is the average life of antibodies cells and v1 is the
number of free viruses at E1. For the biological significance,
Rw
1 represents the average number of the antibodies activated

by virus when the viral infection is successful in the absence
of CTL immune response.

Furthermore, we introduce the CTL immune response
reproduction number given by

R
z
1 �

cy1

b
�

cλd4 R0 − 1( 

abd1 + abk1 1 − 1/R0( ( 
, (12)

where 1/b represents the average life of CTL cells and y1 is
the number of infected cells at E1. Hence, Rz

1 represents the
mean of CTL immune cells activated by an infected cell
when the viral infection is successful in the absence of the
antibody immune response. *e second endemic equilib-
rium is

E2 � x2, s2, y2, v2, w2, z2( , (13)

where

x2 �
− abd1 − abk1 + λcd4 +

��
A

√

2cd1d4
,

s2 �
ak1b − abd1 − abk1 + λcd4 +

��
A

√
( 

cd4 d2 + k2(  abd1 − abk1 + λcd4 +
��
A

√
( 

,

y2 �
b

c
,

v2 �
ab

cd4
,

w2 � 0,

z2 �
d2 R0 − 1(  − ak1b + λcd4 +

��
A

√
(  − abd1 R0 + 1( ( 

p abd1 − ak1b + λcd4 +
��
A

√
( 

,

(14)
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Figure 1: Schematic of the model under consideration.
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with A � (abk1 − λcd4)
2 + a2b2d2

1 + 2a2b2d1k1 + 2λabcd1d4.
We introduce the antibody immune competition re-

production number given by

R
w
2 �

gv2
h

�
abg

cd4h
, (15)

with 1/h represents the average life of antibodies and v2 is the
number of free viruses at E2. For biological point of view, Rw

2

represents the average number of the antibodies activated by
virus when the viral infection is successful in the absence of
CTL response. *e third endemic equilibrium is

E3 � x3, s3, y3, v3, w3, z3( , (16)

where

x3 �
− d1h − k1h + λg +

��
B

√

2d1g
,

s3 �
k1h − d1h − k1h + λg +

��
B

√
( 

g d2 + k2(  d1h − k1h + λg +
��
B

√
( 

,

y3 �
k1k2h − d1h − k1h + λg +

��
B

√
( 

d3g d2 + k2(  d1h − k1h + λg +
��
B

√
( 

,

v3 �
h

g
,

w3 �
d4 R0 − 1(  − k1h + λg +

��
B

√
(  − d1h R0 + 1( ( 

q d1h − k1h + λg +
��
B

√
( 

,

z3 � 0,

(17)

with B � (hk1 − λg)2 + d2
1h

2 + 2k1d1h
2k1 + 2λgd1h.

We define the CTL immune competition reproduction
number Rz

3 of our model by

R
z
3 �

cy3

b
�

ck1k2h − d1h − k1h + λg +
��
B

√
( 

bd3g d2 + k2(  d1h − k1h + λg +
��
B

√
( 

, (18)

with 1/b represents the average life of CTL cells and y3 is the
number of infected cells at E3. Hence, Rz

3 represents the

average number of CTL immune cells activated by an in-
fected cell when the viral infection is successful in the ab-
sence of the antibody immune response. *e last endemic
equilibrium is

E4 � x4, y4, v4, w4, z4( , (19)

where

x4 �
− d1h − k1h + λg +

��
B

√

2d1g
,

s4 �
k1h − d1h − k1h + λg +

��
B

√
( 

g d2 + k2(  d1h − k1h + λg +
��
B

√
( 

,

y4 �
b

c
,

v4 �
h

g
,

w4 �
abg − cd4h

chq
�

d4

q
R

w
2 − 1( ,

z4 �
ck1k2h − bd3g d2 + k2( (  − k1h + λg +

��
B

√
(  − d1h ck1k2h + bd3g d2 + k2( ( 

pbg d2 + k2(  d1h − k1h + λg +
��
B

√
( 

,

�
d3

p
R

z
3 − 1( .

(20)
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We observe that the second endemic state E2 � (x2,

y2, v2, w2, z2) exists when Rz
1 > 1. We explain the existence of

this endemic equilibrium E2 as follows. We recall first that,
in this state, both the free viruses and CTL cells are present.
Assume that R0 > 1, in the total absence of CTL immune
response, the infected cell load per unit time is
λd4(R0 − 1)/(ad1 + ak1(1 − (1/R0))). Via the six equations
of model (1), CTL cells are reproduced due to infected cells
stimulated per unit time being (cλd4(R0 − 1)/(ad1+

ak1(1 − (1/R0)))) � cy1.*e CTL load during the lifespan of
a CTL cell is (cλd4(R0 − 1)/(abd1+ abk1(1 − (1/R0)))) � Rz

1.
If (cλd4(R0 − 1)/(abd1 + abk1(1− (1/R0))))> 1, we will
have the existence of the endemic equilibrium E2. We
observe also that the third endemic state E3 �

(x3, y3, v3, w3, z3) exists when Rw
1 > 1. We explain the ex-

istence of this endemic equilibrium E3 as follows. We recall
first that, in this state, both of the free viruses and antibodies
are present. Assume that R0 > 1, in the total absence of the
antibody immune response, the viral load per unit time is
λ(R0 − 1)/(d1 + k1(1 − (1/R0))). Via the six equations of
model (1), antibodies are reproduced due to free viruses
stimulation per unit time is (gλ(R0 − 1)/(d1 + k1
(1 − (1/R0)))) � gv1. *e viral load during the lifespan of
virion is (gλ(R0 − 1)/(d1h + hk1(1− (1/R0)))) � Rw

1 . If
(gλ(R0 − 1)/(d1h + hk1(1− (1/R0))))> 1, we will have the
existence of the endemic equilibrium E3. Similarly, one can
see that E4 � (x4, y4, v4, w4, z4) exists when Rz

3 > 1 and
Rw
2 > 1.

2.3. Global Stability of the Disease-Free Equilibrium. For the
global stability of the disease-free equilibrium, we have the
following result.

Proposition 2. If R0 ≤ 1, then the endemic point Ef is
globally asymptotically stable.

Proof. Let the following Lyapunov functional be

L(x, y, v, w, z) � s +
d2 + k2

k2
y +

d3 d2 + k2( 

ak2
v

+
q

g

d3 d2 + k2( 

ak2
w +

p

c

d2 + k2

k2
z.

(21)

*e time derivative is given by

_L(x, s, y, v, w, z) � _s +
d2 + k2

k2
_y +

d3 d2 + k2( 

ak2
_v

+
q

g

d3 d2 + k2( 

ak2
_w +

p

c

d2 + k2

k2
_z,

_L(x, s, y, v, w, z) �
k1xv

x + v
− d2 + k2( s +

d2 + k2

k2
k2s − d3y( 

−
d2 + k2

k2
pyz

+
d3 d2 + k2( 

ak2
ay − d4v − qvw( 

+
q

g

d3 d2 + k2( 

ak2
(gvw − hw)

+
p

c

d2 + k2

k2
(cyz − bz),

_L(x, s, y, v, w, z) �
k1xv

x + v
−

d3d2

a
v −

qh

g

d3 d2 + k2( 

ak2
w

−
bp

c

d2 + k2

k2
z,

_L(x, y, s, v, w, z)≤ k1v −
d3d4 d2 + k2( 

ak2
v

≤
d3d4 d2 + k2( 

ak2
R0 − 1( v.

(22)

If R0 < 1, then _L≤ 0. Moreover, _L≤ 0 when v � 0. *e
largest compact invariant is

E � (x, s, y, v, w, z) ∣ v � 0 . (23)

According to LaSalle’s invariance principle [14], we have
lim+∞v(t) � 0. *e limit system of equations is
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_x � λ − d1x,

_s � − d2s − k2s,

_y � k2s − d3y − pyz,

_w � − hw,

_z � cyz − bz.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

We define

L(x, s, y, w, z) �
1
x0

x − x0 − x0 ln
x

x0
  + s +

d2 + k2

k2
y

+
q

g

d3 d2 + k2( 

ak2
w +

d2 + k2

k2

p

c
z.

(25)

Since x0 � λ/d1, then

_L(x, s, y, w, z) � d1 2 −
x

x0
−

x0

x
  −

d3 d2 + k2( 

k2
y

−
q

g

hd3 d2 + k2( 

ak2
w −

d2 + k2

k2

pb

c
z.

(26)

Since the arithmetic mean is greater than or equal to the
geometric mean, it follows that

2 −
x

x0
−

x0

x
≤ 0. (27)

*erefore, _L≤ 0, and the equality holds if x � x0 and
s � y � w � z � 0, which complete the proof. □

2.4. Global Stability of Infection Steady States. In this sub-
section, attention is focused on the stability of the infection
steady states.

For the first endemic equilibrium E1, we have the fol-
lowing result.

Proposition 3. If R0 > 1, Rz
1 ≤ 1, and Rw

1 ≤ 1, then the en-
demic point E1 is globally asymptotically stable.

Proof. Let the following Lyapunov functional be

L(x, s, y, v, w, z) � x − x1 + 
x

x1

d2 + k2( s1

k1uv1/ u + v1( 
du + s − s1

− s1 ln
s

s1

+
d2 + k2

k2
y − y1 − y1 ln

y

y1
 

+
d3 d2 + k2( 

ak2
v − v1 − v1 ln

v

v1
 

+
q

g

d3 d2 + k2( 

ak2
w +

p

c

d2 + k2

k2
z.

(28)

we have then

_L(x, s, y, v, w, z) � _x − d2 + k2( s1
x + v1

k1xv1
_x + _s −

s1

s
_s

+
d2 + k2

k2
_y −

y1

y
_y 

+
d3 d2 + k2( 

ak2
_v −

v1

v
_v 

+
q

g

d3 d2 + k2( 

ak2
_w +

p

c

d2 + k2

k2
_z.

(29)

On the other hand, we have

λ � d1x1 + d2 + k2( s1,

k1x1v1
x1 + v1

� d2 + k2( s1,

s1

v1
�

d3d4

ak2
,

y1

v1
�

d4

a
,

s1

y1
�

d3

k2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)
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Hence,

_L(x, s, y, v, w, z) � λ − d1x −
k1xv

x + v
  1 − d2 + k2( s1

x + v1

k1xv1
 

+
k1xv

x + v
− d2 + k2( s

−
s1

s

k1xv

x + v
− d2 + k2( s 

+
d2 + k2

k2
k2s − d3y − pyz( 

−
d2 + k2

k2

y1

y
k2s − d3y − pyz( 

+
d3 d2 + k2( 

ak2
ay − d4v − qvw( 

−
d3 d2 + k2( 

ak2

v1

v
ay − d4v − qvw( 

+
q

g

d3 d2 + k2( 

ak2
(gvw − hw)

+
p

c

d2 + k2

k2
(cyz − bz),

_L(x, s, y, v, w, z) � λ − d1x − d2 + k2( s1
x + v1

k1xv1

· λ − d1x −
k1xv

x + v
 

−
s1

s

k1xv

x + v
  + d2 + k2( s1

+
d2 + k2

k2
py1z +

d2 + k2( d3

k2
y1

− d2 + k2( s
y1

y
−

d3d4 d2 + k2( 

ak2
v

+
d2 + k2( d3

k2
y1 − d2 + k2( s

y1

y

−
d3d4 d2 + k2( 

ak2
v −

qh

g

d3 d2 + k2( 

ak2
w

+
d3 d2 + k2( 

ak2
v1qw −

d2 + k2

k2

bp

c
z.

(31)

*us, this fact implies that

_L(x, s, y, v, w, z) � λ − d1x − d2 + k2( s1
x + v1

k1xv1

· λ − d1x −
k1xv

x + v
  −

s1

s

k1xv

x + v
+ d2s1

−
d3d4 d2 + k2( 

ak2
v −

d3 d2 + k2( 

k2

v1
v

y

+
d3 d2 + k2( 

ak2
v1 −

qh

g

d3 d2 + k2( 

ak2
w

+
d3 d2 + k2( 

ak2
qv1w + pz y1 −

b

c
 .

(32)

Since
λ − d1x � d1x1 + d2 + k2( s1 − d1x,

λ − d1x − d2 + k2( s1
x + v1

k1xv1
λ − d1x −

k1xv

x + v
 

� d1x1 1 −
x

x1
−

x1

x

x + v1

x1 + v1
+

x + v1

x1 + v1
 

+ d2 + k2( s1 1 −
x1

x

x + v1

x1 + v1
+

v

v1

x + v1

x + v
 

−
s1
s

k1xv

x + v
  + d2 + k2( s1 � −

s1
s

xv

x1v1

x1 + v1
x + v

d2 + k2( s1

+ d2 + k2( s1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)

We have
_L(x, s, y, v, w, z) � d1x1 1 −

x

x1
−

x1

x

x + v1

x1 + v1
+

x + v1

x1 + v1
 

+ d2 + k2( s1 1 −
x1

x

x + v1

x1 + v1
+

v

v1

x + v1

x + v
 

+ d2 + k2( s1 1 −
s1

s

xv

x1v1

x1 + v1

x + v
 

+ d2 + k2( s1 1 −
sy1

s1y
−

v

v1
 

+ d2 + k2( s1 1 −
v1y

y1v
 

+
d3 d2 + k2( 

ak2
qw v1 −

h

g
 

+ pz
d2 + k2

k2
y1 −

b

c
 .

(34)
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*erefore,

_L � −
d1v1

x x1 + v1( 
x − x1( 

2

+ d2 + k2( s1 − 1 −
v

v1
+

v

v1

x + v1

x + v
+

x + v

x + v1
 

+ d2 + k2( s1 5 −
x1

x

x + v1

x1 + v1
−

s1

s

xv

x1v1

x1 + v1

x + v


−
sy1

s1y
−

yv1
y1v

−
x + v

x + v1


+
d3 d2 + k2( 

ak2

h

g
qw R

w
1 − 1(  +

d2 + k2

k2

b

c
pz R

z
1 − 1( ,

(35)

which implies that

_L � −
d1v1

x x1 + v1( 
x − x1( 

2

− d2 + k2( s1
x v − v1( 

2

v1 x + v1( (x + v)
 

+ d2 + k2( s1 5 −
x1

x

x + v1

x1 + v1
−

s1

s

xv

x1v1

x1 + v1

x + v


−
sy1

s1y
−

yv1

y1v
−

x + v

x + v1


+
d3 d2 + k2( 

ak2

h

g
qw R

w
1 − 1(  +

d2 + k2

k2

b

c
pz R

z
1 − 1( .

(36)

Since the arithmetic mean is greater than or equal to the
geometric mean, it follows that

5 −
x1

x

x + v1

x1 + v1
−

s1

s

xv

x1v1

x1 + v1

x + v
−

sy1

s1y
−

yv1

y1v
−

x + v

x + v1
≤ 0,

(37)

and we know that Rz
1 < 1 and Rw

1 < 1, then _L≤ 0, and the
equality holds when x � x1, y � y1, v � v1, w � w1, and
z � z1. By the LaSalle invariance principle [14], the endemic
point E1 is asymptotically stable when R0 > 1.

For the second endemic equilibrium E2, we have the
following result. □

Proposition 4. If R0 > 1, Rz
1 > 1, and Rw

2 ≤ 1, then the en-
demic point E2 is globally asymptotically stable.

Proof. Let the following Lyapunov functional be

L(x, s, y, v, w, z) � x − x2 − 
x

x2

d2 + k2( s2

k1uv2/ u + v2( 
du + s

− s2 − s2 ln
s

s2

+
d2 + k2

k2
y − y2 − y2 ln

y

y2
 

+
d3 d2 + k2(  + d2 + k2( pz2

ak2

× v − v2 − v2 ln
v

v2
 

+
q

g

d3 d2 + k2(  + d2 + k2( pz2

ak2
w

+
p

c

d2 + k2

k2
z − z2 − z2 ln

z

z2
 ,

(38)

then, we have

_L(x, y, s, v, w, z) � _x − d2 + k2( s2
x + v2

k1xv2
_x + _s −

s2

s
_s

+
d2 + k2

k2
_y −

y2

y
_y 

+
d3 d2 + k2(  + d2 + k2( pz2

ak2
_v −

v2

v
_v 

+
q

g

d3 d2 + k2(  + d2 + k2( pz2
ak2

_w

+
p

c

d2 + k2

k2
_z −

z2

z
_z .

(39)

We know that
λ � d1x2 + d2 + k2( s2,

k1x2v2 � x2 + v2(  d2 + k2( s2,

s2

y2
�

d3

k2
+

pz2

k2
,

y2

v2
�

d4

a
,

s2

v2
�

d3d4

ak2
+

d4pz2

ak2
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(40)

so, we have
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_L(x, s, y, v, z) � λ − d1x −
x2

x

x + v2
x2 + v2

λ − d1x(  + d2 + k2( s2( 
v

v2

x2 + v2
x + v

− d2 + k2( s −
s2
s

k1xv

x + v
− d2 + k2( s 

+
d2 + k2

k2
k2s − d3y − pyz(  −

d2 + k2

k2

y2

y
k2s − d3y − pyz(  +

d3 d2 + k2(  + d2 + k2( pz2

ak2

× ay − d4v − qvw(  −
d3 d2 + k2(  + d2 + k2( pz2

ak2

v2

v
ay − d4v − qvw( 

+
q

g

d3 d2 + k2(  + d2 + k2( pz2

ak2
(gvw − hw) +

p

c

d2 + k2

k2
(cyz − bz) −

pz2

cz

d2 + k2

k2
(cyz − bz).

(41)

On the other hand, we have

λ − d1x � d1x2 + d2 + k2( s2 − d1x,

λ − d1x − d2 + k2( s2
x + v2

k1xv2
λ − d1x −

k1xv

x + v
  � d1x2 1 −

x

x2
−

x2

x

x + v2

x2 + v2
+

x + v2

x2 + v2
 

+ d2 + k2( s2 1 −
x2

x

x + v2

x2 + v2
+

v

v2

x + v2

x + v
 

−
s2

s

k1xv

x + v
  + d2 + k2( s2 � d2 + k2( s2 1 −

s2

s

xv

x2v2

x2 + v2

x + v
 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2 + k2( d3

k2
y2 − d2 + k2( s

y2

y
−

d2 + k2( d3d4

ak2
v

� d2 + k2( s2 1 −
s

s2

y2

y
−

v

v2
  +

d2 + k2( 

k2
pz2y2

v

v2
−

d2 + k2( 

k2
pz2y2,

d4d3 d2 + k2( 

ak2
v2 −

d3 d2 + k2( 

k2

v2

v
y � d2 + k2( s2 1 −

y

y2

v2

v
 

+
d2 + k2( 

k2
pz2y

v2

v
−

d2 + k2( 

k2
pz2y2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2 + k2( pz2

ak2
ay − d4v(  −

d2 + k2( pz2

ak2

v2

v
ay − d4v(  �

d2 + k2( pz2y

k2

−
d2 + k2( pz2y2

k2

v

v2
−

d2 + k2( pz2y

k2

v2

v
+

d2 + k2( pz2y2

k2
,

d2 + k2( pz2

ak2
ay − d4v(  −

d2 + k2( pz2

ak2

v2

v
ay − d4v(  −

z2

z

p

c

d2 + k2

k2
(cyz − bz)

+
d2 + k2( 

k2
pz2y2

v

v2
−

d2 + k2( 

k2
pz2y2 +

d2 + k2( 

k2
pz2y

v2

v
−

d2 + k2( 

k2
pz2y2 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(42)
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*is fact implies that

_L � −
d1v2

x x2 + v2( 
x − x2( 

2

− d2 + k2( s2
x v − v2( 

2

v2 x + v2( (x + v)
 

+ d2 + k2( s2 5 −
x2

x

x + v2

x2 + v2
−

s2

s

xv

x2v2

x2 + v2

x + v


−
sy2

s2y
−

yv2

y2v
−

x + v

x + v2


+
h

g

d3 d2 + k2(  + d2 + k2( pz2

ak2
qw R

w
2 − 1( .

(43)

Since the arithmetic mean is greater than or equal to the
geometric mean, it follows that

5 −
x2

x

x + v2

x2 + v2
−

s2

s

xv

x2v2

x2 + v2

x + v
−

sy2

s2y
−

yv2

y2v
−

x + v

x + v2
≤ 0,

(44)

and we know that Rw
2 < 1 which means that _L≤ 0, and the

equality holds when x � x2, s � s2, y � y2, v � v2, w � w2,
and z � z2. By the LaSalle invariance principle [14], the
endemic point E2 is asymptotically stable.

For the third endemic equilibrium E3, we have the
following result. □

Proposition 5. If R0 > 1, Rz
3 ≤ 1, and Rw

1 > 1, then the en-
demic point E3 is globally asymptotically stable.

Proof. Let the following Lyapunov functional be

L(x, s, y, v, w, z) � x − x3 − 
x

x3

d2 + k2( s3

k1uv3/ u + v3( 
du + s

− s3 − s3 ln
s

s3

+
d2 + k2

k2
y − y3 − y3 ln

y

y3
 

+
d3 d2 + k2( 

ak2

× v − v3 − v3 ln
v

v3
  +

d3 d2 + k2( 

ak2

·
q

g
w − w3 − w3 ln

w

w3
 

+
p

c

d2 + k2

k2
z.

(45)
*en, we have

_L(x, s, y, v, w, z) � _x − d2 + k2( s3
x + v3

k1xv3
_x + _s −

s3

s
_s

+
d2 + k2( 

k2
_y −

y3

y
_y 

+
d3 d2 + k2( 

ak2
_v −

v3

v
_v  +

d3 d2 + k2( 

ak2

·
q

g
_w −

w3

w
_w  +

p

c
_z;

(46)

this fact implies that

_L(x, s, y, v, w, z) � λ − d1x − d2 + k2( s3
x + v3

k1xv3

· λ − d1x −
k1xv

x + v
  −

s3

s

k1xv

x + v

+ d2 + k2( s3

+
d3 d2 + k2( 

k2
y3 − d2 + k2( s

y3

y

−
d4d3 d2 + k2( 

ak2
v

−
d3 d2 + k2( 

k2

v3

v
y +

d3d4 d2 + k2( 

ak2
v3

−
d3 d2 + k2( 

ak2
qw3v

+
d3 d2 + k2( 

ak2
qv3w3

+
d2 + k2( 

k2
pz y3 −

b

c
 .

(47)

We know that

λ � d1x3 + d2 + k2( s3,

k1x3v3 � x3 + v3(  d2 + k2( s3,

s3

y3
�

d3

k2
,

y3

v3
�

d4

a
+

qw3

a
,

s2

v2
�

d3d4

ak2
+

d3qw3

ak2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)
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So, we have

λ − d1x � d1x3 + d2 + k2( s3 − d1x,

λ − d1x − d2 + k2( s3
x + v3

k1xv3
λ − d1x −

k1xv

x + v
  � d1x3 1 −

x

x3
−

x3

x

x + v3

x3 + v3
+

x + v3

x3 + v3
 

+ d2 + k2( s3 1 −
x3

x

x + v3
x3 + v3

+
v

v3

x + v3
x + v

 

−
s3

s

k1xv

x + v
  + d2 + k2( s3 � d2 + k2( s3 1 −

s3

s

xv

x3v3

x3 + v3

x + v
 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2 + k2( d3

k2
y3 − d2 + k2( s

y3

y
� d2 + k2( s3 1 −

s

s3

y3

y
 ,

−
d3d4 d2 + k2( 

ak2
v −

d3 d2 + k2( 

k2

v3

v
y +

d3d4 d2 + k2( 

ak2
v3 −

d3 d2 + k2( 

ak2
qw3v +

d3 d2 + k2( 

ak2
qv3w3

� d2 + k2( s3 1 −
v

v3
−

v3

v

y

y3
 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(49)

*en, we have

_L � −
d1v3

x x3 + v3( 
x − x3( 

2

− d2 + k2( s3
x v − v3( 

2

v3 x + v3( (x + v)
 

+ d2 + k2( s3 5 −
x3

x

x + v3
x3 + v3

−
s3
s

xv

x3v3

x3 + v3
x + v



−
sy3

s3y
−

yv3
y3v

−
x + v

x + v3
,

+
b

c

d2 + k2

k2
pz R

z
3 − 1( .

(50)

Since the arithmetic mean is greater than or equal to the
geometric mean, it follows that

5 −
x3

x

x + v3

x3 + v3
−

s3

s

xv

x3v3

x3 + v3

x + v
−

sy3

s3y
−

yv3

y3v
−

x + v

x + v3
≤ 0,

(51)

and we know that Rz
3 < 1, then _L≤ 0, and the equality holds

when x � x3, s � s3, y � y3, v � v3, w � w3, and z � z3. By
the LaSalle invariance principle [14], the endemic point E3 is
asymptotically stable when R0 > 1.

Finally, for the last endemic equilibrium E4, we have the
following result. □

Proposition 6. If R0 > 1, Rz
3 > 1, and Rw

2 > 1, then the en-
demic point E4 is globally asymptotically stable.

Proof. Let the following Lyapunov functional be

L(x, s, y, v, w, z) � x − x4 − 
x

x4

d2 + k2( s4

k1uv4/ u + v4( 
du + s

− s4 − s4 ln
s

s4

+
d2 + k2

k2
y − y4 − y4 ln

y

y4
 

+
d3 d2 + k2(  + d2 + k2( pz4

ak2

× v − v4 − v4 ln
v

v4
 

+
d3 d2 + k2(  + d2 + k2( pz4

ak2

·
q

g
w − w4 − w4 ln

w

w4
 

+
p

c

d2 + k2

k2
z − z4 − z4 ln

z

z4
 .

(52)
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*en, we have

_L(x, s, y, v, w, z) � λ − d1x − d2 + k2( s4
x + v4

k1xv4

· λ − d1x −
k1xv

x + v
  −

s4

s

k1xv

x + v

+ d2 + k2( s4

+
d3 d2 + k2( 

k2
y4 − d2 + k2( 

y4

y
s

−
d3d4 d2 + k2(  + d4 d2 + k2( pz4

ak2
v

−
d3 d2 + k2(  + d2 + k2( pz4

k2

v4

v
y

+
d3d4 d2 + k2(  + d4 d2 + k2( pz4

ak2
v4

−
d3 d2 + k2(  + d2 + k2( pz4

ak2
qw4v

+
d3 d2 + k2(  + d2 + k2( pz4

ak2
qv4w4

+
d2 + k2( 

k2
pz4y4.

(53)

We know that

λ � d1x4 + d2 + k2( s4,

k1x4v4 � x4 + v4(  d2 + k2( s4,

s4

y4
�

d3

k2
+

pz4

k2
,

y4

v4
�

d4

a
+

qw4

a
,

s4

v4
�

d3d4

ak2
+

d4pz2

ak2
+

d3qw4

ak2
+

pqz4w4

ak2
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(54)

then,
λ − d1x � d1x4 + d2 + k2( s4 − d1x,

λ − d1x − d2 + k2( s4
x + v4

k1xv4
λ − d1x −

k1xv

x + v
 

� d1x4 1 −
x

x4
−

x4

x

x + v4
x4 + v4

+
x + v4
x4 + v4

 

+ d2 + k2( s4 1 −
x4

x

x + v4

x4 + v4
+

v

v4

x + v4

x + v
 

−
s4
s

k1xv

x + v
  + d2 + k2( s4 � d2 + k2( s4

1 −
s4

s

xv

x4v4

x4 + v4

x + v
 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d3 d2 + k2( 

k2
y4 +

d2 + k2

k2
py4z4 − d2 + k2( 

y4

y
s

� d2 + k2( s4 1 −
y4

y

s

s4
 ,

−
d3d4 d2 + k2(  + d4 d2 + k2( pz4

ak2
v

−
d3 d2 + k2(  + d2 + k2( pz4

k2

v4

v
y

+
d3d4 d2 + k2(  + d4 d2 + k2( pz4

ak2
v4

−
d3 d2 + k2(  + d2 + k2( pz4

ak2
qw4v

+
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Table 1: Parameters and their symbols and default values used in the suggested HIV model.

Parameters Units Meaning Value References
Λ cells μl− 1 day− 1 Source rate of CD4+ T cells [0, 10] [15]
k1 μl virion− 1 day− 1 Average of infection [2.5 × 10− 4, 0.5] [9]
d1 day− 1 Decay rate of healthy cells 0.0139 [9]
d2 day− 1 Death rate of exposed CD4+ T cells 0.0495 [9]

k2 day− 1 *e rate that exposed cells become infected CD4+

T cells 1.1 [9]

d3 day− 1 Death rate of infected CD4+ Tcells, not by CTL killing 0.5776 [9]

a day− 1 *e rate of production the virus by infected CD4+

T cells [2, 1250] [9]

d4 day− 1 Clearance rate of virus [0.3466, 2.4] [9]
Q μl virion days− 1 Killing rate of antibody 0.5 [16]
G μl virion days− 1 Activation rate CTL cells 10− 11, 10− 4 [16]
H day− 1 Death rate of antibody 0.1 [16]
P μl cell− 1day− 1 Clearance rate of infection 0.0024 [17]
C cells cell− 1 day− 1 Activation rate CTL cells 0.15 [17]
b day− 1 Death rate of CTL cells 0.5 [17]
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Figure 2: *e behavior of the disease for λ � 10, d1 � 0.0139, k1 � 0.04, d2 � 0.0495, k2 � 1.1, d3 � 0.5776, a � 2, d4 � 0.6, q � 0.05,
g � 10− 11, h � 0.1, p � 0.0024, c � 0.15, and b � 0.5.
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Figure 3: *e behavior of the disease for λ � 2, d1 � 0.0139, k1 � 0.05, d2 � 0.0495, k2 � 1.1, d3 � 0.5776, a � 100, d4 � 0.6, q � 0.05,
g � 10− 11, h � 0.1, p � 0.0024, c � 0.15, and b � 0.5.
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Figure 4: Continued.
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*is fact implies that

_L(x, s, y, v, w, z) � −
d1v4

x x4 + v4( 
x − x4( 

2

− d2 + k2( s4
x v − v4( 

2

v4 x + v4( (x + v)
 

+ d2 + k2( s4 5 −
x4

x

x + v4

x4 + v4


−
s4

s

xv

x4v4

x4 + v4

x + v
−

sy4

s4y
−

yv4

y4v
−

x + v

x + v4
.

(56)

Since the arithmetic mean is greater than or equal to the
geometric mean, it follows that

5 −
x4

x

x + v4

x4 + v4
−

s4

s

xv

x4v4

x4 + v4

x + v
−

sy4

s4y
−

yv4

y4v
−

x + v

x + v4
≤ 0,

(57)

whichmeans that _L≤ 0, and the equality holds when x � x4,
s � s4, y � y4, v � v4, w � w4, and z � z4. By the LaSalle
invariance principle [14], the endemic point E4 is globally
asymptotically stable when R0 > 1. □

3. Numerical Results

For our numerical simulations, system (1) is solved using the
Runge–Kutta method iterative scheme. *e numerical
ranges of our parameters are given in Table 1. Figure 2 shows
the behavior of disease during the first 60 days of obser-
vation. From this figure, we observe that the solution
converges to the point Ef � (827.22, 0, 0, 0, 0, 0). With these
chosen parameters, we have R0 � 0.22< 1, which proves that
Ef is stable. *is supports our theoretical findings. Figure 3
shows the behavior of the disease during 60 first days. From
this figure, we observe that the solution of (1) converges
towards the point E1 � (33.17, 1.33, 2.54, 4.24 × 102, 0, 0).
With these chosen parameters, we have R0 � 13.81> 1,
Rz
1 � 7.64 × 10− 1 < 1, and Rw

1 � 4.24 × 10− 8 < 1. *is fact
supports that E1 is stable. Figure 4 shows the behavior of
disease during 60 days. We observe that the solution of (1)
converges towards the endemic point E2 � (1.96×

102, 6.32, 3.33, 5.55 × 102, 0, 6.28 × 102). In this figure, we
have R0 � 13.81> 1, Rz

1 � 3.81> 1, and Rw
2 � 5.55 × 10− 8 < 1,

which supports the fact that E2 is stable. Figure 5 shows the
behavior of disease during the first 60 days of observation.
We clearly see that the solution of (1) converges towards the
endemic point E3 � (32.07, 1.35, 2.57, 1000, 4.45, 0). With
the chosen parameters, we have R0 � 2.39 × 102 > 1,
Rz
3 � 0.77< 1, and Rw

1 � 9.61> 1; this supports the stability
of E3. In addition, Figure 6 shows the behavior of disease for
the first 60 days. We remark that the solution converges
towards the last endemic point E4 � (1.77 × 102, 6.55,
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Figure 4: *e behavior of the disease for λ � 10, d1 � 0.0139, k1 � 0.05, d2 � 0.0495, k2 � 1.1, d3 � 0.5776, a � 100, d4 � 0.6, q � 0.05,
g � 10− 11, h � 0.1, p � 0.0024, c � 0.15, and b � 0.5.
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Figure 5: *e behavior of the disease for λ � 2, d1 � 0.0139, k1 � 0.05, d2 � 0.0495, k2 � 1.1, d3 � 0.5776, a � 500, d4 � 0.6, q � 0.05,
g � 10− 4, h � 0.1, p � 0.0024, c � 0.15, and b � 0.5.
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Figure 6: Continued.
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3.33, 1000, 4.46, 6.61 × 102). With the used parameters, we
have R0 � 75.31> 1, Rz

3 � 3.74> 1, and Rw
2 � 3.03> 1; this

confirms the theoretical result concerning the stability of E4.

3.1. Comparison with the Clinical Data. First, define the
following objective function:

J �
1
n



n

i�1
log v ti(  − log v ti( ( ( 

2
, (58)

where v(ti) represents the virus concentration at time ti

using the mathematical model (1) and v(ti) represents the
virus concentration clinical data at time ti [18].

*e numerical simulations are performed and compared
to three patients’ data picked from [18]. *e data were from
the University of Washington study [7] and from the Aaron
Diamond AIDS Research Center (see Table 2).

In Figure 7, the dots show the evolution of the infection
during the first 120 days for the first patient [18], while the
solid curve represents the numerical simulation of our
suggested model. *e error between the numerical simu-
lation and the clinical data is approximately J ≈ 2.378 × 10− 1

which indicates that the numerical simulation is a good
approximation of the clinical data. Figures 8 and 9 show a
comparison between the clinical data (dots) and the
mathematical model (solid line), and the error is approxi-
mately J ≈ 8.43 × 10− 2 and J ≈ 1.64 × 10− 1, respectively.
*ese three results indicate that ourmathematical model can
fit the clinical data of different patients for the first days of
observations. However, the limit of our model is to predict a
long time behavior of the infection disease.

3.2. Sensitivity Analysis. Using the method outlined in [19],
we perform a sensitivity analysis using partial rank corre-
lation coefficients (PRCC) to identify the main drivers of the
basic reproduction number R0. Parameters were tested
within the ranges given in Table 1.
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Figure 6: *e behavior of the disease for λ � 10, d1 � 0.0139, k1 � 0.05, d2 � 0.0495, k2 � 1.1, d3 � 0.5776, a � 800, d4 � 0.6, q � 0.5,
g � 10− 4, h � 0.1, p � 0.0024, c � 0.15, and b � 0.5.

Table 2: *e used clinical data [18] for Figure 7 (A), for Figure 8
(B), and for Figure 9 (C).

Clinical day test Viral load (virions per μl)
A
22 27.7
43 210
78 85.9
106 81.1
B
0 228.8
2 599.2
14 169.6
21 93.7
42 165.6
98 127
C
0 1350.6
9 337.2
12 340.6
16 202.3
19 169.7
23 141.4
26 56.48
30 182.75
50 267
60 182.7
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In Figure 10, we observe that a and k1 is highly
positively correlated with R0. However, d4 has a strong
negative correlation with R0. *e other parameters k2, d2,
and d3 present a weak correlation with R0. From the
biological point of view, the sensitivity analysis shows
that an increase of production rate of the virus by infected
cells a or an increase of the infection rate k1 leads to
an increase of the basic reproduction number R0.
However, an increase in the clearance rate of virus d4
leads to a significant decease of the basic reproduction
number R0.

4. Conclusion

In this paper, we have presented and studied a mathematical
model describing HIV viral infection with saturated rate in
the presence of the adaptive immune response.*is adaptive
immunity is represented by CTL immune response and
antibodies. By using suitable Lyapunov functionals, the
global stability of each equilibrium has been established.
More precisely, the disease-free equilibrium is globally as-
ymptotically stable when the basic reproduction number is
below unity (R0 ≤ 1). Also, the endemic steady state E1 is
globally asymptotically stable when R0 ≥ 1, Rz

1 ≤ 1, and
Rw
1 ≤ 1. In presence of the adaptive immune response gov-

erned by competition between CTL and antibody responses,
system (1) admits three infection steady states. *e first
infection steady state E2 is with only the presence of CTL
response which is globally asymptotically stable if Rz

1 ≥ 1 and
Rw
2 ≤ 1. *e second infection steady state E3 is with only the

presence of the antibody response which is globally as-
ymptotically stable if Rw

1 ≥ 1 and Rz
3 ≤ 1. *e third infection

steady state is E4 with the activation of the antibodies and the
CTL response at the same time. In this case, this equilibrium
E4 is globally asymptotically stable when Rw

2 ≥ 1 and Rz
3 ≥ 1.

In addition, different numerical simulations are performed
in order to confirm the theoretical findings and to show that
the adaptive immune response is responsible to reduce the
viral load, increase the uninfected cells, and decrease the
infected cells. Moreover, a comparison with some clinical
data shows that our suggested model can be considered as a
good approximation of the clinical tests especially for the
first days of observation.
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Figure 8: Comparison between the mathematical model (solid
line) and the clinical data of the fifth patient [18] (dots). *e used
parameters for the model are λ � 10, d1 � 0.0139, k1 � 0.05,
d2 � 0.0495, k2 � 1.1, d3 � 0.5776, a � 650, d4 � 0.6, q � 0.5,
g � 10− 3, h � 0.12, p � 0.0024, c � 0.15, and b � 0.5.
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Figure 9: Comparison between the mathematical model (solid
line) and the clinical data of the seventh patient [18] (dots). *e
used parameters for the model are λ � 10, d1 � 0.0139, k1 � 0.05,
d2 � 0.0495, k2 � 1.1, d3 � 0.5776, a � 600, d4 � 0.6, q � 0.5,
g � 10− 3, h � 0.182, p � 0.0024, c � 0.15, and b � 0.5.
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Figure 10: Sensitivity analysis of R0 to different input parameters
of the model.
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Figure 7: Comparison between the mathematical model (solid
line) and the clinical data of the first patient [18] (dots). *e used
parameters for the model are λ � 10, d1 � 0.0139, k1 � 0.05,
d2 � 0.0495, k2 � 1.1, d3 � 0.5776, a � 850, d4 � 0.6, q � 0.5,
g � 1.2 × 10− 3, h � 0.1, p � 0.0024, c � 0.15, and b � 0.5.
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