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Deconvolution of DNA methylation 
identifies differentially methylated 
gene regions on 1p36 across breast 
cancer subtypes
Alexander J. Titus   1,4, Gregory P. Way2, Kevin C. Johnson3,4 & Brock C. Christensen4,5,6

Breast cancer is a complex disease consisting of four distinct molecular subtypes. DNA methylation-
based (DNAm) studies in tumors are complicated further by disease heterogeneity. In the present study, 
we compared DNAm in breast tumors with normal-adjacent breast samples from The Cancer Genome 
Atlas (TCGA). We constructed models stratified by tumor stage and PAM50 molecular subtype and 
performed cell-type reference-free deconvolution to control for cellular heterogeneity. We identified 
nineteen differentially methylated gene regions (DMGRs) in early stage tumors across eleven genes 
(AGRN, C1orf170, FAM41C, FLJ39609, HES4, ISG15, KLHL17, NOC2L, PLEKHN1, SAMD11, WASH5P). 
These regions were consistently differentially methylated in every subtype and all implicated genes 
are localized to the chromosomal cytoband 1p36.3. Seventeen of these DMGRs were independently 
validated in a similar analysis of an external data set. The identification and validation of shared DNAm 
alterations across tumor subtypes in early stage tumors advances our understanding of common 
biology underlying breast carcinogenesis and may contribute to biomarker development. We also 
discuss evidence of the specific importance and potential function of 1p36 in cancer.

Invasive breast cancer is a complex disease characterized by diverse etiologic factors1. Key genetic and epigenetic 
alterations are recognized to drive tumorigenesis and serve as gate-keeping events for disease progression2. Early 
DNA methylation (DNAm) events have been shown to contribute to breast cancer development3. Importantly, 
DNAm alterations have been implicated in the transition from normal tissue to neoplasia4, 5 and from neoplasia 
to metastasis6. Furthermore, patterns of DNAm are known to differ across molecular subtypes of breast cancer7 – 
Luminal A (LumA), Luminal B (LumB), Her2-enriched and Basal-like – identified based on the prediction anal-
ysis of microarray 50 (PAM50) classification8. However, while DNAm differences across breast cancer subtypes 
have been explored, similarities across subtypes are less clear9. Such similarities found in early stage tumors can 
inform shared biology underpinning breast carcinogenesis and – as similarities would be agnostic to subtype – 
potentially contribute to biomarkers for early detection.

Studying DNAm in bulk tumors is complicated by disease heterogeneity. Heterogeneity is driven by many 
aspects of cancer biology including variable cell-type proportions found in the substrate used for molecular pro-
filing10. Different proportions of stromal, tumor, and infiltrating immune cells may confound molecular pro-
file classification when comparing samples11 because cell types have distinct DNAm patterns12–14. The potential 
for cell–type confounding prompted the development of statistical methods to adjust for variation in cell-type 
proportions in blood15 and solid tissue16, 17. One such method, RefFreeEWAS, is a reference-free deconvolution 
method and does not require a reference population of cells with known methylation patterns and is agnos-
tic to genomic location when performing deconvolution18. Instead, the unsupervised method infers underlying 

1Program in Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA. 
2Genomics and Computational Biology Graduate Program, University of Pennsylvania, Philadelphia, PA, 19104, 
USA. 3The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA. 4Department of Epidemiology, 
Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA. 5Department of Molecular and Systems Biology, 
Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA. 6Department of Community and Family 
Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA. Alexander J. Titus and Gregory P. Way 
contributed equally to this work. Correspondence and requests for materials should be addressed to B.C.C. (email: 
Brock.Christensen@Dartmouth.edu)

Received: 29 March 2017

Accepted: 4 August 2017

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0002-0145-9564
mailto:Brock.Christensen@Dartmouth.edu


www.nature.com/scientificreports/

2Scientific Reports | 7: 11594  | DOI:10.1038/s41598-017-10199-z

cell-specific methylation profiles through constrained non-negative matrix factorization (NMF) to separate 
cell-specific methylation differences from actual aberrant methylation profiles observed in disease states. This 
method has previously been shown to effectively determine the cell of origin in breast tumor phenotypes19.

We applied RefFreeEWAS to The Cancer Genome Atlas (TCGA) breast cancer DNAm data and estimated 
cell proportions across the set. We compared tumor DNAm with adjacent normal tissue stratified by tumor sub-
type9 and identified common early methylation alterations across molecular subtypes that are independent of cell 
type composition. We identified a specific chromosomal location, 1p36.3, that harbors all 19 of the differentially 
methylated regions that are in common to early stage breast cancer subtypes. 1p36 is a well-studied and impor-
tant region in many different cancer types, but there remain questions about how it may impact carcinogenesis 
and disease progression20. Our study provides evidence that methylation in this region may provide important 
clues about early events in breast cancer. We also performed RefFreeEWAS on an independent validation set 
(GSE61805) and confirmed these results21.

Results
DNA methylation deconvolution.  Subject age and tumor characteristic data, stratified by PAM50 subtype 
and stage, is provided in Table 1 for the 523 TCGA tumors analyzed. DNAm data was collected using the Illumina 
HumanMethylation450 (450 K) array. TCGA breast tumor sample purity, estimated by pathologists from histo-
logical slides, was consistent across PAM50 subtypes and stages indicating that the conclusions of our analyses are 
not predominantly a result of large differences in tumor purity (Supplementary Fig. S1). To correct for cell-pro-
portion differences across tumor samples, we estimated the number of cellular methylation profiles contributing 
to the mixture differences by applying NMF to the matrix of beta values, which resulted in individual sample 
specific dimensionality estimates indicating diverse cellular methylation profiles (Supplementary Table S1). The 
reference-free deconvolution altered the number of significant differentially methylated CpGs and the magnitude 
of their methylation values across all models that compared breast tumor methylation with adjacent normal 
samples (Supplementary Fig. S2).

Subtype specific methylation patterns.  In early stage tumors (AJCC stage I/II, n = 381), we identified a 
set of nineteen differentially methylated gene regions (DMGRs) shared among Luminal A, Luminal B, Her2, and 
Basal-like subtypes (DMGRs Q < 0.01, Fig. 1a). In the late stage tumors (AJCC stage III/IV, n = 135), we identi-
fied 31,931 DMGRs in common across subtypes (Fig. 1b). DMGRs are identified independent of both subtype 
and hypo/hypermethylation status and serve to prioritize specific regions of interest in breast carcinogenesis for 
follow up.

Subtype specific methylation patterns in early stage tumors were most divergent for Basal-like tumors ver-
sus other types, while in late stage tumors methylation alterations in Luminal B tumors were most divergent 
(Supplementary Table S2).

To test if collapsing CpGs by genomic region biased the detection of differential methylation, we also per-
formed RefFreeEWAS using regions defined by CpG density and genomic distance (i.e. CpG island, Shore, Shelf, 
Open Sea) as indicated in the annotation file from Illumina. Defining regions by CpG island context indicated 
similar results (Supplementary Fig. S3), although we observed a lower number of common DMGRs. We used 
gene region probe collapsing for all downstream analyses. CpGs were assigned to gene regions based on the anno-
tation file variable “UCSC_RefGene_Group” as detailed in the methods section.

We identified nineteen DMGRs with common methylation alterations among early stage tumor subtypes in 
comparison with normal tissues that were annotated to eleven genes via the 450 K annotation data set provided 
by Illumina: AGRN, C1orf170, FAM41C, FLJ39609, HES4, ISG15, KLHL17, NOC2L, PLEKNH1, SAMD11, and 
WASH5P (Table 2).

In the eleven genes identified, we observed differential methylation in regions including gene body, promoter 
(TSS1500, and TSS200), and 3′UTR. Across all four subtypes, we identified DMGRs with both hyper-methylation 
(AGRN – gene body; FAM41C – TSS1500; KLHL17 – 3′UTR & gene body; PLEKHN1 – 3′UTR, gene body, & 
TSS1500; SAMD11 – 5′UTR, gene body, & TSS1500) and hypo-methylation (FAM41C – gene body; FLJ39609 – 
TSS200; PLEKHN1 – TSS200; WASH5P – gene body). The C1orf170 gene body was hyper-methylated in Her2 & 
LumA tumors and hypo-methylated in Basal-like & LumB tumors. The C1orf170 TSS1500 was hyper-methylated 
in Her2 tumors and hypo-methylated in Basal-like, LumA, & LumB tumors. The HES4 TSS1500 was 
hyper-methylated in Basal-like & LumA tumors and hypo-methylated in Her2 & LumB tumors. The ISG15 gene 
body was hyper-methylated in LumA tumors and hypo-methylated in Basal-like, Her2, & LumB tumors. The 

Basal-like Her2 Luminal A Luminal B
Total with 
Assignment

Normal-
adjacent Validation

TCGA tumors 86 31 279 127 523 124 186

Age, mean (SD) 56.8 (12.8) 60 (12.8) 58 (13.5) 57.1 (12.6) 57.8 (13.1) 57.6 (12.7) Unknown

Stage*, n (%) — — — — — — —

Early (I/II) 70 (81%) 20 (65%) 207 (74%) 84 (66%) 381 (73%) NA Unknown

Late (III/IV) 14 (16%) 10 (32%) 69 (25%) 42 (33%) 135 (26%) NA Unknown

Missing 2 (2%) 1 (3%) 3 (1%) 1 (1%) 7 (1%) NA Unknown

Table 1.  Sample information stratified by PAM50 subtype. *AJCC characterized stage, provided by TCGA.
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NOC2L gene body was hyper-methylated in Her2, LumA, & LumB tumors and hypo-methylated in Basal-like 
tumors (Table 3 and Supplementary Table S3).

All nineteen DMGRs were also identified as differentially methylated in at least one late stage tumor subtype, 
and thirteen of the nineteen DMGRs were identified as significantly differentially methylated across all tumor 
subtypes in late stage tumors (Table 2 and Supplementary Table S4). A heatmap of the unadjusted beta values for 
individual CpGs from the nineteen DMGRs demonstrated grouping of most of the Basal-like tumors separate 
from a group of mixed Luminal and Her2 tumors (Fig. 2).

DMGRs on chromosome 1p36.  Of the nineteen DMGRs identified, all of them are in eleven genes located 
on the p36.3 cytoband of chromosome 1 (Supplementary Figure S4). Chromosome 1p36.3 is the start section 
of chromosome 1 and of the eleven genes identified, one (WASH5P) is located near the very start of the chro-
mosome (chr1:14,362–29,370) and the other ten genes are located end-to-end between chr1:868,071–1,056,116 
(Supplementary Figure S4).

Most of the DMGRs tracked to gene body regions: AGRN, C1orf170, FAM41C, ISG15, KLHL17, NOC2L, 
PLEKHN1, SAMD11, and WASH5P all had gene body methylation differences. Gene body regions were enriched 
among early stage tumor DMGRs compared to all other regions: TSS1500, TSS200, 5′ UTR, and 3′ UTR (Fisher’s 
Exact Test OR = 4.15, 95% CI = 1.04–23.83, P = 0.04). All differentially methylated CpG probe IDs are given in 
Supplementary Table S5. DAVID pathway analysis applied to the top 400 most aberrantly methylated genes in 
common to the four PAM50 subtypes identified the GO term for the regulation of hormone levels to be signifi-
cantly enriched (GO:0010817, FDR = 0.035, Supplementary Table S6).

Breast cancer copy number alterations in 1p36.  Among these 523 tumors, the prevalence of 1p36.3 
copy number alterations (CNAs) was only 1.2% (n = 6), as assessed using the cBioPortal. All observed CNAs were 
amplifications that affected ten of the eleven genes most distal to the chromosome end. Among the six tumors 
with 1p36.3 amplification, three were Basal-like, two were Her2-enriched, and one was Luminal A. Exclusive 
of tumors with copy number alterations, there was one tumor (Her2-enriched), with a truncating mutation in 
KLHL17, and one tumor with a missense mutation in PLEKHN1 (Basal-like).

DMGRs impact gene expression.  We identified CpG sites with significant correlation of methylation 
with gene expression for five genes (AGRN, PLEKHN1, KLHL17, SAMD11, and FAM41C), associated with eight 
DMGRs (Supplementary Table S7 and Supplementary Figures S5–9).

Validating DMGR hits in an independent dataset.  We validated our findings in an independent 450 K 
methylation data set from 186 tumors and 46 normal tissues described in Fleischer et al. (GSE60185). Seventeen 
of nineteen DMGRs were significantly differentially methylated between tumor and normal tissues in the rep-
lication set (all DMGRs at Q < 0.01; Table 2), and CpGs in these DMGRs had similar patterns of methylation to 
those DMGRs identified in the analysis of early stage tumors (Supplemental Figure S10). The remaining two gene 
regions were also highly ranked in the q value distribution (WASH5P body: Q = 0.07; ISG15 Body: Q = 0.10).

Reproducibility.  All TCGA and validation data is publicly available. We also provide software under 
an open source license for analysis reproducibility and to build upon our work at https://github.com/
Christensen-Lab-Dartmouth/brca_lowstage_DMGRs. The analysis and data files are versioned on Zenodo22.

Figure 1.  Numbers of overlapping differentially methylated gene regions in (a) early stage tumors (DMGR 
total = 76,847) and (b) late stage tumors (DMGR total = 70,759) stratified by Basal-like, Her2, Luminal A, and 
Luminal B PAM50 subtypes with a Q-value cutoff of 0.01.
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Discussion
We were interested in identifying common biology underlying breast cancer independent of molecular subtype 
and cell-type proportion. After applying a reference-free deconvolution algorithm, we observed that early stage 
tumors harbor differentially methylated gene regions localized entirely to a small region on 1p36.3 shared across 

DMGR
Alternate 
Gene Name

Basal 
Med Q

Her2 
Med Q

Lum A 
Med Q

Lum B 
Med Q

*Any late 
stage

*All late 
stage

Present in 
validation

Validation 
Median Q

Genomic position of 
assodciated gene

AGRN Body AGNR 2.4E-06 1.7E-04 1.8E-07 1.3E-06 Y — Y 7.80E-21 chr1:1,020,123–1,056,116

C1orf170 Body PERM1 4.0E-11 1.7E-05 5.5E-09 9.7E-04 Y Y Y 1.31E-08 chr1:975,205–981,029

C1orf170 TSS1500 PERM1 5.4E-04 6.5E-03 7.8E-06 6.8E-05 Y — Y 9.23E-03 chr1:975,205–981,029

FAM41C Body FAM41C 4.1E-03 4.2E-08 1.2E-20 3.4E-03 Y Y Y 8.25E-10 chr1:868,071–876,903

FAM41C TSS1500 FAM41C 3.3E-04 1.1E-04 8.4E-05 1.0E-34 Y Y Y 1.75E-24 chr1:868,071–876,903

FLJ39609 TSS200 LOC100130417 1.3E-04 6.0E-05 2.9E-06 3.7E-04 Y Y Y 5.24E-06 chr1:916,865–921,016

HES4 TSS1500 HES4 3.1E-03 5.2E-04 7.8E-05 2.2E-04 Y — Y 5.06E-04 chr1:998,964–1,000,111

ISG15 Body ISG15 3.1E-07 2.4E-04 1.2E-05 3.6E-04 Y Y — 1.03E-01 chr1:1,013,423–1,014,540

KLHL17 3′UTR KLHL17 3.1E-05 5.5E-07 3.8E-16 2.3E-03 Y Y Y 3.99E-08 chr1:960,587–965,715

KLHL17 Body KLHL17 5.9E-06 1.1E-04 7.9E-04 7.2E-05 Y — Y 1.60E-06 chr1:960,587–965,715

NOC2L Body NOC2L 3.2E-04 6.2E-04 6.6E-05 2.4E-06 Y Y Y 4.90E-11 chr1:944,204–959,290

PLEKHN1 3′UTR PLEKHN1 5.2E-16 4.7E-06 3.1E-07 7.7E-06 Y — Y 9.83E-09 chr1:966,497–975,108

PLEKHN1 Body PLEKHN1 8.9E-10 2.7E-09 7.6E-29 1.7E-30 Y Y Y 5.87E-18 chr1:966,497–975,108

PLEKHN1 TSS1500 PLEKHN1 3.1E-05 5.5E-07 2.6E-06 3.6E-07 Y Y Y 3.99E-08 chr1:966,497–975,108

PLEKHN1 TSS200 PLEKHN1 1.6E-18 5.8E-10 1.4E-03 1.2E-03 Y Y Y 2.93E-10 chr1:966,497–975,108

SAMD11 5′UTR SAMD11 3.6E-03 7.2E-12 1.0E-09 2.2E-08 Y Y Y 4.59E-11 chr1:925,738–944,575

SAMD11 Body SAMD11 7.1E-08 2.5E-08 8.5E-06 2.0E-04 Y Y Y 3.26E-23 chr1:925,738–944,575

SAMD11 TSS1500 SAMD11 2.4E-03 6.1E-04 8.6E-04 1.0E-03 Y Y Y 2.02E-05 chr1:925,738–944,575

WASH5P Body WASH7P 2.9E-03 9.8E-03 1.6E-03 1.3E-05 Y — — 7.01E-02 chr1:14,362–29,370

Table 2.  Nineteen differentially methylated gene regions in common to early stage tumors. *Reference to any or 
all breast cancer subtypes in late stage tumors.

Figure 2.  Raw beta value (unadjusted for cellular composition) heatmap of the significantly differentially 
methylated CpG sites (n = 387) mapping to the common early stage DMGRs (n = 19). The genomic context is 
given in the vertical color bar and the PAM50 subtype and tumor information (stage and subtype) are given in 
the horizontal bars. Yellow indicates low methylation and blue indicates high methylation beta values.
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four major subtypes. Although DNA methylation alterations are widespread in early stage tumors and prior 
work has demonstrated alterations that differ among breast tumor subtypes9, 23 we observed only 19 DMGRs that 
overlapped molecular subtypes. All DMGRs tracking to the same region on 1p36.3 suggests that altered regula-
tion of this region contributes to breast carcinogenesis irrespective of disease subtype. An early 2017 study by Lu  
et al.24 suggested that hyper-methylation of the gene RUNX3, located on 1p36, as an early biomarker and potential 
therapeutic target in breast cancer.

Previous studies have also identified 1p36.3 as a relevant region to several cancers, with the tumor suppressor 
homologue of p53, the gene p73, located on 1p36.3. Corn et al.25 demonstrated evidence that p73 is transcrip-
tionally silenced via 5′ CpG island methylation. While we did not identify p73 as a DMGR in our analysis, the 
methylation-related association of a tumor suppressor gene with the 1p36.3 region provides strong support of its 
cancer relevance.

Previously, alterations on chromosome 1 have been observed in breast cancer cell lines and tumors26. 
Additionally, copy number deletions in this region have been shown to be an important precursor in ductal 
carcinoma in situ (DCIS) tumors27 and in follicular lymphomas28. However, the most prevalent copy number 
alterations on chromosome 1 are gains on the q arm and losses on the p arm that do not typically fully encom-
pass our implicated genes on 1p36.326, 29–31. Importantly, the region has also been previously identified to harbor 
associations between copy number alterations and differential DNA methylation2. However, this study was a 
global analysis aimed to find all copy number breakpoint and methylation associations in a smaller set of breast 
cancer samples and was not adjusted for cell-type confounding. Conversely, our study was focused on identifying 
early events in common to breast cancer subtypes and was adjusted for cell-type. Combining this evidence with 
our study supports a model in which 1p36.3 methylation and copy number alterations are early events in breast 
carcinogenesis that are not specific to disease subtype. The region is also well-studied and significantly altered 
in neuroblastoma – the most common solid tissue tumor of childhood32–36. A study of meningioma showed that 
there was no 1p associated loss of heterozygosity (LOH) in grade I tumors, but more than 80% of grade II and 
III tumors demonstrated LOH3. Our analysis focused on early stage breast cancer, where we did not observe any 
copy number alterations, but it’s possible that the DMGRs we identified indicate increased risk of 1p loss at chro-
mosomal breakpoints, resulting in LOH in late stage tumors.

The biological underpinnings of this region remain elusive20, 37 but a systematic understanding of how these 
specific DMGRs may impact early cancer development may be important for other cancer types and not just 
breast cancer.

Of the nineteen DMGRs identified, eighteen of them replicated in either one or both late stage tumors and 
independent validation set analyses. The one DMGR that did not replicate was the WASH5P body. This region is 
located more than 830,000 base pairs (bp) away from the much tighter region spanned by the remaining eighteen 
DMGRs (~188,000 bp), suggesting a loose association between WASH5P and the other ten genes.

There is also additional evidence implicating the potential importance of the identified genes assigned to 
the differentially methylated regions. For example, in a study of mutational profiles in metastatic breast cancers, 
AGRN was more frequently mutated in metastatic cancers compared with early breast cancers38. Similarly, expres-
sion of the HES4 Notch gene is known to be significantly correlated with the presence of activating mutations 
in multiple breast cancer cell lines, and is associated with poor patient outcomes39. In addition, ISG15 has been 
implicated as a key player in breast carcinogenesis40, though there is conflicting evidence suggesting ISG15 is 
both associated with and protective against cancer development41. However, the conflicting evidence to date 
may be related to our observation of ISG15 hypomethylation in Basal-Like, Her2, and LumB tumors, and hyper-
methylation in LumA tumors (Supplementary Table S3). Opposing methylation states among tumor subtypes 
relative to normal tissue may contribute to subtype-specific roles of ISG15 dysregulation in breast carcinogenesis. 
Additionally, the NOC2L gene has been identified as a member of a group of prognostic genes derived from an 
integrated microarray of breast cancer studies42. We also identified three DMGRs – TSS1500, Body, & 5′UTR – in 
the SAMD11 gene, which has significantly reduced expression in breast cancer cells compared to normal tissues43, 
consistent with our findings of SAMD11 hypermethylation across all four breast cancer subtypes. As DNAm 
changes were observed consistently and robustly across subtypes, it is likely that several of the other identified 
genes are cancer initiation factors that require additional study.

Importantly, we validated the identified DMGRs in an independent set of invasive breast tumors and normal 
tissues. Our validation is strengthened by the lack of molecular subtype assignments in the validation set. The 
validation of DMGRs in a setting agnostic to intrinsic subtype indicates that differential magnitude or direction 

Figure 3.  Diagram of CpG sites relative to gene regions (Transcription start sites (TSS1500 & TSS200), 
Untranslated regions (5′UTR & 3′UTR), and the gene body). Dark circles indicate methylated sites and empty 
circles indicate unmethylated sites.
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of methylation alterations that may be present in different subtypes did not limit our ability to identify significant 
alterations. A limitation of the validation set is a lack of gene expression data to further investigate relationships 
between expression and methylation for each gene region. Nevertheless, additional targeted studies on this set of 
validated genes and gene regions can enhance the understanding of methylation alterations at these DMGRs in 
breast carcinogenesis.

Caution should be exercised in interpreting the results of the adjusted beta coefficients from the reference-free 
algorithm. It is unclear if specific disease states are a result of aberrant methylation profiles in specific cell types 
which then cause changes to cell mixtures, or if the disease state is a result of cell-type proportion differences. 
Additionally, the unsupervised clustering heatmaps plot unadjusted methylation beta values and do not account 
for cell type adjustment. Lastly, the DMGR analysis drops CpGs that do not track to gene regions, which may 
reduce detection of non-genic regions related with breast carcinogenesis.

We identified and validated DMGRs in early stage breast tumors across PAM50 subtypes that are located on 
chromosome 1p36.3. The observed differential methylation suggests that this region may contribute to the ini-
tiation or progression to invasive breast cancer. Additional work is needed to investigate the scope of necessary 
and sufficient alterations to 1p36.3 for transformation and to more clearly understand the implications of 1p36.3 
methylation alterations to gene regulation. Further investigation of DNAm changes to 1p36.3 may identify oppor-
tunities for early identification of breast cancer or risk assessment. Lastly, the reference-free approach we used 
could be applied to methylation datasets from other tumor types to identify potential drivers of carcinogenesis 
common across histologic or intrinsic molecular subtypes.

Methods
Data Processing.  We accessed breast invasive carcinoma Level 1 Illumina HumanMethylation450 (450 K) 
DNAm data (n = 870) from the TCGA data access portal and downloaded all sample intensity data (IDAT) files. 
We processed the IDAT files with the R package minfi using the “Funnorm” normalization method on the full 
dataset44. We filtered CpGs with a detection P-value > 1.0E-05 in more than 25% of samples, CpGs with high 
frequency SNP(s) in the probe, probes previously described to be potentially cross-hybridizing, and sex-specific 
probes45, 46. We filtered samples that did not have full covariate data (PAM50 subtype, pathologic stage12, 47) and 
full demographic data (age and sex). All tumor adjacent normal samples were included regardless of missing data 
(n = 97, Table 1).

From an original set of 485,512 measured CpG sites on the Illumina 450 K array, our filtering steps 
removed 2,932 probes exceeding the detection P-value limit, and 93,801 probes that were SNP-associated, 
cross-hybridizing, or sex-specific resulting in a final analytic set of 388,779 CpGs. From 870 TCGA breast tumors, 
we restricted to primary tumors with available PAM50 intrinsic subtype assignments of Basal-like (n = 86), Her2 
(n = 31), Luminal A (n = 279), and Luminal B (n = 127), excluding Normal-like tumors due to limited sample 
size (n = 18). Lastly, we restricted the final total tumor set to only those with stage assignments resulting in a final 
analytic sample size of n = 523. These tumors were compared against normal-adjacent tissue samples from the 
TCGA (n = 124).

DMGR Basal-like Her2 Luminal A Luminal B

AGRN Body + + + +

C1orf170 Body − + −+ −

C1orf170 TSS1500 − + − −

FAM41C Body − − − −

FAM41C TSS1500 + + + +

FLJ39609 TSS200 − − − −

HES4 TSS1500 − + − + −

ISG15 Body − − + −

KLHL17 3′UTR −+ + + −+

KLHL17 Body − + + +

NOC2L Body − + + +

PLEKHN1 3′UTR + + + +

PLEKHN1 Body + + + +

PLEKHN1 TSS1500 −+ + + +

PLEKHN1 TSS200 − − − −

SAMD11 5′UTR + + + +

SAMD11 Body + + + +

SAMD11 TSS1500 + + + +

WASH5P Body − − − −

Table 3.  Differential methylation of the nineteen DMGRs identified (−+) DMGRs with both hypo- and hyper-
methylated CpGs. (−) Hypo-methylated. (+) Hyper-methylated.
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Reference-free cell type adjustment modeling.  We stratified samples by PAM50 subtype (Basal-like, 
Luminal A, Luminal B, Her2) and then by tumor stage dichotomizing as early (stage I and II tumors) and late 
(stage III and IV tumors)47, resulting in eight distinct models. To analyze DNAm differences between tumor and 
normal tissue and to adjust for effects of cellular heterogeneity across samples, we applied the reference-free 
deconvolution algorithm from the RefFreeEWAS R package to each model adjusting for age16. The method esti-
mates the number of underlying tissue-specific cell methylation states contributing to methylation heterogeneity 
through a constrained variant of NMF48. Briefly, the method assumes the sample methylome is composed of a 
linear combination of the constituent methylomes. It decomposes the matrix of sample methylation values (Y ) 
into two matrices ( = ΩY M T), where M is an m x K   matrix of m CpG-specific methylations states for K cell types 
and Ω is a n x K   matrix of subject-specific cell-types. K is selected via bootstrapping K = 2…10 and choosing the 
optimal K that minimizes the bootstrapped deviance. Analysis models were run testing the association between 
each CpG site and Tumor/Normal tissue status, controlling for K-1 underlying cell-types, to generate associated 
P-values. K-1 cell-types were used to prevent multi-collinearity in the statistical models and K cell-types was 
estimated using RefFreeEWAS described above. To correct for multiple comparisons, we converted all extracted 
P-values to Q-values using the R package qvalue49.

Identifying differentially methylated gene regions.  To understand the genomic regions with com-
mon DNAm alterations we used the grouping of CpGs by gene and region relative to genomic location (tran-
scription start site 1500 (TSS1500, 200–1500 bp upstream of the TSS), TSS200 (0–200 bp upstream of the TSS), 
3′ untranslated region (3′UTR), 5′UTR, 1st exon, and gene body). We used this gene-region taxonomy to col-
lapse differentially methylated CpGs, as defined by our Q-value cutoff, into specific differentially methylated gene 
regions (DMGRs). This extended the Illumina 450 K CpG annotation file to allow for a given CpG to be associated 
with up to two genes depending on the proximity of the CpG site to neighboring genes (Fig. 3).

We defined a differentially methylated CpG as one with a Q-value < 0.01 following cell-type adjustment in a 
specific subtype model compared to normal tissue. To identify DMGR sets for each stage and subtype, we ana-
lyzed all eight models independently.

Pathway Analysis.  We performed a DAVID (the database for annotation, visualization and integrated dis-
covery) analysis50, 51 for the 400 genes with the lowest median CpG Q-values that are in common to all early stage 
tumors regardless of PAM50 subtype, and extracted enriched Gene Ontology (GO)52 and Kyoto Encyclopedia 
of Genes and Genomes (KEGG)53 terms. We selected the top 400 genes based on recommended gene list sizes51.

Copy number, gene expression, and genomic location.  We downloaded TCGA Breast Invasive 
Carcinoma CNA data9 and normalized RNAseq using cBioPortal54. For the DMGRs we identified, we analyzed 
the prevalence of copy number alterations and mutations in each gene across all samples, stratified by molecular 
subtype, via visualization in cBioPortal. Similarly, to determine whether these DMGRs affect gene expression of 
their target gene, we calculated Spearman correlations of DNAm beta values in significant CpGs (Q < 0.01) to 
matched sample Illumina HiSeq gene expression data. We used a Bonferroni correction to determine significant 
expression differences, resulting in an acceptance alpha value of 9.36E-5.

Validation.  To confirm the identified early stage DMGRs in common among intrinsic molecular subtypes we 
applied the analysis workflow to TCGA late stage tumors and an independent validation set (GSE60185)21. The 
validation set includes samples of ductal carcinoma in situ (DCIS), mixed, invasive, and normal histology col-
lected from Akershus University Hospital and from the Norwegian Radium Hospital. We analyzed only the inva-
sive samples compared to normal samples using the same bioinformatics pipeline of quality control CpG filtering 
steps and normalization procedures. However, we did not have complete age information or intrinsic subtype 
assignments for the validation set and the models are not adjusted for age or stratified by subtype. This resulted in 
a single model comparing 186 invasive tumors with 46 normal controls measured across 390,253 CpGs.
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