
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:14654  | https://doi.org/10.1038/s41598-020-71359-2

www.nature.com/scientificreports

The value of intra‑operative 
electrographic biomarkers 
for tailoring during epilepsy 
surgery: from group‑level 
to patient‑level analysis
Matteo Demuru1,2*, Stiliyan Kalitzin1,3, Willemiek Zweiphenning2, Dorien van Blooijs2, 
Maryse van’t Klooster2, Pieter Van Eijsden2, Frans Leijten2, Maeike Zijlmans1,2 & RESPect 
Group*

Signal analysis biomarkers, in an intra-operative setting, may be complementary tools to guide 
and tailor the resection in drug-resistant focal epilepsy patients. Effective assessment of biomarker 
performances are needed to evaluate their clinical usefulness and translation. We defined a realistic 
ground-truth scenario and compared the effectiveness of different biomarkers alone and combined to 
localize epileptogenic tissue during surgery. We investigated the performances of univariate, bivariate 
and multivariate signal biomarkers applied to 1 min inter-ictal intra-operative electrocorticography 
to discriminate between epileptogenic and non-epileptogenic locations in 47 drug-resistant people 
with epilepsy (temporal and extra-temporal) who had been seizure-free one year after the operation. 
The best result using a single biomarker was obtained using the phase-amplitude coupling measure 
for which the epileptogenic tissue was localized in 17 out of 47 patients. Combining the whole set 
of biomarkers provided an improvement of the performances: 27 out of 47 patients. Repeating the 
analysis only on the temporal-lobe resections we detected the epileptogenic tissue in 29 out of 30 
combining all the biomarkers. We suggest that the assessment of biomarker performances on a 
ground-truth scenario is required to have a proper estimate on how biomarkers translate into clinical 
use. Phase-amplitude coupling seems the best performing single biomarker and combining biomarkers 
improves localization of epileptogenic tissue. Performance achieved is not adequate as a tool in the 
operation theater yet, but it can improve the understanding of pathophysiological process.

Epilepsy is a disorder which affects the life of around 50 millions of people worldwide1. One third of epileptic 
patients are drug-resistant2,3. Epilepsy surgery provides a potential cure for these patients. The success of surgery 
is linked to the mapping of the epileptogenic zone (EZ), the minimum cortical area that needs to be resected to 
achieve seizure freedom4.

Visual analysis of intra-operative electro-corticography (ioECoG) has been used during surgery to assess 
and adjust the boundaries of the proposed resection area. Typically, inter-ictal epileptiform activity (i.e. spikes) 
is the main factor to delineate the resection5. The complete removal of spikes has been correlated with a good 
post-surgical seizure outcome6–11, but good outcomes are also seen in cases where not all spikes are removed, 
and bad outcomes in cases where no spikes were seen12–14. Ictiform spike patterns are a more specific marker 
than sporadic spikes11. Recently, it was found that high frequency oscillations (HFOs; above 80 Hz) may be 
more specific predictors of outcome, especially when still present after the resection15–17. However, there is still 
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an open debate on the added value of ioECoG in surgical decision-making with studies suggesting a benefit and 
others not6,18–24.

Inter-ictal ioECoG recordings are richer in content than only sparse events such as spikes, which is why 
more sophisticated approaches exploiting different background features of the recorded signals have been 
suggested25–27. During the past years a plethora of biomarkers based on signal analysis have been developed. 
These biomarkers can be conceptually subdivided in three categories: univariate, bivariate and multivariate 
methods. Univariate methods provide information related to each signal separately, bivariate methods investigate 
the relationship, most typically correlation, between each couple of signals (known as functional connectivity28), 
while multivariate methods estimate the global relationship between all the signals available. Further differentia-
tion is possible within categories: for example when calculating signal correlations whether the calculation of the 
biomarker is amplitude or phase-based, time or frequency based, undirected or directed, linear or nonlinear25–27.

Several studies have shown that certain of these signal biomarkers in the ongoing ECoG can distinguish 
epileptogenic tissue from non-epileptogenic tissue without reliance on sparse events like spikes or even sparser 
events like seizures29–36, but only statistically on the aggregate group level. A biomarker set is needed that pre-
cisely identifies the tissue that should be surgically removed at the patient level, to be applied for clinical care.

Clinical translation of such signal biomarkers is currently hampered by high inter-subject variability, and not 
easily generalizable. This problem is compounded by the lack of an objective (and commonly accepted) way to 
assess the biomarker performance in comparison to a “gold standard”. The closest approximation of a ‘ground-
truth’ scenario is typically built relying on the outcome after resection.

We aimed to develop a pragmatic test-bed for different kind of signal biomarkers proposed in recent 
literature30–32,34–42 for which an effect was reported on group level. We would like to test if these signal biomark-
ers can move beyond group level effect and help guiding the surgery.

We defined a ‘ground-truth’ scenario with the attempt to preserve the cause-effect relationship between the 
removal of the suspected EZ and seizure outcome, with the implicit assumption that is possible to instantane-
ously detect an effect (i.e. interruption of the epileptic network) in ioECoG after resection. This is possible thanks 
to the nature of our data: we have both pre-resection and post-resection recordings, information related to the 
resected area in patients with a good seizure outcome (i.e. Engel 1A). We reasoned that the EZ was sufficiently 
removed in those patients who become seizure-free without medication after the resection, such that we may 
use the post-resection recordings to compute a reliable signal biomarker reference value for ‘normal’ tissue (i.e. 
not able to trigger a seizure). Comparing this reference to the pre-resection biomarker values, computed on 
the resection area, makes it possible to have a proper estimate of the performances, in terms of the biomarker 
effectiveness to localize the epileptogenic tissue. Ideally, the successful biomarker should have a value bigger than 
the reference biomarker value in order to pinpoint the suspected epileptogenic location.

We investigated, in our ground-truth scenario, the performances of different signal biomarkers that have 
been used in previous studies30–32,34–42. We defined our biomarker pool with the attempt to be exhaustive accord-
ing to the three different categories of univariate, bivariate and multivariate biomarkers. We combined all the 
biomarkers together, given that they potentially carry different information, and assessed the performance of 
our multi-feature biomarker. The purpose of this study was to assess the effectiveness and the impact on clinical 
translation of signal biomarkers based on ioECoG.

Methods
Patients.  We selected patients from a retrospective database of refractory epilepsy patients (RESPect) who 
underwent ioECoG‐tailored resective surgery at the University Medical Center (UMC) in Utrecht, the Nether-
lands, between 2008 and 2018. The database was collected following the guidelines of the institutional ethical 
committee and all the methods were carried out and approved in accordance with the Medical Ethics Committee 
of the UMC Utrecht (Metc 18-109). For the retrospective part, that informed consent was waived by the Medical 
Ethical committee of the UMC Utrecht.

We consecutively anonymized, visually assessed and annotated (i.e. bad channels, artefacts, good segments 
of the signal) and imported into the brain imaging data structure (BIDS)43 (see https​://githu​b.com/sufor​raxi/
ieeg_respe​ct_bids).

We included patients if (1) data was anonymized, visually assessed, annotated and imported in BIDS (2) at 
least one minute artefact free pre- and post-resection ECoG recording was available (3) post-surgical seizure 
outcome after 1 year was available, (4) the recording grids format was 4 × 5 electrodes with or without additional 
strips , (5) availability of pictures pre- and post-resection to label the electrodes (resected or not), (6) ECoG was 
sampled at a 2,048 Hz, (7) patients were not included in the HFO trial44, (8) patients had a 1 year good seizure 
outcome (Engel 1A) after surgery.

These criteria restricted our dataset to 47 patients: 30 of whom underwent anterior temporal lobe resection 
with amygdalohippocampectomy and the remaining 17 being patients with an extra-temporal lobe resection. 
We defined a subset of patients as ‘cured’ if after one year they belonged to Engel 1A class and stopped using 
anti-seizure medication.

Data acquisition.  IoECoG signals were recorded for clinical purposes using 4 × 5 electrode grids and 1 × 6 
or 1 × 8 electrode strips (Ad-Tech, Racine, WI) placed directly on the cortex. The grids and strips consist of 
platinum electrodes with 4.2 mm2 contact surface, embedded in silicone, and 1 cm inter-electrode distances. 
Recordings were made with a 64-channel EEG system (MicroMed, Veneto, Italy) at 2,048  Hz sampling rate 
using an anti-aliasing filter at 538 Hz. The signal was referenced to an external electrode placed on the mastoid. 
Grids and electrode strips were placed in multiple arrangements on the cortex/cortical resection area before and 
after resection. Propofol was used to induce general anesthesia and maintained using a propofol infusion pump. 
Propofol was interrupted during ioECoG recordings until a continuous background pattern was achieved.

https://github.com/suforraxi/ieeg_respect_bids
https://github.com/suforraxi/ieeg_respect_bids
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Data selection.  For each recording arrangement (from here on ‘situation’) we visually selected one minute 
artefact free data segment starting at the end of the recording and going backwards. This was done to minimize 
the propofol effect. We considered all the situations before the first resection was performed (pre-) and all the 
post-resection situations (i.e. the resection was completely finished).

Data preprocessing and processing.  The recordings from channels with visually marked noise (double 
checked by at least two people in a common reference montage) were excluded. The data was then re-referenced 
using a bipolar montage. The bipolar montage for the grid was computed both along the horizontal and verti-
cal directions of the grid. This was done in order to take into account possible different orientations of the 
sources underneath and to optimally use all electrodes. For each situation the selected minute was divided in 
5 s segments and the following preprocessing steps were applied independently for each segment: detrending, 
demeaning and z-score transformation. Depending on the specific measure, additional pre-processing steps 
were applied (see “Biomarkers” section for details). If the specific measure required filtering a finite impulse 
response (FIR) filter was used.

For every univariate measure (Auto-Regressive Residual Modulation, and phase-amplitude coupling, see 
“Biomarkers”) we averaged the values across the segments to obtain a unique value for each bipolar channel 
across the situation. For bivariate and multivariate measures, producing functional connectivity matrix in each 
time segment, we first averaged in order to have one value per bipolar channel; second we averaged these values 
across time segments. Granger Causality (GC) was a special case because the multivariate model was fitted 
pooling the segments all together which resulted in one functional connectivity matrix (i.e. no need to average 
across the segments).

If the functional connectivity matrix was obtained from a directional measure (non linear correlation coef-
ficient h2, GC, short-time direct Directed Transfer Function, sdDTF see Biomarkers) we considered the out-
strength (i.e. the effect that a channel has on the other channels).

Furthermore we repeated the analysis using a common average montage.

Identification of electrodes covering resected tissue.  Electrodes were classified into resected or non-
resected using photographs taken during surgery. We labeled a bipolar channel (1) as resected if both monopolar 
channels were included in the resection area; (2) as not-resected if both the monopolar channels were excluded 
from the resected area and (3) bipolar derivations for which one monopolar channel was resected and the other 
not were not considered/excluded from analysis.

Measuring effect across all the channels.  We considered for each biomarker all values computed in 
the pre-resection situations for channels that were eventually resected (from now on ‘pre-resection resected 
channels’), and we compared them with the channel values computed on all post-resection situations in cured 
patients to assess if the different biomarkers could detect an effect on a group level. We tested for differences in 
the distributions with a two-sample one-sided Kolmogorov–Smirnov test (testing pre-resection resected val-
ues > post-resection values) since we used a priori information regarding the directionality of the effect from 
previous works30–32,34–42.

Measuring effect using maximum per patient.  All biomarkers that showed a significant difference 
(p < 0.01, no correction for multiple comparison) in the previous analysis were further analyzed. We calculated 
the maximum value of the biomarker across all pre-resection situations in resected channels of all patients and 
the maximum value across all post-resection situations in only cured patients. Then, we compared the distribu-
tions of maxima across patients between pre-resection resected channels and post-resection channels using a 
two-sample one-sided Kolmogorov–Smirnov test (testing pre-resection resected values > post-resection values).

We defined a threshold to discriminate between pathological and healthy tissue by taking the maximum value 
of the biomarker across all channels of the post-resection situations in the cured patients. We reasoned that if 
a patient becomes seizure-free without medication after surgery, it means that the operation was successful: 
enough tissue was removed and the remaining tissue can be considered not able to generate seizures. Therefore, 
measuring the biomarker in this tissue (what is left after resection, post-resection situations) can give an estimate 
of ‘normal’ values of the biomarker. Choosing a threshold as the maximum across channels/situations/patients 
represents a way to define a ‘universal’ threshold that can be applied to discriminate between normal and epi-
leptogenic tissue even for new patients.

For each subject and each biomarker, we considered as a successful outcome the detection of at least one value 
of the pre-resection resected biomarker values above the threshold. We defined an overall performance across 
subjects counting the number of patients for whom such condition was fulfilled (see Fig. 1).

We avoid the comparison between resected versus not-resected (i.e. sensitivity and specificity) channels for 
two main reasons: (1) such a comparison may reveal more insight about the relationship between the biomarker 
and the resection strategy rather than the epileptogenicity and the biomarker, because the resected area is usually 
larger than the epileptogenic zone; (2) specificity (i.e. ratio between pre-resection not-resected values below the 
threshold and all pre-resection not-resected values) is biased since we cannot have full coverage of the brain 
recording not-resected areas.

In addition, we defined a ‘cumulative’ biomarker combining together all the biomarkers. Specifically, we 
considered a patient to be a successful outcome if for any of the biomarkers at least one (or more) is above its 
respective threshold value. We then computed the overall number of successful patients (i.e. patients for whom 
at least one biomarker out of the pool was able to localize epileptogenic tissue in one of the pre-resection resected 
electrodes).
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Finally, we repeated the analysis (recomputing the thresholds) considering the subgroups of temporal and 
extra-temporal patients.

Mesiotemporal versus neocortical channels.  For temporal patients, the first three electrodes of the 
electrode strip directed at the mesiotemporal structure (hippocampus, amygdala and enthorhinal cortex) were 
classified as mesiotemporal channels and the other channels (i.e. grid + remaining strip electrodes) were classi-
fied as neocortical channels. We compared the values of hippocampal channels and neocortical channels using 
a two-sample one-sided Kolmogorov–Smirnov test (testing mesiotemporal channel values > neocortical channel 
values) in order to understand the effect of the anatomical structure on the overall result.

Computed signal biomarkers.  Univariate biomarkers.  Auto‑regressive residual modulation.  The 
auto-regressive residual modulation (ARRm) provides the amount of non-harmonicity in the signal quantified 
as the high residual variation after auto-regressive modelling37,38. It has been shown that brain tissue with high 
non-harmonicity corresponds to areas with high frequency oscillations (HFOs) which in turn may be an indica-
tion of epileptogenic tissue45–49.

Following Geertsema’s work38 we defined the ARRm parameters as: (1) window length of 40 samples, which 
with a sample frequency of 2048 Hz, corresponds to approximately 20 ms; (2) consecutive 50% overlapping 
windows. For the detailed formula see “Appendix”.

Phase amplitude coupling.  Phase-amplitude coupling (PAC) is a form of cross-frequency coupling50 where 
the amplitude of higher frequency oscillation is modulated by the phase of lower frequency oscillation. Recent 
studies39–42,51 have shown that high PAC values are related to the SOZ. There are many proposed methods to 
estimate PAC52–58 and different parameter choices that can be made (i.e. the low and high frequency interval 
where estimate the phase and amplitude). We decided to investigate our dataset computing PAC between the 
modulating phase of theta band activity (3–4 Hz) and the amplitude of gamma activity (80–500 Hz) because 
this frequency band pairs were successfully investigated in recent epilepsy related studies39–42,51. For the detailed 
formula see “Appendix”.

Bivariate biomarkers.  Phase locking value.  Phase locking value59 (PLV) is a non linear bivariate measure 
quantifying frequency-specific phase synchronization between two signals. Mormann and colleagues34 have 
been one of the first group to show how mean phase coherence (another name for PLV) can correctly lateralize 
the side of the epileptic focus using inter-ictal ECoG recordings. We computed PLV in the gamma frequency 
band (30–80 Hz), see the formula in the “Appendix”.

Figure 1.   Diagram of the analysis for a generic biomarker. Each picture has highlighted in green the resection 
area. The left pictures consist of examples of post-resection recordings, while the right pictures represent the 
pre-resection recordings. The reference threshold representing ‘normal’ tissue is computed as the maximum 
across all resected electrodes of all post-resection recordings for all cured patients (i.e. seizure outcome equals to 
Engel 1A without medication after 1 year). This threshold is compared to the pre-resection resected recordings 
for all patients. For each patient if any of these latter values is higher than the reference threshold we have a 
successful outcome (i.e. the biomarker was able to localize the epileptogenic tissue). The number of successful 
outcomes was used as an overall performance measure for the biomarker.
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Phase lag index.  The phase lag index60 (PLI) is a bivariate measure quantifying the asymmetry of the distribu-
tion of the phase differences between two signals. Van Dellen et al.31 investigated inter-ictal ECoG using PLI in 
temporal lobe patients. They showed that PLI was related to disease history. Moreover, van Diessen et al.32 found 
that network based PLI quantities (strength and eigenvector centrality) in theta and gamma frequency bands, 
were associated with areas with HFOs and SOZ in temporal lobe patients. We chose to compute the PLI in the 
gamma band (30–80 Hz) using the formula in the “Appendix”.

Non linear correlation coefficient.  The non linear correlation coefficient h2xy between signal x and y is an exten-
sion of the linear correlation coefficient that captures both linear and non linear interactions. It has been widely 
used to analyze brain signals in the field of epilepsy (see recent reviews25,26). Of note, the work of Bettus and 
colleagues35 showed that h2 provided information related to the localization of the epileptogenic focus using 
inter-ictal ECoG recordings. In this latter work the effect measured by h2 was significant for theta, alpha, beta 
and gamma bands and mostly independent to inter-ictal spiking. We computed h2 in gamma band (30–80 Hz) 
using the formula in the “Appendix”. We looked also at the possible delayed effect computing h2 shifting one sig-
nal compared to the other for different delays ([− 0.0332 s 0.0332 s] in steps of 0.0083 s) and we chose the delay 
which gave the maximum h2.

Granger causality (time‑domain).  Granger causality (GC) methods are statistical approaches based on auto-
regressive modelling determined on the data that estimated the amount directed relationship among different 
time-series. In a bivariate scenario, one time-series x ‘Granger cause’ another time series y if the inclusion of past 
values of x reduces the variance of the modelling error compared to modelling error using only y past values. 
This can be generalized to a multivariate scenario where the reduction of modelling error of the multivariate 
model is used instead (see Blinowska61 for detailed review).

Park et al.36 successfully applied time based multivariate Granger causality to inter-ictal ECoG recordings 
showing that ictal networks can be inferred from inter-ictal recordings. They showed that there was a significant 
correlation between the epileptogenic location inferred using ictal recordings (i.e. defined by a neurologist team) 
with the location pointed out using GC on inter-ictal recordings. We applied the analysis pipeline suggested 
by Park et al.36, therefore we added the first order differentiation as an extra step in the pre-processing analysis 
before to compute the z-scores, furthermore the Akaike’s Information Criterion62 was used to select the optimal 
model order. See the “Appendix” for formulas.

Short‑time direct directed transfer function.  An extension of Granger causality methods to the frequency 
domain is the directed transfer function63. It estimates the causal (in Granger sense, reduction of the modelling 
error) influence a time-series x exerts on a y time-series in a multivariate modelling of the time-series. Short-
time DTF (sdDTF) represents a further development of the DTF in order to capture the dynamic changes of the 
causal relationship61.

Zweiphenning et al.30 using sdDTF on ioECoG recordings observed that the out-strength (i.e. quantification 
of the ‘driving’ behaviour of a channel) of a channel in high-frequency bands (gamma and ripple band) matched 
the resected channels in patients with a seizure-free outcome. We computed sdDFT following the Zweiphen-
ning’s pipeline, therefore we chose a model order of 30 samples, since this model order gave the best results. See 
“Appendix” for details.

Code implementation.  All the code is available at https​://githu​b.com/sufor​raxi/multi​ple_bioma​rkers​. We used 
MATLAB (Release R2019a, The MathWorks, Inc., Natick, Massachusetts, United States.) as a software frame-
work plus the following toolboxes fieldtrip64, SIFT65,66 (for the computation of sdDTF) and MVGC67 (for the 
computation of GC).

Results
Patient description.  Table 1 shows the patients characteristics. Our dataset consisted of 47 drugs-resistant 
epilepsy patients (23 male; mean age 25.3) with good outcome (Engel 1A). Thirty of these patients were temporal 
patients who underwent hippocampectomy as part of the resection, while the remaining were extra-temporal. 
Thirteen patients had successfully withdrawn all medication after surgery (cured patients); 16 patients managed 
to control seizures with a lower dosage of anti-epileptic medication and 18 kept the same dosage of medication. 
The primary pathology diagnosis is reported in Table 1. Pathology diagnosis revealed in the majority of the 
patients (N = 17) a low grade tumor (WHO I + II), 7 patients a focal cortical dysplasia, 7 patients a cavernoma 
and 7 patients gliosis/scar tissue. In addtion, there were 5 patients with mesiotemporal sclerosis, 2 patients with 
cortical malformation development, one patient with tuberous-sclerosis and one patient with no abnormalities. 
The total number of bipolar channels in the post-resection recordings were 1,864, while 1,138 channels were 
recorded during the pre-resection phase were eventually resected (“resected channels”). For our analysis we did 
not use the non-resected channels (1754) nor the channels that we could not assign a label (“cut channels”, 417) 
from the pre-resection recordings. On average we had around 40 channels per subject recorded in the post-
resection and about 24 channels labeled as resected in the pre-resection recordings.

Measuring effect across all the channels.  Figure 2 shows the comparison between the biomarker dis-
tributions of values computed in pre-resection resected channels in improved patients (Engel 1A) and post-
resection channels in cured patients (Engel 1A without medication). Five out of seven biomarkers (ARR, PAC, 
PLI, H2, GC) were significant (p < 0.01) using a one-sided Kolmogorov–Smirnov test.

https://github.com/suforraxi/multiple_biomarkers
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subjID Gender Age Outcome Type Primary pathology CUT​ Nres Res Post

RESP0067 f 23 1a_aed_low E FCD 17 34 34 84

RESP0124 m 21 1a_aed_eq E Malformation cort. development 41 105 31 71

RESP0135 m 51 1a_aed_eq E Low Grade Tumor (WHO I + II) 21 77 7 22

RESP0231 m 22 1a_aed_low E FCD 11 26 24 86

RESP0311 f 21 1a_aed_low E Low Grade Tumor (WHO I + II) 3 16 1 22

RESP0320 m 11 1a_aed_stop E FCD 23 116 29 42

RESP0362 f 11 1a_aed_eq E Low Grade Tumor (WHO I + II) 4 99 5 146

RESP0381 m 8 1a_aed_eq E Low Grade Tumor (WHO I + II) 6 13 10 19

RESP0384 f 13 1a_aed_stop E Cavernoma 16 95 3 13

RESP0396 f 15 1a_aed_low E Low Grade Tumor (WHO I + II) 9 44 5 73

RESP0409 f 12 1a_aed_stop E FCD 5 9 2 20

RESP0428 m 19 1a_aed_low E Low Grade Tumor (WHO I + II) 16 53 18 99

RESP0451 m 19 1a_aed_stop E FCD 17 29 39 18

RESP0465 f 11 1a_aed_eq E Gliosis/scar 5 13 6 109

RESP0586 f 28 1a_aed_eq E Cavernoma 6 24 1 22

RESP0619 m 14 1a_aed_stop E Gliosis/scar 9 14 8 27

RESP0634 m 19 1a_aed_stop E Gliosis/scar 9 43 8 39

RESP0059 f 25 1a_aed_eq T MTS 9 25 29 20

RESP0087 f 51 1a_aed_eq T Cavernoma 11 93 24 78

RESP0094 m 72 1a_aed_eq T Malformation cort. development 13 34 51 27

RESP0096 m 25 1a_aed_eq T MTS 0 16 2 72

RESP0105 f 13 1a_aed_low T Low Grade Tumor (WHO I + II) 14 24 32 21

RESP0150 m 44 1a_aed_eq T No abnormalities 6 46 19 34

RESP0269 f 13 1a_aed_eq T Gliosis/scar 5 35 31 36

RESP0280 m 13 1a_aed_low T Low Grade Tumor (WHO I + II) 6 25 40 36

RESP0282 f 20 1a_aed_low T Gliosis/scar 4 34 31 55

RESP0283 m 31 1a_aed_low T Low Grade Tumor (WHO I + II) 0 64 34 32

RESP0284 m 19 1a_aed_low T Low Grade Tumor (WHO I + II) 5 37 28 31

RESP0316 m 19 1a_aed_low T MTS 6 72 21 46

RESP0332 f 17 1a_aed_stop T Low Grade Tumor (WHO I + II) 5 27 36 23

RESP0349 m 24 1a_aed_eq T Cavernoma 7 33 23 31

RESP0356 m 22 1a_aed_eq T TuberoSclerosis 5 31 24 24

RESP0433 m 22 1a_aed_stop T Low Grade Tumor (WHO I + II) 6 22 8 23

RESP0437 m 16 1a_aed_stop T Low Grade Tumor (WHO I + II) 6 6 15 21

RESP0462 f 24 1a_aed_low T MTS 14 35 44 26

RESP0464 f 21 1a_aed_stop T Low Grade Tumor (WHO I + II) 4 25 28 29

RESP0475 f 15 1a_aed_stop T MTS 6 38 18 28

RESP0546 f 19 1a_aed_stop T Low Grade Tumor (WHO I + II) 10 33 30 27

RESP0557 m 28 1a_aed_eq T Cavernoma 5 0 94 38

RESP0570 f 64 1a_aed_eq T FCD 8 32 24 29

RESP0578 m 59 1a_aed_low T FCD 7 20 38 5

RESP0579 m 24 1a_aed_eq T Gliosis/scar 14 46 30 20

RESP0595 f 36 1a_aed_low T Cavernoma 2 0 32 27

RESP0599 f 61 1a_aed_eq T Gliosis/scar 5 26 36 31

RESP0625 f 9 1a_aed_stop T Low Grade Tumor (WHO I + II) 5 21 45 23

RESP0645 f 5 1a_aed_low T Low Grade Tumor (WHO I + II) 3 15 15 31

RESP0673 f 62 1a_aed_low T Cavernoma 8 29 25 28

Table 1.   Patient characteristics. The complete dataset consisted of 47 patients. The variable subjID is the 
code used to identify the subjects. The variable outcome represents the seizure outcome 1 year after surgery. 
This was identified by a code composed by the Engel class and the amount of medication after surgery 
(i.e. 1a_aed_stop means 1A Engel class who stop the medication after surgery, 1a_aed_low means that the 
medication was lowered and 1a_aed_eq means that the amount of medication was the same as before surgery). 
The variable type represents the type of epilepsy (E for Extra-Temporal, T for Temporal). The variable primary 
pathology represents the primary pathology and could be one of the following: low grade tumor (WHO I + II), 
mesiotemporal (MST), focal cortical dysplasia, cavernoma, gliosi/scar, malformation of cortical development, 
no abnormalities. The variable CUT represents the number of bipolar derivations where one electrode of 
the bipolar channel is resected and the other is not in the pre-resection situations. The variable Nres counts 
the number of not-resected channels in the pre-resection situations. The variable Res counts the number of 
resected channel in the pre-resection situations and finally the variable Post counts the number of bipolar 
channels in the post-resection situations.
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Measuring effect using maximum per patient.  Figure 3 shows the comparison between the distribu-
tion of maximum values computed in pre-resection resected channels for improved patients and maximum 
post-resection channel values for cured patients. We show the five biomarkers for which a significant effect was 
reported across all the channels (Fig. 2). Each coloured dot represents the maximum value of the biomarker for 
each individual patient across all the channels and situations. Although for all the biomarkers the pre-resection 
resected distribution has a longer tail than the post-resection one, only the distributions related to PAC are sig-
nificantly different (p < 0.01).

We defined a threshold for each biomarker as the maximum across all patients in the post-resection distribu-
tion so that we could quantify the number of patients for whom in the pre-resection recordings we could localize 
the channel to be resected. The best performance was obtained using PAC, 17 out of 47 patients are above the 
threshold.

Pooling together all the biomarkers.  Figure 4 shows for each patient in the pre-resection recordings the 
number of biomarkers above their respective thresholds (i.e. the maximum across all channels and all patients in 
the post-resection cured group). For each patient, we counted if at least one channel showed a value higher than 
the respective threshold for each biomarker. The biomarker counts are higher in temporal patients compared to 
extra-temporal ones. There was no patient with all the biomarkers above the thresholds. These two results sug-
gest that the biomarkers convey different kind of information related to epileptogenicity.

For the ‘cumulative’ biomarker, combining together the contribution of all biomarkers (i.e. at least one bio-
marker above the threshold), we obtained a performance of 23 out of 47 patients outperforming the best single 
biomarker performance by 12%.

Upon investigation of the two subgroups (temporal vs. extra-temporal patients), we recomputed the threshold 
for each biomarker for each subgroup.

Figures 5 and 6 show the number of biomarkers above the thresholds per patient in the two subgroups. The 
biomarkers seem more sensitive in the temporal subgroup (median number of patients above threshold across 
biomarkers 15 out of 30 versus 2 out of 17 in the extra-temporal subgroup).

Figure 7 summarizes the performances of the ‘cumulative’ biomarker for the whole group, the temporal and 
extra-temporal subgroups. The best performance was obtained considering the temporal subgroup: 29/30 patients 
showed a value in the pre-resection recordings higher than the threshold for at least one biomarker of the pool 
of biomarkers. For the extra-temporal patients 4 out of 17 patients were above the threshold.

Common average montage.  Repeating the analysis with a common average montage did not change the 
results when we measured the effect across all channels Supplementary Fig. S3. The same five biomarkers (ARR, 
PAC, PLI, H2 and GC) were significantly different (Kolmogorov–Smirnov test: p < 0.01) between pre-resection 
resected channels in improved patients (Engel 1A) and post-resection channels in cured patients (Engel 1A 
without medication). When we computed the difference using the maximum statistic per patient, we could not 
find any significant results (even though the trend was similar, see Supplementary Fig. S4).

For the ‘cumulative’ biomarker, combining together the contribution of all biomarkers (i.e. at least one bio-
marker above the threshold), we obtained a performance of 27 out of 47 patients outperforming the case using 
the bipolar montage (23/47) (see Figs. 8 and 9).

Mesiotemporal versus neocortical channels.  In temporal patients we found a significant (p < 0.01) 
difference between mesiotemporal channels and neo-cortical channels for the PAC (using only the bipolar mon-
tage) and GC (both bipolar and common average montage), while no significant difference was found for the 
other biomarkers.

Discussion
This study investigates the performances of different univariate, bivariate and multivariate signal biomarkers, 
used separately and combined, to discriminate between non-epileptogenic and epileptogenic tissue using inter-
ictal data derived from ioECoG. We performed all the analyses in a ground-truth scenario, using post-resection 
recordings of completely cured patients (for whom seizure control without medication was achieved for at least 
one year after resection) as a way to define a reference threshold for non-epileptogenic tissue to be compared 
with channels in pre-resection recordings of improved patients.

We chose our biomarkers with two criteria in mind: (1) to be exhaustive regarding the different types of 
measures used (i.e. univariate, bivariate and multivariate); (2) biomarkers should have been reported to show an 
overall significant effect in discriminating between non-epileptogenic and epileptogenic tissue using inter-ictal 
intracranial recordings30–32,34–36,38–42,68.

We could replicate previous findings regarding the detection of an overall effect, epileptogenic versus non-
epileptogenic tissue, comparing separately the distribution of pre-resection recordings against post-resection 
recordings in 5 out of 7 biomarkers (this was true independently of the reference montage, bipolar or average). 
This is a remarkable result considering the differences in methodological (and arbitrary) choices we used to har-
monize the analysis pipelines of the aforementioned studies. For the biomarkers for which we failed to observe 
a significant effect (PLV and sdDTF) this failure could be indeed related to different signal processing pipelines 
regarding the epoch length69, the reference montage70,71, the different state of vigilance72–74.

The resection area in good seizure outcome patients often includes normal brain tissue along with electro-
physiologically abnormal tissue. In order to overcome this problem, we repeated our analysis using the maximum 
value across channels for each subject. Although each tested biomarker showed a longer tail of the pre-resection 
values compared to the post-resection values, only the PAC showed a significant difference between the two 
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Figure 2.   Comparison between biomarker distributions values computed on pre-resection resected channels 
(red) and post-resection channels (blue) in cured patients using a bipolar montage. The presence of an asterisk 
indicates that the two distributions are significantly different (p < 0.01 one-sided Kolmogorov–Smirnov test). 
Note that each point for the univariate biomarkers (ARR and PAC) represents the value of the biomarker per 
channel, while the y-axis for the bi-/multi-variate biomarkers represents the strength. Inside each violin-plot a 
boxplot is depicted in gray with the median value highlighted with a white dot. ARR​ Auto-regressive residual 
modulation, PAC phase amplitude coupling, PLV phase locking value, PLI phase lag index, H2 non linear 
correlation coefficient, GC granger causality, sdDTF short-time direct directed transfer function.
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Figure 3.   Comparison between maximum biomarker values between pre-resection resected channels (red) 
in improved patients and post-resection channels in cured patients (blue) using a bipolar montage. Each dot 
represents the maximum value of the biomarker across all channels of each patient. The presence of an asterisk 
indicates that the two distributions are significantly different (p < 0.01 one-sided Kolmogorov–Smirnov test). 
Inside each violin-plot a boxplot is depicted in gray with the median value highlighted with a white dot. For 
each biomarker, the green line represents the threshold used to define the normal tissue (biomarker reference) 
using post-resection cured patients. ARR​ Auto-regressive residual modulation, PAC phase amplitude coupling, 
PLI phase lag index, H2 non linear correlation coefficient, GC granger causality.
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distributions (only in the bipolar montage). PAC also revealed the best performance allowing to detect the patho-
logical tissue in 17 out of 47 patients (15 out of 47 using average montage). Our results confirm the important 
role of cross-frequency coupling in neuronal communications50,75 and also reinforce the idea that abnormal PAC 
values are linked to ictogenesis39–42,51,68,76–78. A possible shortcoming for PAC is that it may be affected by ringing 
artifacts of sharp transients57 and it has been shown how ECoG inter-ictal spikes affect PAC estimation51. We did 
not account for this possible bias, however since inter-ictal spikes contribute to the definition of the irritative-
zone79 we believed that our analytic approach is justifiable.

Figure 4.   Number of biomarkers above the threshold (based on whole study population) for each patient using 
a bipolar montage. On the x-axis each of the 47 improved patients is displayed with a coded number. The first 
17 patients are extra-temporal patients (E before the coded name), while the remaining 30 patients are temporal 
patients (T before the coded name). The y-axis represents the number of biomarkers above the specific threshold 
(computed separately for each biomarker) for each patient. T temporal, E extra-temporal.

Figure 5.   Number of biomarkers above the threshold for each temporal patient using a bipolar montage. On 
the x-axis each of the 30 improved temporal patients is displayed with a coded number. The y-axis represents 
the number of biomarkers above the specific threshold for each patient (computed independently for each 
biomarker and using only the temporal patients).
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A possible explanation of the failure of the other biomarkers might be the fact that the maximum across 
channels represents a too strict and crude statistic to detect an effect. In fact, the maximum statistic works on 
the implicit assumption that one channel with an electrophysiologically abnormal value (i.e. higher value than 
the threshold) is enough for ictogenesis. The maximum as a statistic may overlook important global network 
features that go beyond single channel statistics, as critical mass in terms of epileptogenic tissue that is needed 
to trigger seizures79–86. Moreover, choosing only one channel makes the method sensitive to artefacts not rec-
ognized during the pre-processing.

Furthermore, we used the maximum across cured patients to build a universal threshold and this results in 
the threshold being dependent on the group studied (i.e. using a different subset of cured subjects may change 

Figure 6.   Number of biomarkers above the threshold for each extra-temporal patient using a bipolar montage. 
On the x-axis each of the 17 improved extra-temporal patients is displayed with a coded number. The y-axis 
represents the number of biomarkers above the specific threshold for each patient (computed independently for 
each biomarker and using only the extra-temporal patients).

Figure 7.   Comparison of the ‘cumulative’ biomarker for the three different groups (Joint Temporal and Extra-
Temporal, only Temporal, only Extra-Temporal) using a bipolar montage. Y-axis counts the number of patients 
considering the pre-resection recording of resected channels for which none (failed detection, labeled as 0 on 
x-axis) or at-least one biomarker (detection, labeled as at least 1) is above its respective threshold. T Temporal, E 
extra-temporal.
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the threshold and the results). However, as it is clear from Fig. 3, we are in the worst-case scenario (i.e. any subset 
of the cured patients will improve the performances).

The combined biomarkers using a bipolar montage improved the overall performances from 17 out of 47 
to 23 out of 47 individual patients for whom the detection of pathological tissue in the pre-resection record-
ings was feasible. When applying an average montage and combining the biomarkers, performances further 
improved reaching 27 out of 47. These results, as a whole, suggest that different biomarkers may capture different 
mechanisms of ictogenesis and it is inline with recent literature suggesting that more robust results are shown by 
combining different biomarkers40,41,87 since they potentially exploit independent information.

Figure 8.   Number of biomarkers above the threshold (based on whole study population) for each patient using 
a common average montage. On the x-axis each of the 47 improved patients is displayed with a coded number. 
The first 17 patients are extra-temporal patients (E before the coded name), while the remaining 30 patients are 
temporal patients (T before the coded name). The y-axis represents the number of biomarkers above the specific 
threshold (computed separately for each biomarker) for each patient. T temporal, E extra-temporal.

Figure 9.   Comparison of the ‘cumulative’ biomarker for the three different groups (Joint Temporal and Extra-
Temporal, only Temporal, only Extra-Temporal) using a common average montage. Y-axis counts the number 
of patients considering the pre-resection recording of resected channels for which none (failed detection, labeled 
as 0 on x-axis) or at-least one biomarker (detection, labeled as at least 1) is above its respective threshold. T 
Temporal, E extra-temporal.
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Indeed, the reference montage has an effect on the biomarkers70,71, however on the overall it seems that results 
are robust. A more in depth analysis comparing the effect of different montage on ECoG data is worthwhile, but 
beyond the scope of this study.

When we performed separately the analysis depending on the type of epilepsy (temporal or extra-temporal), 
the combination of multiple biomarkers for temporal patients held the remarkable result of 29 out of 30 patients 
for whom we could localize the epileptogenic tissue, while this was true only in 4 out 17 patients for the extra-
temporal group. Using an average montage we observed a similar divergence (28 out of 30 for temporal patients 
and 8 out of 17).

This performance difference may point out different structure related mechanisms (i.e. neo-cortical versus 
mesiotemporal) involved in the ictogenesis or different structure related physiological variation in biomarker 
values. Hence, considering the two different anatomical patient groups allows for a definition of a better ref-
erence threshold (i.e. more structure tuned) to discriminate between normal and pathologic tissue. Indeed, 
results may be influenced by the different neurophysiological properties of the tissue independently from the 
epileptogenicity (i.e. biomarkers are detecting a difference in terms of structure, mesiotemporal vs neocorti-
cal, rather than epileptogenicity). A recently published intracranial ECoG atlas88 of recording in healthy tissue 
points into this direction, highlighting how different anatomical brain areas have specific electrophysiological 
signatures in terms of spectral oscillatory and non-oscillatory properties. Furthermore, the benefit and the need 
to assess biomarkers relative to anatomically normative values has been reported for univariate measures51,89,90 
and bivariate measures91. Given the limited spatial extent of our recordings and the inability to precisely localize 
the electrodes we did not perform such analysis.

We found a significant difference (PAC and GC for bipolar montage, while only GC for average montage) 
in temporal patients comparing mesiotemporal channels with neocortical ones. However, the results of 29 out 
of 30 (for bipolar montage) cannot be fully explained in structure related terms since for temporal patients the 
maximum value above the biomarker reference was found in the mesiotemporal channels 13 times out of 24 for 
PAC and 5 out of 13 for GC.

Nevertheless, our results regarding temporal patients are comparable to a recent similar work on epileptogenic 
localization on a dataset of predominantly temporal patients41. The poor performances, using a bipolar montage, 
in the extra-temporal group could also be affected by the limited amount of resected channels considered in 
the pre-resection recordings. The mean number of resected channels available in the extra-temporal group was 
around 13 compared to 30 in the temporal group, and for two extra-temporal patients only one channel was 
available.

It is important to realize that, in this retrospective study, the total amount of data analyzed per situation 
(1 min) is a drawback since it has been shown that longer periods of data are needed to detect pathological 
signatures40,41,73. The time constraint in intra-operative recordings will always be an issue, as the goal is not only 
to find a biomarker able to discriminate what is epileptogenic/non-epileptogenic but it is to accomplish it in a 
reasonable amount of time during surgery.

The choice of solely the gamma frequency band for some of the biomarkers is a limitation, since it has been 
reported that brain networks findings in intracranial recordings are frequency-dependent29,92. We therefore inves-
tigated in the Supplementary materials the different frequency bands for PLV and PLI, since recent literature32,93,94 
reported an effect for some of the classical frequency bands. Overall, the analysis using the gamma frequency 
band seems the one with the better performances. Our a priori choice was motivated by previous works in 
which gamma frequency band appeared consistently to reveal significant results using inter-ictal intracranial 
recordings29,30,33,35.

We did not compare and integrate an high-frequency oscillations analysis in our results, even though recent 
literature reported on the predictive power of such biomarker alone (both interictally15–17 and ictally78) or com-
bined with other biomarkers40,41. However, since an unequivocal definition of a HFOs is still missing (even 
though some efforts have been done in this respect95) and their automatic detections is biased by artefacts in 
intra-operative data and depend on visual scoring, we preferred not to include the HFO analysis in our study 
and applied only channel-based automatic methods with the attempt to find an objective automatic way that 
could be easily implemented during surgery to assist the clinical neurophysiologist in accessing the ECoG. The 
ARR biomarker should account for the effect of HFO since they are highly correlated38. Future investigations 
considering different aspects of HFO analysis pipeline (i.e. visual scoring, reference montage, different detection 
algorithms) are desirable but are out of the scope of the current study.

There are three main limitations related to localization matters. The first consists of the not straightforward 
way to project the bivariate and multivariate biomarkers computed from signals recorded from two (or more) 
different locations to a single location. This is not an issue for univariate measures since they provide a more 
confined measure, in terms of localization. The employment of a bipolar montage, even though to a lesser extent, 
posit the same obstacle. The use of high density grids can be a possible approach to improve the localization 
precision.

The second is related to the unavailability of accurate electrode localization to compare the value of the 
biomarkers on the same tissue pre- and post-resection (what is left after resection). In fact, using the pre- and 
post-resection pictures is enough to mark (not-)resected channels, but it does not allow to quantify the value 
of the biomarker in the same location pre- and post-resection. Third, in temporal patients, there is uncertainty 
on the part of the mesiotemporal structure we are recording from since we do not have the exact position of the 
placement of the strip.

Another limitation was related to the effect of propofol on the different biomarkers. It is known that propofol 
induces changes in the EEG96. Moreover, signal based biomarkers have been shown to be sensitive to the transi-
tion from wakefulness to unconsciousness74,97–104. We tried to limit the propofol effect choosing the last minute 
of recording where the ECoG background was more stable and less affected by known ECoG patterns induced 
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by propofol (i.e. burst suppression, slowing of the signals). However, further studies properly designed (e.g. 
synchronization of ECoG traces with the propofol-injection pump) are required to investigate and take into 
account the effect of propofol on signal biomarkers during intra-operative respective surgery.

In conclusion, in this retrospective study, using a substantial number of patients for whom seizure control 
was improved 1 year after the operation, we pointed out the importance to work on a ground-truth scenario to 
evaluate biomarker performance at patient level. Our results suggest that a universal unique biomarker is insuf-
ficient to pinpoint the epileptogenic tissue. The combination of different biomarkers improved the localization 
performances. The results should be considered more from a perspective of pathophysiological understanding 
rather than as a tool for the operation theater since performance achieved is not yet adequate.

Appendix
Auto‑regressive residual modulation.  Given x as a signal we divided the signal in overlapping windows 
w1 . . .wn . For each window wi it is possible to compute the auto-regressive model of order p (in Geertsema’s 
work37 the model order was 3) for every time point t  with the following formula:

where a(m) are the coefficient of the model, e(t) is the residual for each time point t  . Then, it is possible to 
compute the variation of the residual per window wi and order p as rp,wi = σ(e) . The auto-regressive residual 
modulation can be computed as the coefficient of variation (CV) of the residuals across the windows:

where r3,wi is the residual variation for window wi for model order 3. Geertsema et al.38 suggested an improved 
version of ARRm . This modified version has been shown to be less sensitive to artefacts compared to the origi-
nal version37. The authors noticed that the decline of the residuals of different model orders (order 1 and 2) 
was different for artefacts compared to real events (spikes, high frequency oscillations). Therefore, they use the 
steepness of the residual decline from the first order ( r1,wi ) to the second order ( r2,wi ) to filter the residuals with 
order 3 ( r3,wi ) to include in the computation of the CV. Specifically, they computed the residual decline D(wi) 
for each window wi as:

Then, they defined the residual of model 3 for a specific window an outlier (r3,w1) if the following two criteria 
were satisfied:

In that case the residual variations of window wi and contiguous windows were removed ( r3,wi , r3,wi+1
, r3,wi−1

 ). 
This provides selection of cleaned windows wc over which compute the modified version of ARRm:

Phase amplitude coupling.  Given x as a signal, we filtered the signal in two frequency bands, theta band 
(4–8 Hz) and gamma band (30–80 Hz) obtaining two filtered signals xθ and xγ . We then computed the Hilbert 
transform of the two filtered signals to obtain the instantaneous phases and amplitude envelopes for each time 
point t,φθ (t),Aθ (t),φγ (t),Aγ (t) . We then compute PAC with the following formula:

where T is the signal length in samples, | | is the absolute operator.

Phase locking value.  Given x and y as two signals, we filtered the signals in gamma frequency band (30–
80 Hz), obtaining two filtered signals xγ and yγ . We then computed the Hilbert transform of the two filtered 
signals to obtain the instantaneous phases φxγ (t) and φyγ (t) for each time point t  . We then compute PLV with 
the following formula:

where �φ(t) = φxγ (t)− φyγ (t) , T is the signal length in samples, | | is the absolute operator.
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Phase lag index.  Given x and y as two signals, we filtered the signals in gamma frequency band (30–80 Hz), 
obtaining two filtered signals xγ and yγ . We then computed the Hilbert transform of the two filtered signals to 
obtain the instantaneous phases φxγ (t) and φyγ (t) for each time point t  . We then compute PLI with the follow-
ing formula:

where �φ(t) = φxγ (t)− φyγ (t) , 〈 〉 is the average across all time points t  , | | is the absolute operator and sgn is 
the sign function:

Non linear correlation coefficient.  The implementation of h2 used in this work follows the implementa-
tion suggested by Kalitzin et al.105 that is obtained using the following formula:

where N is the time length of the two signal xi and yi for i = 1 . . .N . The values of xi are binned in M bins Ba 
with a = 1 . . .M each containing Na points. h2(y|x) represents the variation of y explained by x , while h2(x|y) 
the variation of x explained by y.

Granger causality.  Granger causality index for a bivariate situation in which there are two time-series x and 
y can be defined as the logarithm of the ratio between the autoregressive residual considering the model with one 
variable x over the autoregressive residual value of the model with two variable x and y:

where ex and exy are the residual variance from the autoregressive model using only previous values of x and the 
residual variance using previous values of x and y.

This definition can be generalized to a multivariate (multi-channels) case with the following formula:

where Granger causality from i to j is equal to the natural logarithm of the ratio between the variance of the 
residual using the reduced regressive model (considering all the time-series n− 1 other than i ) and the variance 
of the residual obtained from the full model (considering all the n time series). For the time based GC we used 
the implementation in the MVGC toolbox67.

Short‑time direct directed transfer function.  The sdDFT is can be computed using the following 
formula106:

where Hij is the transfer function describing the directed causal relationship from j to i at frequency f  , χij is the 
direct partial coherence between i and j . The combination between the Hij and χij gives a measure of directed 
causal interaction between j and i in a multivariate (multi-channel) system.

We used the implementation in the SIFT toolbox for sdDTF65,66.
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