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Background. Overnight operations pose a challenge because our circadian biology promotes sleepiness and dissipates
wakefulness at night. Since the circadian effect on cognitive functions magnifies with increasing sleep pressure, cognitive
deficits associated with night work are likely to be most acute with extended wakefulness, such as during the transition from
a day shift to night shift. Methodology/Principal Findings. To test this hypothesis we measured selective attention (with
visual search), vigilance (with Psychomotor Vigilance Task [PVT]) and alertness (with a visual analog scale) in a shift work
simulation protocol, which included four day shifts followed by three night shifts. There was a nocturnal decline in cognitive
processes, some of which were most pronounced on the first night shift. The nighttime decrease in visual search sensitivity was
most pronounced on the first night compared with subsequent nights (p = .04), and this was accompanied by a trend towards
selective attention becoming ‘fast and sloppy’. The nighttime increase in attentional lapses on the PVT was significantly
greater on the first night compared to subsequent nights (p,.05) indicating an impaired ability to sustain focus. The nighttime
decrease in subjective alertness was also greatest on the first night compared with subsequent nights (p,.05). Conclusions/

Significance. These nocturnal deficits in attention and alertness offer some insight into why occupational errors, accidents,
and injuries are pronounced during night work compared to day work. Examination of the nighttime vulnerabilities underlying
the deployment of attention can be informative for the design of optimal work schedules and the implementation of effective
countermeasures for performance deficits during night work.
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INTRODUCTION
The ubiquitous ‘night shift’ of modern 24-hour society is

a challenge to our biological propensity for daytime wakefulness

and nighttime sleep. The ensuing misalignment between the

circadian timing system and the sleep-wake schedule during night

work impairs many waking functions [1,2]. Because the de-

terioration in cognitive functioning at the circadian nadir worsens

as sleep pressure increases [3,4], individuals are most vulnerable to

its consequences after extended wakefulness [5]. The first night in

a sequence of night shifts, typically preceded by ,16 hours of

wakefulness provides such a situation [6]. Unfortunately this

window of vulnerability has been somewhat neglected in research

and by policy makers, even though 3.2% (,864000) of full time

wage and salary earners in the United States work the night shift

[7] with a significant number of those earners presumably in

transition from a day to night shift at any given time.

While a prophylactic nap can ameliorate effects of extended

wakefulness [8], in the real world many shift workers are either

unable or choose not to nap. Moreover, operational needs sometimes

require workers to be scheduled for a ‘quick comeback’ where they

work the day followed by a night shift with only an 8 hour break in

between, leaving little opportunity for sleep. In such circumstances,

workers could be awake for 24 consecutive hours by the end of the

first night shift [6], a duration of wakefulness associated with

increased risk of errors, accidents and injuries [5] comparable to those

associated with alcohol intoxication [9] [10–12].

We investigated nighttime impairment in attention, a diverse

psychological phenomenon [13–16] which includes selective atten-

tion (the ability to process relevant information to the exclusion of

irrelevant information [17,18]) and vigilance (the ability to sustain

focus for an extended period of time [19,20]). Nighttime deficits in

selective attention [15] are less well understood than nighttime

deficits in vigilance [13,21–24] although both could affect safety and

productivity in the workplace. In fact, our ability to ignore irrelevant

or distracting items is vital for effective performance in many critical

round the clock operations such as baggage screening at airports,

power plant maintenance and air traffic control. In this study, we

measured selective attention with two visual search tasks [18,25],
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assessed vigilant attention with the Psychomotor Vigilance Task

(PVT) [26](detailed in methods) and subjective alertness with a visual

analog scale.

Visual search requires subjects to find a target item in a display

cluttered with distractor items. By varying the total number of

items presented (set size), we can decompose response time (RT)

into two separate components reflecting attentional and non-

attentional stages of processing (see Selective Attention below)

[18,27]. While previous sleep deprivation protocols have employed

other variants of the visual search paradigm, they did not vary set

size, making it difficult to separate effects on selective attention per

se from general response slowing [28] [29–31]. One study which

did vary set size reported a type of speed-error trade-off in visual

search: sleepy subjects tended to engage in faster but less accurate

search [15]. To understand the implications of this impairment in

the context of shift work, we included a similar visual search

paradigm in our protocol. Deficits in attentional tasks can occur in

the early preattentive stage and/or the later selective attentional

stage of the task [18]. Because the difficulty level of the visual

search task influences the relative contribution of these two stages

of processing, we employed two different visual search tasks, an

easy conjunction search task (Figure 1, left panel) and a more

difficult spatial configuration search task (Figure 1, right panel) in

order to better determine where deficits in processing occur.

The PVT requires subjects to monitor a source of information

over time, for the occurrence of an infrequent, unpredictable

stimulus [26,32]. Changes in the PVT RT of sleepy subjects are

considered to reflect lapsing, a heightened tendency for microsleep

which can lead to missed stimuli or extremely slow responses, and

cognitive slowing, the overall increase in response latencies [33]. The

visual analog scale required subjects to rate their level of alertness

on a 100 mm line labeled at end with the endpoints of the

alertness dimension labeled as ‘sleepy’ and ‘alert’.

Our protocol included four day shifts (07:00 to 15:00) followed

by three night shifts (23:00 to 07:00)[34]. After the final day shift,

the subjects were scheduled to sleep that night at their usual time,

had a free day, and then began the first night shift 32 hours after

the end of the last day shift. On the day shifts subjects slept at

night. During the night shift part of the study, each subject was

randomly assigned to one of two sleep schedules, either 08:00-

16:00 or 14:00 to 22:00 [34]. We found that the nighttime loss of

alertness was accompanied by a slowing of response and decline in

accuracy due to loss of sensitivity and increased lapsing, both of

which were most acute on the first night shift.

RESULTS

Statistical Analysis
We analyzed our data using the statistical package SAS (version

9.1) and SPSS (Graduate student version 12.0) for personal

computers. The visual search and PVT data were analyzed using

a mixed model ANOVA, which is effective in controlling for

individual variability. Random effects were specified with an

intercept-slope model and the residual maximum likelihood

method was used for fitting the model. The variance components

formed the covariance structure and the containment method was

used to compute the degrees of freedom. Backward elimination

was used to systematically reduce the ANOVA terms (a = .05

significance level). Relevant main effects and interaction effects

were further examined using t-tests. Because there was no effect of

sleep schedules on our cognitive measures we pooled the data from

both sleep schedule groups for the analyses reported here. The

analyses of RT (measured in milliseconds [ms]) were all done on

the log transformed data.

ANOVA Factors: For all tasks, work episode (baseline (average of

the third and fourth day shifts), first night shift, and ‘subsequent nights’

(average of second and third shifts) and session (2 (beginning of

a shift), 3 (middle of a shift) and 4 (end of a shift)) were the within-

subjects factors. The visual search tasks included additional within-

subjects factors. For the RT analyses the additional within-

subjects’ factors were target (present vs. absent) and set size (10, 20,

30, or 40). In the visual search tasks, set size was omitted as a factor

in the analysis of the RT slope and RT intercept because they are

computed as a function of set size. Target was omitted as a factor

Figure 1. Stimuli and Response Time Data from the Visual Search
Tasks. The top panels show a representative target present trial in the
two search tasks. The top left panel shows a conjunction search trial
where the target is a red vertical bar and the distractors, green vertical
and red horizontal bars. The top right panel shows a spatial
configuration search trial where the target a white block numeral ‘5’,
and the distractors, the mirror image white block numeral ‘2s’. The
middle and lower panels show the log transformed RT and the RT x set
size intercept results. In the middle and lower panels, the x-axis
represents the work shift. In the middle panels the y-axis represents RT
and in the bottom panels it represents the RT intercept, both in log
units. The error bars represent the standard error of the mean. The day
shift (baseline) data are shown in the white bar and represent the
average of the third and fourth day shifts (the first two shifts were
excluded to minimize practice effects; see text for details); night 1 data
are shown in the light gray bar; data from the ‘subsequent’ nights are
shown in the dark gray bar, and represent the average of the second
and third night shifts. The middle panels show RT data from the two
search tasks. As seen in the left panel, RT was slowest on the night 1 in
the conjunction search task, while the right panel indicates that this
slowing did not occur in the spatial configuration search task. The lower
panels show RT x set size intercept data from the two search tasks. As
seen in the left panel RT intercept during night work was significantly
slower than during day work in the conjunction search task (t-tests).
doi:10.1371/journal.pone.0001233.g001
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in the d9 (‘‘d prime’’, the sensitivity parameter) analysis because it

is computed using the hit rate and false alarm rate.

Planned Comparisons: (1) to determine nighttime deficit, the

overall nighttime performance was compared to daytime (baseline)

performance, (2) to determine whether deficits were most

pronounced on the first night shift, performance on the first night

shift was compared to ‘subsequent nights’ performance, and (3) to

determine the decline over the course of a shift, performance in

session 4 was compared to performance in session 2 within the

same shift.

Due to time constraints, the conjunction search task was not

presented during the first session of each work shift. To maintain

consistency in our analyses between performance tests, we did not

use data from the first testing session in any of our analyses. The

visual search data included 3 sessions administered every two

hours (conjunction search: starting at 9:45 a.m. on day shifts and

1:45 a.m. on night shifts; spatial configuration search starting at

9:30 a.m. on day shifts and 1:30 a.m. on night shifts). The PVT

data included 3 sessions administered every two hours starting at

10:30 a.m. on day shifts and at 2:30 a.m. on night shifts. Data from

the first two day shifts were excluded in order to minimize practice

effects on the tasks (analyses of the slope of the RT x set size

function and accuracy in visual search indicated an improvement

over the first two day shifts, but not from day 3 to day 4). Data

from the second and third night shifts were combined since our

initial analyses revealed that there were no significant differences

in performance between those two nights.

Selective Attention
In a search paradigm, the mean RT is an overall measure of speed

of processing. However, the actual search time (an index of

selective attention) can be separated from sensory, post-search

decision and response times by manipulating the set size (number

of stimuli in the array) and computing the linear RT x set size

function [35]. Search time is reflected in the slope of this function,

while the other components of RT are relegated to the intercept

[18]. In addition to speed, the paradigm also provides accuracy

information. We analyzed d9 computed from z-transformed hit

and false alarm rates, which has the advantages of being

independent of response bias and being normally distributed

[36]. In the ANOVA model, target and set size were tested as fixed

effects and subject as a random effect. Work episode and session

were tested as both fixed and random effects, the latter in order to

account for individual intercept and slope differences in these

factors.

The effect of target presence and set size effects on

visual search performance
Based on the visual search literature [18], we expected to find

effects of target (target present RTs tend to be faster than target

absent RTs), set size (increase in RT with set size) and the

interaction between target and set size (the effect of set size would

be larger on target absent trials) on RT, in our ANOVA. First,

these analyses indicated a main effect of target on the mean RT,

RT intercept and RT slope (Table 1; p,.001). In both search

tasks, target present trials were faster than target absent trials and

target present slopes were shallower than target absent slopes.

Second, the ANOVA revealed a main effect of set size on RT

(Table 2; p,.001) in both search tasks, in that there was

a significant increase in mean RT with set size. Finally, our data

suggested that the change in RT with set size was bigger on the

target absent trials and this was confirmed by the significant target

x set size interaction on RT in our ANOVA (Table 2; p,.001).

These effects which reflect underlying properties of visual search

are typical for search tasks with high target prevalence.

Longer mean RT and RT intercept during night shifts

indicate slower responding
To test our hypothesis of nighttime impairment we looked at the

effects of work episode and session on the mean RT and RT x set

size intercept, from the ANOVA. Changes in response speed

during the different work shifts were primarily seen in conjunction

search, where we found a significant effect of work episode on the

mean RT (F2, 34 = 3.4; p = .05). Planned comparisons (t-tests)

indicated that responses were slowest on the first night shift (59 ms

slower than the subsequent nights; Figure 1, middle left panel).

The ANOVA also indicated a significant work episode x session

interaction on RT (F4, 2003 = 10.57; p,.001), where nighttime

responses were 55 ms slower at the end of shift relative to the

beginning, while daytime responses were 25 ms faster by the end

of the shift. Moreover, the difference between the target present

and target absent trials was greatest on the first night shift (first

night shift: 232 ms vs.; ‘subsequent nights’: 166 ms) as indicated by

a significant the work episode x target interaction on RT (F2, 2003

= 8.19; p,.001).

Like mean RT, nighttime changes in the RT intercept were

primarily seen in conjunction search (Figure 1). The RT intercept

is thought to reflect sensory, perceptual, decision and response

stages of processing and is less weighted by the selective attention

stage. Our ANOVA revealed a significant effect of work episode

Table 1. Effect of Target on Response Time Measures in Visual Search
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Task Independent variable Log Transformed RT Log Transformed RT Intercept Log Transformed RT Slope

Conjunction Search

Target Present 2.826.02 [661 ms] 2.776.02 [589 ms] .0026.0004 [3 ms/item]

Target Absent 2.946.02 [871 ms] 2.826.02 [661 ms] .00486.0004 [12 ms/item]

Target Effect F(1,2003) = 1180.86; p,.001 F(1,329) = 31.88; p,.001 F(1,17) = 19.30; p,.001

Spatial Configuration Search

Target Present 3.076.03 [1175 ms] 2.946.02 [871 ms] .0056.0004 [15 ms/item]

Target Absent 3.356.03 [2239 ms] 3.126.02 [1318 ms] .0076.0004 [41 ms/item]

Target Effect F(1,1571) = 3805.32; p,.001 F(1,329) = 910.52; p,.001 F(1,329) = 59.76; p,.001

This table represents the main effect of target from the ANOVA—a standard effect in visual search where target present trials have a faster response time (RT) than
target absent trials. The log transformed response time (RT), RT intercept, and RT slope in both the conjunction search task and in the spatial configuration search task
show this effect.
doi:10.1371/journal.pone.0001233.t001..
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on the RT intercept in the conjunction search task (F2, 34 = 3.87;

p = .03). Planned comparisons (t-tests) indicated that the average

nighttime RT intercept was significantly longer (by 49 ms) than

the daytime RT intercept (Figure 1, bottom left panel). In the spatial

configuration search task, although the increase in RT intercept

seemed to be most pronounced on the first night shift, it did not

reach statistical significance (Figure 1, bottom right panel). There

were no other significant effects or interactions in this analysis.

Shallower RT slope during night shifts indicate

faster search rate, a selective attentional deficit
To test our hypothesis of night shift impairment we looked at the

effect of work episode and session on the RT slope, from the

ANOVA. The RT slope is considered an index of selective

attention because it is thought to reflect the cost of attending to

each additional item [18,27]. Shallower RT slopes indicate faster

search [18,27]. The ANOVA showed a significant effect of work

episode in both the conjunction search (F2,34 = 8.31; p = .001) and

spatial configuration search tasks (F2, 34 = 3.64; p = .04). In-

terestingly, planned comparisons (t-tests) indicated that the slopes

were actually significantly shallower during night work relative to

day work, in both search tasks (Figure 2, upper panels). This

suggests that as set size increased subjects spent less time attending

to each item. There were no other significant main effects or

interactions between any of the factors.

Lower d9 during night shifts reflects loss of accuracy
As with RT measures, changes in accuracy with set size reflect

changes in search behavior, while changes in the overall level of

accuracy reflect more central or peripheral processes. We

combined hit and false alarm rates to compute d9, the standard

signal detection measure of sensitivity, also an index of accuracy.

Lower d9 values indicate decreased sensitivity to the presence of

the target. Typically, d9 ranges from 0 (chance performance) to

4.0. Our ANOVA revealed a main effect of set size on d’ in the

spatial configuration task (F2, 34 = 17.01; p,.001) in that d9

decreased with set size (Table 2, column 4). This effect was absent

in the conjunction search task, reflecting that conjunction search is

Table 2. Effect of Set Size on Response Time and Sensitivity (d9) in Visual Search
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Task Independent Variable Log Transformed RT d’

Conjunction Search 10 2.836.02 [676 ms] 3.326.03

20 2.876.02 [741 ms] 3.366.03

30 2.906.02 [794 ms] 3.316.03

40 2.926.02 [832 ms] 3.296.03

Set Size Effect F(3,2003) = 165.72; p,.001 F(3.51) = 1.39; p..05

Target x Set Size Interaction F(3,2003) = 33.5; p,.001

Spatial Configuration Search

10 3.096.03 [1230 ms] 3.326.03

20 3.206.03 [1584 ms] 3.166.03

30 3.266.03 [1820 ms] 3.126.03

40 3.296.03 [1950 ms] 2.936.04

Set Size Effect F(3,1571) = 399.55; p,.001 F(3,51) = 17.01; p,.001

Target x Set Size Interaction F(3,1571) = 9.91; p,.001

This table represents the main effect of set size from the ANOVA—a standard effect in visual search representing an increase in RT and a decrease in d9 with set size,
which is an index of search difficulty. The effect of set size on RT was greater with the target absent than with the target present trials in both search tasks as indicated
by the target x set size interaction. There was an effect of set size on d9 in the spatial configuration search task, but not in the conjunction search task, reflecting that the
conjunction search task is an easier search than the spatial configuration search.
doi:10.1371/journal.pone.0001233.t002..
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Figure 2. Speed/Accuracy Trade Off in Selective Attention. The data
in this figure represent the slopes of the RT x set size function (index of
selective attention) in log units and d’ (an index of sensitivity reflecting
accuracy) in the visual search tasks. The error bars represent the
standard error of the mean. As in figure 1 the x-axis represents the work
shift. In the upper part of the figure the y-axis represents RT slope in
(msecs per additional item). In both search tasks, the decreasing values
of RT slope during night work suggest that there was either a speed-up
in search with increasing number of items or there was a failure in
processing information arising from nocturnal cognitive impairment. In
the lower part of the figure the y-axis represents d’. Decreasing values
of d’ during night work in both search tasks indicate a loss of accuracy.
In the spatial configuration search task (right panel) this loss of accuracy
was greatest on the first night shift. Together the results presented in
this figure suggest a speed-error trade-off on the night shifts, indicating
that participants either failed to collect sufficient information or there
was a failure in processing information arising from nocturnal cognitive
impairment.
doi:10.1371/journal.pone.0001233.g002
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easier than spatial configuration search. There were no interac-

tions between set size and the other factors in the analysis.

To test our hypothesis of night shift impairment we looked at

the effect of work episode on the d9 from the ANOVA. This

analysis indicated a significant effect of the work episode on d9 in

both the conjunction (F2, 760 = 171.47; p,.001) and spatial

configuration (F2, 34 = 51.52; p,.001) search tasks. Planned

comparisons (t-tests) showed that there was a significant nighttime

decrement in d’ in both search tasks (Figure 2, lower panels). More

notably, this decline in sensitivity (confirmed by a t-test) was most

pronounced on the first night shift in the more difficult spatial

configuration search task (Figure 2, lower right panel). There were

no other significant main effects or interactions between the factors.

In summary, our visual search data indicated that subjects

searched faster, spent less time per item searching, yet responded

more slowly and less accurately on the night shifts. In the more

difficult spatial configuration search the decline in accuracy as

reflected by a loss of sensitivity was most pronounced on the first

night shift.

Vigilance
To test our hypothesis of nighttime impairment in vigilance we

focused on the effects of work episode and session on two aspects of

the RT distribution: the cumulative RT percentile distribution

[37–39]and lapses. To calculate the average cumulative distribu-

tion we first computed the 5th, 10th, 15th, 25th, 35th, 45th, 50th,

55th, 65th, 75th, 85th, 90th and 95th percentiles for the day, first

night and subsequent night shifts individually for subject. These

individual percentile values within each shift category were then

averaged across subjects to compute the final cumulative

distributions for the day, first night and subsequent night shifts

(Figure 3, left panel). A 4-parameter Weibull function provided the

best fit description for each cumulative distribution. In the

ANOVA model subject was tested as a random effect. Work

episode and session were tested as both fixed and random effects.

Longer RT during night shift suggests cognitive

slowing
While we cannot decompose RTs from the PVT into different

processing components [40] the way we can with visual search

RTs, we can analyze two independent aspects of the RT

distributions. The extent of cognitive slowing, the increase in the

time needed to execute a simple response can be measured by

changes in the standard quartiles (median, 25th, and 75th

percentiles). Meanwhile, outliers in the RT distribution are

thought to reflect lapses, when attention is not focused on the task.

The ANOVA indicated a significant effect of work episode on

the median RT (F2, 34 = 23.6; p,0.001), 25th percentile RT (F2, 34

= 40.07; p,.001) and 75th percentile RT (F2, 34 = 11.73; p,.001).

Planned comparisons (t-tests) confirmed that there was a significant

nighttime increase (see relevant data points in Figure 3, left panel)

in all three measures (the median RT, p,.001; 25th percentile RT,

p,.001; and 75th percentile RT, p = .001). Note that even the

fastest RTs (i.e. the 25th percentile) were slower at night than

during the day. Furthermore, planned comparisons (t-tests) also

revealed that the slowest RT’s (Figure 3, left panel) were

significantly longer on the first night shift compared to the

subsequent nights (p = .02). There were no other significant effects

or interactions.

Attentional lapses were most pronounced on the

first night shift
We defined the 90th percentile of the daytime baseline as the

threshold for an attentional lapse (average lapse threshold shown

in Figure 3, left panel) and determined this individually for each

Figure 3. The Impact of Night Work on Vigilance RT and Attentional Lapses. This figure presents results from the PVT task. The left panel represents
the group-averaged cumulative response time (RT) percentile distribution. The x-axis represents response time with the bottom x-axis in log units
and the top x-axis in milliseconds. The error bars represent the standard error of the mean. The dashed vertical line is plotted at the average
attentional lapse threshold (90th percentile of baseline RT). The y-axis represents percentile points. The average cumulative distributions were
computed by calculating the RT percentiles for the day (open circles), first night shift (filled diamond) and ‘subsequent’ night shifts (filled square) for
each individual subject, and then averaging them across subjects to compute the final cumulative distributions. For each of the shifts, these
cumulative distributions were fitted with a 4-parameter Weibull function. The right panel presents the number of attentional lapses on the three
shifts. The error bars represent the standard error of the mean. There was a significant increase in lapses during night work, and this was most
pronounced on the first night shift.
doi:10.1371/journal.pone.0001233.g003
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subject. The number of RTs exceeding this threshold for the day,

first night and subsequent nights was then computed as attentional

lapses for each subject. The data shown in the right panel of

Figure 3 are the lapses for each shift averaged across subjects.

To test our hypothesis of the night shift impairment we looked

at the effect of work episode and session on lapses from our

ANOVA. This analysis indicated a significant effect of the work

episode (F2, 34 = 27.05; p,0.001); planned comparisons (t-tests)

indicated that there was a nighttime increase in lapses (Figure 3,

right panel), and that this was most pronounced on the first night

shift (Figure 3, right panel). In the ANOVA, we also found

a significant effect of session (F2, 34 = 4.46; p = .02) and a marginally

significant work episode x session interaction (F4,68 = 2.23; p = .08)

on the lapses. A closer examination of the data revealed that there

was a 28% increase in lapses by the end of the shift compared to

the beginning of the shift during night work but not during day

work.

In summary, the PVT data indicated that subjects responded

more slowly and had more attentional lapses during the night shifts

than during day shifts and that lapses were most pronounced on

the first night shift.

Subjective Alertness
The visual analog scale of subjective alertness ranged from 1 to

100, where higher values represented higher levels of alertness.

The effects of work episode and session were most relevant for our

hypothesis of nighttime impairment.

Nighttime decrement in subjective alertness was

most pronounced on the first night shift
The ANOVA revealed a significant effect of the work episode on

subjective alertness (F2,101 = 67.8; p,0.001); planned comparisons

(t-tests) indicated that alertness levels were lower during night work

relative to day work (day: 71.3+3.8 vs. night: 52.3+3.2; p,.001)

and that it was lowest on the first night shift (night 1: 3964.05 vs.

subsequent nights: 52.364.05; p,.05). Furthermore, the ANOVA

also showed a significant effect of session (F2, 34 = 3.43; p = .04)

and a significant work episode x session interaction (F4, 101 = 3.01;

p = .02). Planned comparisons (t-tests) revealed that subjective

alertness declined significantly by the end of the shift during night

work (p,.01) but not during day work.

DISCUSSION
We found a nighttime loss of alertness accompanied by a slowing

of response, a decline in accuracy due to loss of sensitivity and

increased lapsing [41] [42] [43] [10]. These nocturnal deficits

provide some insight into why occupational errors, accidents and

injuries are highly prevalent in overnight operations. Our most

significant findings pertain to nighttime impairment in selective

attention and to those nocturnal deficits in attention and alertness

that were most pronounced on the first night shift. We found that

on the night shifts, subjects responded more slowly and less

accurately than they did on day shifts even though they searched

faster—they spent less time attending to each item. More

significantly, the nocturnal decline in search accuracy (d9) was

most acute on the first night shift, albeit only in the more

challenging task. To our knowledge this is the first detailed

examination of the impact of night work on selective attention

using the visual search paradigm. The acute loss of accuracy (d9)

on the first night shift was accompanied by a pronounced increase

in attentional lapses and a decline in alertness, which points to the

detrimental impact the first night of work can have on safety and

productivity in the workplace.

Speed and accuracy of selective attention during

night work
Although loss of accuracy on night shifts has been widely reported

in the literature, due to the nature of the tasks used, it is normally

difficult to trace the source of errors from these data [5,24,41,44].

Such information would not only aid our understanding of the

cognitive underpinnings of performance in a task, but it could be

invaluable for ergonomically optimizing task environments to

reduce errors in the workplace. Loss of accuracy in tasks involving

complex visual information can result from either a decline in

sensitivity or a change in response bias [36]; with a decline in d9

we can infer a loss of sensitivity. Sensitivity in visual search tasks

not only degrades substantially during night work (Figure 2 lower

panels), but it appears to be amplified on the first night shift when

the search task becomes more challenging. This acute deteriora-

tion in sensitivity points to an interaction between the combined

effects of sleep loss/circadian misalignment and task difficulty.

From a theoretical standpoint this argues strongly for including the

role of the circadian system and sleep homeostat as factors when

modeling selective attention. From a practical standpoint this has

implications for optimizing nighttime working environment in jobs

that involve complex visual tasks, for instance by increasing the

signal to noise ratio in the visual displays to enhance sensitivity.

Perhaps the most intriguing result from our visual search tasks

was that the nighttime decrease in accuracy as a function of set size

was accompanied by a trend towards shallower RT slopes (Figure 2

upper panels), similar to what Horowitz et al [15] found in a sleep

deprivation study. The fact that in both studies subjects failed to

compensate for this loss of accuracy by increasing search time

appropriately as the number of items increased, even with

feedback (speed and accuracy) on every trial, implies impaired

decision making. This decision making impairment persisted

through all the night shifts. It is also interesting to note that in the

conjunction search task faster search rates (shallower slopes) were

accompanied by longer RT’s showing that subjects were not

responding too quickly, they were searching too quickly.

A comparison of performance in the two search tasks is

informative as well. The effects of work episode in the RT domain

were stronger in conjunction search relative to spatial configura-

tion search. The opposite effect was observed in spatial

configuration search. Because conjunction search is substantially

more efficient (by a factor of three or four in this study), perceptual

and motor components are more heavily weighted in RT analysis

of this search relative to that of spatial configuration search. In the

spatial configuration search task, because the selective attention

component is more heavily weighted, RT effects are smaller. At

the same time, spatial configuration search is more difficult, so the

effects of the speed-error trade-off are magnified in this task. Thus,

more difficult search tasks may be more sensitive for detecting

selective attention impairments. By the same token jobs involving

difficult search tasks, e.g. radiology, some military operations may

be more vulnerable to loss of performance efficiency arising from

nocturnal selective attention deficits.

Slowed responses and increased attentional lapses

during night work
One would expect that generalized cognitive slowing resulting

from prolonged wakefulness and circadian misalignment would

slow response times in perceptual tasks during night work. We did

observe substantial impairment in the PVT RT and lapses during

night work [23,24,45,46]. Most notably, the nocturnal increase in

lapses was most pronounced on the first night shift showing

a threefold increase from daytime baseline (Figure 3 right panel).
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However, as Dinges has long argued [47,48], lapses capture only

part of the story and the extent of cognitive slowing during night

work is best seen in changes in the RT distribution. We observed

a shift to the right in the entire RT distribution during the night

work (Figure 3 left panel). Even the fastest response times were

significantly slower during the night shifts. It is noteworthy that the

ability to detect a stimulus with an abrupt onset (such as in the

PVT) is considerably compromised during night work and this

may be even more pronounced during extended wakefulness such

as the transition from day to night shift. This slowing of response

times is undeniably a hazard, particularly in service-oriented jobs

with round-the-clock operations like medicine, transportation,

power plant monitoring, and law enforcement where peak

functioning at all times is critical.

Is the first night shift always vulnerable to acute

cognitive impairment?
We have shown here that the combination of circadian mis-

alignment and acute sleep deprivation can leave individuals

vulnerable to response slowing, speed–error trade-off (fast but

sloppy search) in visual selective attention and lapses of attention.

Some of these deficits are more serious on the first night of work.

While these results together with data from other studies [24,41]

suggest that the risk for errors and accidents may be substantially

higher on the first night shift than on any other night shift, there is

some evidence to the contrary from field studies [44].

A meta-analysis of data from several studies by Folkard et al

[44] indicated that the risk for accidents and injuries can increase

over successive shifts, with the increase being greatest during night

shifts. Our study was specifically designed to examine the cost of

rotating onto the night shift directly from the day shift. In contrast,

in most field studies workers start their night shift after a weekend,

or after a day or an afternoon shift and the Folkard et al [44]

analysis did not separate the data based on when the rotation to

a night shift occurred. This constrains any interpretation about the

risks of transitioning into night shifts following a day shift from

their analysis, because the amount of wakefulness prior to starting

night work was variable and not controlled. Moreover, because

workers in field setting have an irregular or variable sleep schedule

they are likely to suffer from circadian misalignment and

increasing sleep loss over the course of several night shifts. Such

chronic partial sleep loss can lead to deteriorating cognitive

functioning, which is then exacerbated by performing at night

because the magnitude of the circadian variation on cognitive

performance becomes more pronounced with increased sleep

pressure. Under such circumstances individuals could experience

an increased risk for accidents and injuries over several shifts [44].

In contrast, in our study we controlled the duration and timing of

scheduled rest for every day and night shift, and this likely allowed

our subjects greater amounts of sleep and a greater circadian

adjustment than is experienced by workers in uncontrolled field

studies. These findings argue for adhering to a fixed sleep schedule

on night shifts to mitigate the nocturnal cognitive decline seen in

field studies of shift work.

Reducing performance impairment during night

work
It is clear that working at night poses a significant hazard to the

safety and efficiency of workers as demonstrated by both field and

laboratory studies [23,24,41,49–55]. Because performance in

many jobs where night work is prevalent involves some form of

visual search (e.g. medical care, airport baggage screening, law

enforcement, power plant monitoring and air traffic control), our

results seem to have important practical relevance. Counter-

measures that optimize appropriate circadian entrainment and

minimize homeostatic sleep drive on night shifts (e.g. bright light

exposure, fixed sleep schedule, exercise, exogenous melatonin

and/or naps) have been shown to facilitate the transition to night

work [1,2,24,49,56–58]. However, because appropriate circadian

realignment with reduced homeostatic sleep drive is difficult to

achieve in a single night, further research evaluating the

effectiveness of additional countermeasures such as naps prior to

the start of the first night shift [59], or wake promoting

therapeutics is required [60,61]. Over the course of successive

night shifts countermeasures such as scheduled sleep may only

partially improve cognitive functioning. For example, in our study

despite an 8 hour scheduled sleep episode [34], loss of sensitivity in

the search task and attentional lapses on the PVT on the third

night shift were significantly greater than daytime baseline levels

(Figures 2 and 3) even in subjects who were scheduled to sleep in

later in the afternoon. It is likely that a combination of two or more

countermeasures may be more effective than a single counter-

measure, although additional studies are needed to test this.

Consistent with previous findings we found substantial impair-

ment in the speed and accuracy of response to stimuli, coupled

with a decrease in subjective alertness during night shifts

[23,24,45,46]. However, the fact that some of these deficits were

most pronounced on the first night shift warrants further

investigation of cognitive impairment during this shift. It would

be informative to concentrate such efforts on understanding

nighttime deficits in specific cognitive processes, rather than

merely documenting global performance impairment. As it is clear

that standard countermeasures which facilitate adaptation to night

work may not be effective on the first night shift, it will also be

important to develop countermeasures targeted to the specific

cognitive deficits on this transition shift. Some future direction in

this regard could involve controlled studies with various shift

rotations, different sleep schedules and shift timings.

METHODS

Participants
Eleven men and seven women (26.164.8 years) participated in the

study. All were healthy and free from medical and psychiatric

disorders as determined from a screening evaluation, which included

a complete physical examination, clinical biomedical tests on blood

and urine, an electrocardiogram, and psychological tests (MMPI and

Beck Depression Inventory). Each subject gave written informed

consent before starting the study protocol which was approved by the

Human Research Committee of the Partners HealthCare System,

and was in accordance with the Declaration of Helsinki.

Procedures
The protocol was a rotating shift work simulation, consisting of

four consecutive days of work in the laboratory immediately

followed by three consecutive nights of work in the laboratory, and

a 38-hour constant routine at the end of the protocol. This is

described in greater detail in Santhi et al. [34]. Each subject was

assigned to his or her own light-and sound-proof study room for

the laboratory portions of the study. Day work was scheduled from

07:00-15:00 and night work from 23:00–07:00. Average illumina-

tion in the room during work shifts was typical for indoor lighting

(77.03633.43 Lux [25 mW/cm2] measured at a height of 137 cm

in a horizontal direction) and was the same for both day and night

shifts. Each work episode consisted of four two-hour sessions of

a 90-minute battery of computerized cognitive tasks, followed by

a 30-minute break. This battery included two selective attention
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tasks, conjunction search (Figure 1 top, left panel) and spatial

configuration search (Figure 1, top right panel), the Psychomotor

Vigilance Task, and a visual analog scale for measuring subjective

alertness.

The scheduled sleep episodes lasted eight hours. During day

work, all subjects were required to remain in bed in the dark from

22:00–06:00 and began the work shift an hour later. On the fifth

day subjects woke up at 0600 and started their first night shift

seventeen hours later at 2300. Thus, the first night shift in the

protocol started 32 hours after the end of the fourth day shift with

an intervening 8 hours sleep episode at habitual bedtime.

Following the first night shift, subjects were assigned to one of

two fixed sleep schedules: Evening Sleep (1400–2200) or Morning

Sleep (0800–1600) [34]. Subjects were in the laboratory during work

and sleep episodes. Between the work and sleep episodes, subjects left

the laboratory and were free to engage in normal activity provided

they did not nap. We ascertained compliance by continuously

monitoring activity with a wrist actigraph, also equipped with a light

sensor (Actiwatch-L, MiniMitter, Sun River, OR).

Cognitive Task Battery
Visual Search Tasks: Both search tasks required subjects to report

on the presence or absence of a target object in an array of

simultaneously presented distractors. There were two search tasks,

administered in separate blocks. In the conjunction search task

(Figure 1, top left panel), the target was a red vertical bar

measuring 0.4u62.1u of visual angle and the distractors were equal

numbers of green vertical and red horizontal bars measuring

2.1u60.4u of visual angle. In the spatial configuration search task

(Figure 1 top, right panel), the target was a white block numeral ‘5’

and the distractors were white block numeral ‘2s’, both measuring

0.8u61.2u of visual angle. In both tasks the stimuli were presented

on a black background. A single target was present on 50% of the

trials; the remaining trials contained only distractors. The set size

was varied from 10 to 40 items in increments of 10. Stimulus

locations were determined randomly on each trial. Each trial was

preceded by a white fixation plus sign for 500 ms. Subjects were

required to indicate whether or not the target was present at the

end of the trial by pressing the ‘quote ‘ key for ‘yes’ and the ‘a’ key

for ‘no’ responses. There were 100 trials per session and subjects

were instructed to respond as quickly and as accurately as possible.

Feedback was provided at the end of every trial in the form of RT

and accuracy of response.

We measured RT, slope and intercept of the RT x set size

function (computed by regressing RT on set size), and d9 (the

signal detection sensitivity parameter computed by transforming

accuracy scores [36]). The value of d9 is independent of response

bias (the tendency to favor either ‘yes’ or ‘no’ responses), and,

unlike raw accuracy, is normally distributed.

Psychomotor Vigilance Task (PVT): This vigilance task re-

quired subjects to monitor the center of the display for the

appearance of a stimulus, which in our study was a stream of digits

which began counting upwards, indicating elapsed time in

milliseconds (ms) since signal onset. The subjects were instructed

to press a button as soon as the stimulus was detected, at which

point the digit stream stopped giving subjects instant reaction time

(RT) feedback. The inter-stimulus interval varied randomly

between 1000 ms and 9000 ms, and the task lasted twenty

minutes. Measures of vigilance included the RT percentile

distribution and frequency of lapses (threshold for a lapse: 90th

percentile of baseline RT).

Subjective Alertness Scale: We also administered a visual analog

scale at the start of each cognitive battery session. The scale

allowed us to assess seventeen dimensions of subjective mood. For

each dimension, a 100 mm line labeled at either end with the

extremes of a subjective dimension (e.g. ‘alert’-‘sleepy’; ‘happy’-

‘sad9 etc) was presented on the computer monitor. Subjects used

a mouse to move a cursor with a mouse to the point on the line

that represented their current state along the dimension. Here we

report data from the ‘alert’-‘sleepy’ dimension.

Supplementary Information
The following suitably anonymized data sets (listed below), on

which the analyses reported here were done, will be made

available to interested members of the scientific community (as per

PLoS policy) as files in a pdf format, upon email request to the

following address: nsanthi@rics.bwh.harvard.edu.

(1) Conjunction Search RT.pdf

(2) Conjunction Search slope-intercept.pdf

(3) Conjunction Search dprime.pdf

(4) Spatial Configuration Search RT.pdf

(5) Spatial Configuration slope-intercept.pdf

(6) Spatial Configuration dprime.pdf

(7) PVT lapses.pdf

(8) PVT RT.pdf

(9) Alertness.pdf
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