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ABSTRACT

In recent years, the drug discovery paradigm has
shifted toward compounds that covalently modify
disease-associated target proteins, because they
tend to possess high potency, selectivity, and du-
ration of action. The rational design of novel tar-
geted covalent inhibitors (TCIs) typically starts from
resolved macromolecular structures of target pro-
teins in their apo or holo forms. However, the exist-
ing TCI databases contain only a paucity of covalent
protein–ligand (cP–L) complexes. Herein, we report
CovPDB, the first database solely dedicated to high-
resolution cocrystal structures of biologically rele-
vant cP–L complexes, curated from the Protein Data
Bank. For these curated complexes, the chemical
structures and warheads of pre-reactive electrophilic
ligands as well as the covalent bonding mechanisms
to their target proteins were expertly manually an-
notated. Totally, CovPDB contains 733 proteins and
1,501 ligands, relating to 2,294 cP–L complexes, 93
reactive warheads, 14 targetable residues, and 21 co-
valent mechanisms. Users are provided with an intu-
itive and interactive web interface that allows multi-
ple search and browsing options to explore the co-
valent interactome at a molecular level in order to
develop novel TCIs. CovPDB is freely accessible at
http://www.pharmbioinf.uni-freiburg.de/covpdb/ and
its contents are available for download as flat files of
various formats.

INTRODUCTION

Historically, compounds possessing electrophilic moieties
(warheads) with the aptitude to form covalent bonds with
disease-associated target proteins were zealously avoided in
drug discovery campaigns, due to potential toxicity risks

in relation to off-target promiscuity. Early covalent drugs
such as aspirin, omeprazole, and beta-lactam antibiotics,
were established to act through a covalent bonding mech-
anism not until long after their market approval (1,2). Con-
versely, covalent drugs have received tremendous attention
in recent years owing to their superior potency, selectiv-
ity, and duration of action compared to their noncovalent
counterparts (3–5). This paradigm shift is underscored by
the fact that up to 30% of all clinically approved drugs
act through a covalent bonding mechanism, notably remde-
sivir, an inhibitor of the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) RNA-dependent RNA poly-
merase (RdRp), serving as one of the very few treatments so
far approved for the coronavirus disease 2019 (COVID-19)
(6–8). Beyond the clinically approved covalent drugs, there
is a further number of targeted covalent inhibitors (TCIs)
involved in clinical trials, prominently the orally available
small-molecule PF-07321332, which potently and selec-
tively inhibits SARS-CoV-2 main protease (Mpro) (https:
//www.clinicaltrials.gov/ct2/show/NCT04756531).

Nowadays, chemoproteomic methods with electrophilic
fragment libraries are routinely used to identify TCIs in bio-
chemical and cellular assays (9–12). Moreover, due to rapid
advances in protein characterization, there is a plethora of
3D macromolecular structures of covalent protein–ligand
(cP–L) complexes that have been resolved using a variety
of techniques such as X-ray, NMR, or cryo-EM, and de-
posited in the Protein Data Bank (PDB) (13). Despite nu-
merous strides made in the field of proteomics, the develop-
ment of novel TCIs exhibiting high potency and selectivity
for a given target protein remains challenging. From a com-
putational standpoint, numerous tools have emerged for the
structure-based virtual screening (SBVS) of TCIs. Avail-
able covalent molecular docking tools include CovDock
(14), GOLD (15), DOCKTITE (16), AutoDock (17), Co-
valentDock (18), DOCKovalent (19), and DUckCov (20),
whereas only LigandScout (21), AncPhore (22), and CSD-
CrossMiner (23) have been reported to incorporate covalent
pharmacophore modeling.
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SBVS endeavors require high quality 3D macromolec-
ular structures as input data. To aid these endeavors, a
number of TCI databases have been created from the
manual annotation of the published literature. The first
such database was Cysteinome (http://www.cysteinome.
org), hosting 1,217 pre-reactive ligands, 462 target proteins
with targetable Cys residues, and hyperlinks to PDB en-
tries (24). However, the Cysteinome website is no longer ac-
cessible. Other TCI databases include: cBinderDB (http://
www.rcdd.org.cn/cbinderdb/) describing 1,867 pre-reactive
ligands, 555 target proteins with various targetable residues,
and 120 PDB structures of cP–L complexes (25); and Co-
valentInDB (http://cadd.zju.edu.cn/cidb/) describing 4,806
pre-reactive ligands, 298 target proteins with various tar-
getable residues, and less than 280 representative PDB
structures of cP–L complexes (26). Since all three above-
mentioned databases describe only a small proportion of
3D structures of cP–L complexes, we attempted to fill the
gap by adopting a diametrically opposed approach, which
consists of the mining of 3D structures of cP–L complexes
hosted in the PDB (13). Hence, we created CovPDB, the
first database solely dedicated to high-resolution cocrystal
structures of biologically relevant cP–L complexes. The 3D
structures within CovPDB depict both covalent and nonco-
valent interactions at the cP–L contact interface, thus pro-
viding invaluable insights into structural determinants of
molecular recognition processes for the rational design of
highly potent and selective TCIs.

MATERIALS AND METHODS

Data curation

This process was carried out in a semi-automated fashion
as illustrated in Figure 1. As a starting point, all regis-
tered PDB entries were retrieved on 31 August 2020 and
parsed with the help of a custom PyMOL (Schrödinger
LLC, New York, https://www.schrodinger.com/) Python
script for cocrystal covalent structures of target pro-
teins in complex with electrophilic ligands. Because not
all PDB structures are suitable for prospective model-
ing studies, especially those with ambiguous ligand elec-
tron densities in the protein binding site, we only kept
PDB structures with resolution equal to or better than 2.5
Å. To further refine the collected dataset, the list of ar-
tifact PDB ligands (http://zhanglab.ccmb.med.umich.edu/
BioLiP/ligand list) compiled by Zhang et al. (27), was used
to filter out all retrieved complexes wherein the ligand is bi-
ologically irrelevant. Typical artifact ligands include crys-
tallization additives such as glycerol. Additionally, com-
plexes containing covalent cofactors acting as prosthetic
groups were discarded (e.g. retinal), and likewise ligands
that crosslink two (dis)similar protein chains. The result-
ing cP–L complexes were visually inspected to ascertain
the presence of a covalent bond between interacting pairs.
Finally, the chemical structures (SMILES) and warheads
(SMARTS) of the pre-reactive electrophilic ligands as well
as the covalent bonding mechanisms to their target proteins
were expertly manually annotated. This was performed
through extraction of structural information from primary
citations associated with a given PDB entry. In a few cases
with missing primary citations, the features of pre-reactive

electrophilic ligands were nonetheless annotated directly
from the PDB structures.

For the cP–L complexes of this refined dataset, 3D struc-
ture characterization methods, resolutions, and binding
affinities were retrieved from PDB (13). Moreover, protein
features including official name, symbol, class, synonyms,
organism, and sequence were retrieved from PDB (13),
UniProt (28), and NCBI Gene (29) records. The acid disso-
ciation constant (pKa) and solvent accessible surface area
(SASA) values of the targetable residues were computa-
tionally predicted with PROPKA (30) and FreeSASA (31),
respectively. Since the vast majority of the annotated pre-
reactive ligands differ in structure to the bound PDB ligands
(labeled with PDB HetIDs), each pre-reactive ligand was as-
signed a unique ‘COVPDB ID’. Ligand SMILES were used
to retrieve PubChem (32), DrugBank (33), and ChEMBL
(34) IDs. Additionally, several physicochemical descriptors
generally used in druglikeness evaluation of small-molecule
ligands were computationally predicted from the ligand
SMILES with RDKit (https://www.rdkit.org/).

Implementation

All curated data was inserted into a PostgreSQL database.
The website for CovPDB was implemented using HTML,
Django, CSS, and Javascript and supports recent versions of
major browsers such as Chrome, Edge, Firefox, Opera and
Safari. The Java applets Mol* viewer (35) and ChemDoodle
(https://www.chemdoodle.com/) were incorporated into the
website for the interactive 3D display of cP–L complexes
and ligand structure editing, respectively. Moreover, Mol-
converter (Marvin 20.18.0, 2020, ChemAxon, https://www.
chemaxon.com/) was employed to generate 2D and 3D lig-
and structures; while RDKit (https://www.rdkit.org/) and
NCBI BLAST+ (36) were integrated to the web interface
in order to enable ligand fingerprint and protein sequence
similarity searches, respectively.

RESULTS AND DISCUSSION

Database contents

Overall, CovPDB contains 1,501 ligands and 733 target
proteins, relating to 93 reactive warheads, 14 targetable
residues, and 21 covalent mechanisms, as summarized in Ta-
ble 1. Out of the 2,261 PDB structures, 30 of them contain
two different ligands bound to two separate protein chains,
one of them (PDB ID: 5TNJ) contains four ligands bound
to four separate chains, and the rest contain a single ligand
to identical chains, amounting to 2,294 unique cP–L com-
plexes. Only 13 PDB structures were resolved by solution
NMR and the rest were resolved by X-ray crystallography
with electron density resolution clustered between 1.5 and
2.5 Å (Figure 2A). Compared to CovalentInDB, the newly
introduced CovPDB contains twice more proteins and eight
times more complexes but thrice less ligands. As such both
CovPDB and CovalentInDB are complementary and could
be used in an integrated fashion to aid TCI discovery.

The vast majority of covalently bound ligands within cP–
L complexes of the CovPDB are bonded to a single nu-
cleophilic residue (monodentate ligands), 42 are simulta-
neously bonded to two residues (bidentate ligands), and
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Figure 1. CovPDB flowchart.
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Table 1. Overview of CovPDB statistics

Attributes Count

PDB structures 2261
cP–L complexes 2294
Complexes with binding affinities 529
Covalent mechanisms 21
Pre-reactive ligands 1501
Warheads 93
Ligand types 11
Target proteins 733
Protein classes 13
Targetable residue types 14
Source organisms of proteins 261
Literature references 1173

three are simultaneously bound to three residues (triden-
tate ligands). It is worth mentioning that the data curation
approach adopted in this study did not permit the extrac-
tion of cP–L complexes wherein the ligand covalently mod-
ifies a cofactor rather than a protein residue, as exemplified
by remdesivir, which binds to the RNA cofactor of SARS-
CoV-2 RdRp (PDB ID: 7BV2). The protein classification
of CovPDB is dominated by hydrolases (Figure 2B). Un-
surprisingly, Cys, Ser, and Lys are overly represented among
nucleophilic residues of target proteins (Figure 2C). There is
a direct correlation between the most represented warhead
category (vinyl carbonyl) and the most represented cova-
lent bonding mechanism (Michael addition), as illustrated
in Figure 2D and E. Warheads existing in both acyclic and
cyclic forms and exhibiting different reactivity profiles to
targetable residues were grouped in separate categories, as
exemplified by acyclic amides (weakly reactive) and beta-
lactams (highly reactive).

Usage

CovPDB is fully searchable with multiple browsing and
search options. From its homepage, six main attribute cat-
egories (ligands, proteins, complexes, warheads, covalent
mechanisms, and targetable residues) are provided under
the ‘Browse’ section as full lists. These lists are interactive
and are representative of the attributes distribution. For
example, the user can browse the warhead list and obtain
the distribution of the five other attributes for each and
every one of the 93 warheads, and subsequently retrieve
filtered attribute lists for a given warhead (e.g. vinyl car-
bonyl). From the ‘Search’ category, the user can query the
entire database: for proteins by protein name or UniProt
ID/ACC; and for ligands by ligand name, COVPDB ID
or HET code. Additionally, ligand substructure and sim-
ilarity (with a threshold) searches can be performed with
user-defined SMILES or with a structure sketched via the
ChemDoodle (https://www.chemdoodle.com/) editor. Sim-
ilarly, the user can input a protein sequence to retrieve ho-
mologous proteins. And, the results of these two descriptor-
based ligand and protein queries can be exported as CSV
and TXT files, respectively. For every protein, ligand, or
complex entry of the CovPDB, a dedicated card page is pro-
vided, which details the experimental and/or computed de-
scriptors of a given attribute (Figure 1). The ligand card
contains ligand SMILES, InChI, 2D structure, ligand type,

synonyms, PubChem ID, DrugBank ID, ChEMBL ID,
molecular weight, molecular weight, octanol/water parti-
tion coefficient (log P), H-bond acceptor (HBA), H-bond
donor (HBD), rotatable bond count, topological polar
surface area (TPSA), and a tabulated list of bound pro-
teins. The protein card contains protein name, synonyms,
class, function, sequence, organism, gene symbol, UniProt
ID/ACC, Gene ID, PDB ID count, and a tabulated list of
bound ligands. The complex card contains PDB ID, reso-
lution, experimental method, PubMed ID (and DOI), tab-
ulated features of the covalent mechanism, and tabulated
features of the bound protein and ligand. Additionally, the
complex card provides an interactive 3D view of the cova-
lent ligand with the protein binding site, displayed with the
Mol* viewer (35) that was developed and utilized by RCSB
PDB (13) and PDBe (37) on their websites. All attribute lists
and cards are internally linked to one another and exter-
nally linked to other online bioinformatic resources.

CovPDB freely provides its contents as flat files for down-
load, namely all ligand structures (SDF format), protein se-
quences (FASTA format), cP–L complexes (PDB format),
and reactive warheads (TXT format). CovPDB contents are
amenable to diverse applications in the burgeoning field of
rational TCI design. For example, an SBVS endeavor could
be initiated from an cP–L complex of interest with a filtered
subset of ligand structures that covalently address the nucle-
ophilic residue of the target protein of interest. Additionally,
the warhead list could be utilized to filter compound classes
of other chemical libraries such as StreptomeDB (38) and
ZINC (39), for use in covalent SBVS campaigns. Further-
more, the ligand and cP–L complex datasets could serve
as training and benchmark data in warhead reactivity and
docking scoring function studies, respectively. On the other
hand, conserved sequence motifs and homology modeling
studies could be performed with the protein sequences.

CONCLUSION

Herein, we described the creation of a carefully curated
dataset of about 2300 cP–L complexes, 1500 ligands and
750 proteins named as CovPDB (http://www.pharmbioinf.
uni-freiburg.de/covpdb/). To the best of our knowledge, this
constitutes the largest high-resolution covalent interactome
to date. Updates will be made yearly to incorporate newly
deposited PDB entries. The user-friendly interface of Cov-
PDB provides a means to intuitively and interactively ex-
plore its contents, which are also made available for down-
load as flat files of various formats. Collectively, CovPDB
offers valuable insights into the mechanisms by which elec-
trophilic ligands covalently modify nucleophilic residues, as
well as the structural determinants of substrate/inhibitor
selectivity at a given binding site. It is hoped that these in-
sights will be useful in rationally developing novel TCIs to
address unmet medical needs, especially in oncology and in-
fectious diseases, as well as in other diseases.

DATA AVAILABILITY

CovPDB is freely accessible at http://www.pharmbioinf.
uni-freiburg.de/covpdb/ and its contents are available for
download as flat files of various formats.
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Figure 2. Distribution of CovPDB attributes. (A) Distribution of electron density resolution. (B) Distribution of protein classes. (C) Distribution of tar-
getable residues. (D) Distribution of the top 24 warheads. (E) Distribution of covalent bonding mechanisms.
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