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Abstract Nature is full of dimeric alkaloids of various
types from many plant families, some of them with interest-
ing biological properties. However, dimeric Cinchona alka-
loids were not isolated from any species but were products of
designed partial chemical synthesis. Although the Cinchona
bark is amongst the sources of oldest efficient medicines,
the synthetic dimers found most use in the field of asym-
metric synthesis. Prominent examples include the Sharp-
less dihydroxylation and aminohydroxylation ligands, and
dimeric phase transfer catalysts. In this article the synthe-
ses of Cinchona alkaloid dimers and oligomers are reviewed,
and their structure and applications are outlined. Various syn-
thetic routes exploit reactivity of the alkaloids at the central
9-hydroxyl group, quinuclidine, and quinoline rings, as well
as 3-vinyl group. This availability of reactive sites, in com-
bination with a plethora of linker molecules, contributes to
the diversity of the products obtained.

Keywords Quinine · Quinidine · Dimer · Trimer ·
Cinchona · Alkaloid

Introduction

The term alkaloid is used for many vastly different nitro-
gen heterocycles of mostly plant origin. Alkaloids are clas-
sified according to the heterocycle and the taxonomy of the
species they were isolated from. The natural diversity of the
alkaloids is further extended by the presence of numerous
dimeric alkaloids (Fig. 1). Some dimers appear as byproducts
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by coupling of a small portion of the monomers (e.g., salu-
tadimerine), while others are the final products of biosynthe-
sis (e.g., cephalostatin). Alkaloid dimers can exhibit biologi-
cal activities unrelated to that of the corresponding monomer
[1], such as in vitro anti-HIV and antimalarial properties of
Michelleamine A [2], or fungicidal activity of Bismurrafo-
line B [3]. Natural alkaloid dimers of different symmetry and
heterodimers were isolated (Fig. 1). Additionally, dimers of
alkaloids can be synthesized in the laboratory giving rise to
a virtually unlimited number of combinations [1].

The bark of various Cinchona species contains four major
alkaloids, namely quinine (QN), quinidine (QD), cinchoni-
dine (CD), and cinchonine (CN) (Fig. 2). These quinoline
alkaloids are isolated on an industrial scale in multi-ton
amounts. Their structures contain a central hydroxyl group
as well as quinoline and quinuclidine rings. The individual
alkaloids differ in the configuration at two crucial stereogenic
centers (C-8 and C-9, Fig. 2). Quinine has been used for
nearly four centuries to treat malaria. Although currently it
is largely replaced by newer medicines, such as chloroquine
(1947) and artemisinin (1970’s), its therapeutic use is lim-
ited to drug-resistant strains. On the other hand, quinidine
is often used to treat certain arrhythmias. Cinchona alka-
loids are also employed in enantioselective synthesis (cat-
alysts, ligands) and separation processes (resolving agents,
solid phases, assays) [4]. To date, no dimeric alkaloid in this
family has been isolated from a natural source. Nevertheless,
many synthetic dimers were made exploiting a few reactive
sites in the Cinchona alkaloids (Fig. 2).

These synthetic dimers were examined for their biologi-
cal activities and applicability in asymmetric reactions. For
the purposes of medicinal chemistry, the multiplication of the
pharmacophore in the dimers could improve binding or cause
crosslinking of the biological receptors. The transition from
a monomeric to dimeric alkaloid molecule results in accumu-
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Fig. 1 Selected natural dimeric alkaloids

lation of functional groups confined within a limited space.
These features as well as a C2-symmetry are often present
in effective asymmetric catalysts. Modifications of Cinchona
alkaloids at the central 9-OH group and at the quinuclidine
N-1 atom led to the most effective dimeric catalysts and bio-
logically active compounds.

For the purpose of this review, alkaloid derivatives are
labeled with the corresponding alkaloid (QN, QD... cf. Fig.
2), 10,11-dihydroalkaloid (DHQN, DHQD…), or 9-epi-
alkaloid descriptor (eQN, eQD, etc.) followed by a consec-
utive compound number. It has to be emphasized that some
derivatization reactions were reported only for a single alka-
loid, while others were exercised on a set of Cinchona alka-
loids.

Dimers connected at the central C-9 position

The central 9-OH group offers an attractive site for modifi-
cation (i.e., etherification and esterification reactions). Alter-
natively, the hydroxyl group can be replaced with a few other
groups (e.g., NH2) and subsequently used for dimerization.

9-Ether-linked dimers

Dimers, in which the Cinchona alkaloid units are connected
through 9-aryl ethers, represent a class of the most successful
ligands for the Sharpless asymmetric dihydroxylation (AD)
and related aminohydroxylation reactions (Figs. 3 and 4) [4–
8].

The same ligands with tungstate catalyzed enantiose-
lective sulfur oxidation with hydrogen peroxide [9]. Fur-
thermore, numerous applications in metal-free catalysis
emerged [4,10,11] and made Cinchona alkaloid derivatives
included to the privileged chiral structures [12]. Examples of
these asymmetric organocatalytic reactions include (Fig. 4):
dichlorination [13], fluorination [14,15], opening of cyclic
anhydrides (including dynamic kinetic resolution) [16,17],
aldol [18] and Mannich-type reactions [19], various types of
conjugate addition [20–23], cyanation of ketones [24], cyclo-
propanation [25], and nucleophilic substitution [26].

In dimeric Cinchona aryl ethers (Fig. 3), the linkers are
either electron deficient heterocycles or anthraquinones. All
of these compounds were obtained through aromatic nucle-
ophilic substitution. Thus, the alkaloid units are mostly in the
para position with the exception for few meta derivatives, but

Fig. 2 Four major Cinchona alkaloids. Arrows mark the reactive sites used for dimerization
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Fig. 3 Prominent linkers of dimeric aryl ethers and their common
abbreviations

no ortho-diethers are known. The lack of such products arises
from the reactivity of halo-aryls in the nucleophilic substitu-
tion, rather than steric interactions, since heavily substituted
pyrimidine derivatives were obtained with relative ease.

Phthalazine derivatives

Up to 1992 there was an incremental progress in osmium-
catalyzed asymmetric dihydroxylation reactions, and promis-
ing results were obtained with monomeric Cinchona alka-
loid derivatives in the role of ligands. Then, the discovery
of dimeric phthalazine ether ligands (PHAL, 3) marked an
enormous leap for asymmetric synthesis [27,28]. The respec-
tive dimers 3 were obtained from reactions of alkaloids with
1,4-dichlorophthalazine (2). The process required basic con-
ditions and azeotropic removal of water with toluene [29]. In
an alternative synthesis, the alkaloids were first deprotonated
with NaH in DMF and subsequently treated with dichloride
2 [30]. This change in protocol often provided better prepar-
ative yields. Although 2 is commercially available, it can be
efficiently obtained from phthalhydrazide (1), PCl5, and a
catalytic amount of DMF (Fig. 5) [29].

Also, a stepwise protocol for the synthesis of unsym-
metrical dimers was devised. Equimolar amounts of 1,4-
dichloro-phthalazine (2) and dihydroalkaloid gave reac-
tive chloroderivative 4 that was used in a subsequent step
to 9O-arylate another alkaloid. The resulting quinidine-

dihydroquinidine and quinine-dihydroquinine heterodimers
3 had a single vinyl group that was used to anchor the mole-
cule to polymer supports using the radical addition of thiols
(Fig. 6) [31–33].

A single reactivity averts crosslinking, and in the cases
presented by the authors, also prevents significant distortion
of geometry in the parent structure. The same approach was
followed to obtain chiral stationary phase additive, by reac-
tion of QD/DHQD-3 with octadecyl mercaptan [33]. The
symmetrical phthalazine dimers 3 were also subject to many
subsequent derivatization attempts. These include primar-
ily immobilization, for example, direct copolymerization of
quinine-based dimer with methacrylates [34], or copolymer-
ization of more reactive alkaloid-derived acrylate DHQN-10
(Fig. 7) with styrene/divinylbenzene in suspension [35].

Apart from simple alkaloids, also their elaborate deriva-
tives were dimerized with phthalazine [36]. Didehydroquini-
dine (QD-11, vide infra) was coupled in a Sonogashira reac-
tion with various aryl halides to yield alkaloids with extended
carbon scaffold QD-12a–b. Also, 11-iodinated didehydro-
alkaloid QD-12c was prepared by addition of iodine to the
triple bond of didehydro-alkaloid followed by elimination of
HI. These three compounds (QD-12a–c) were used to obtain
respective phthalazine dimers QD-13a–c (Fig. 8). The yields
of the dimerization step were similar to that of unmodified
quinidine [37].

Under osmium-catalyzed asymmetric dihydroxylation
conditions, the two native vinyl groups in Cinchona dimers
QN-3, QD-3 are transformed to the corresponding tetraols.
These products catalyze the AD reaction, although arguably
[27] their effectiveness is inferior to DHQN-3 and DHQD-
3. Nevertheless, the polar character of these compounds was
advantageous for reactions carried in special solvents, includ-
ing ionic liquids, polyethylene glycol (PEG), and water.
Thus, even more polar compounds were obtained by mono
N1-quaternization with benzyl [30] or allyl bromide. The
N -allyl ammonium salt QD-14 was then directly used in
the AD reaction. It was transformed in situ to water solu-
ble ammonium salt DHQD-15 having six hydroxyl groups,
which facilitated recycling of the ligand through aqueous
extraction (Fig. 9) [38]. Also, exhaustive quinuclidine N -
alkylation was performed on phthalazine dimer DHQD-3.
The obtained dimeric quaternary salts were not suitable for
AD reactions, but were considered for phase transfer cataly-
sis (PTC) [39].

Dimers of a different architecture were also obtained in
a reaction of polyethylene glycols (PEG) with monomeric
dihydroquinine ether DHQN-4 (Fig. 10). These immobilized
soluble ligands DHQN-16a–c were still successful in amino-
hydroxylation reactions and could be recycled; however, sig-
nificant catalyst loading was required [40].

Modification at the spacer unit required de novo syn-
thesis of the dimers. The analogue of 2 with two pendant
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Fig. 4 Asymmetric reactions catalyzed by dimeric ethers of Cinchona alkaloids

Fig. 5 Synthesis of (DHQN)2PHAL dimer
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Fig. 6 Stepwise synthesis of PHAL-type heterodimers, and their immobilization

 

Fig. 7 PHAL-dimer derivative for copolymerization

Fig. 8 PHAL-type dimers from modified Cinchona alkaloids
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Fig. 9 Transformation of PHAL-dimer to hydrophilic species

Fig. 10 Synthesis of alkaloid phthalazine ether-flanked PEG

Fig. 11 Synthesis of DP-PHAL and DPP-type dimers

phenyl groups, 1,4-dichloro-6,7-diphenylphthalazine (21)
was obtained in four steps (16 % total yield) from benzil
(17). Coupling of 21 with both dihydroquinine and dihy-
droquinidine proceeded to DP-PHAL dimers DHQN-22 and
DHQD-22 in 69 and 48 % yield, respectively—i.e., by 20 %
lower than for the unsubstituted linker 2 [41]. A similar linker
with two more nitrogen atoms incorporated into the pla-
nar ring system was also applied: 1,4-Dichloro-6,7-diphenyl-
pyrazinopyridazine (25) [42] was coupled with two dihydro-

quinidine units providing the respective DPP dimer DHQD-
26 (Fig. 11) [43].

Also, linkers with extended fused ring systems were
applied. The synthesis of DHQD-32 by Corey involves two
additional modifications. The alkaloid was first modified at
the 6′-position of the quinoline ring (vide infra). Prior to cou-
pling, dihydrocupreidine (DHQD-27), a derivative of quini-
dine with free 6′-hydroxy group, was 6′O-alkylated with a
series of secondary alkyl bromides [44]. The reactive linker

123



Mol Divers (2015) 19:385–422 391

Fig. 12 Synthesis of a multiply modified PHAL-type heterodimer

Fig. 13 Synthesis of PYDZ and pyrazine-linked dimeric ligands

molecule 30 was obtained analogously to phthalazine, start-
ing from naphthalenedicarboxylic acid hydrazide and a mix-
ture of PCl5 and POCl3 [45]. The coupling of quinidine
derivative DHQD-31 with 1,4-dichlorobenzo[g]phthalazine
afforded the dimer DHQD-31 in good yield. Subsequent par-
tial N1-quaternization with methyl iodide concluded the syn-
thesis of this highly diversified structure (Fig. 12). DHQD-32
provided a highly regioselective and enantioselective course
of AD reaction of terminal isopropylidene groups in selected
terpenoids [44].

Pyridazine, pyrazine, and pyrimidine derivatives

Shortly after introduction of phthalazine-type ligands by
Sharpless, Cinchona dimers with two single-ring heteroaro-
matic linkers were applied by Corey’s group [46]. These
included pyridazine DHQD-36 (PYDZ) and pyrazine spac-
ers DHQD-41. The coupling was accomplished by refluxing
the respective 3,6- or 2,5-dichloro heterocycles 35 and 40
with dihydroquinidine in toluene in the presence of a base and
the azeotropic removal of water. 3,6-Dichloropyridazine (35)

not only is commercially available, but can also be obtained
in a short and efficient synthesis [47]. On the other hand 2,5-
dichloropyrazine (40) is more challenging to obtain (Fig. 13)
[48,49].

Similarly to PHAL-dimers, a few modifications to the
original PYDZ structure 36 were made. Double tethered
derivatives of 36 are presented in the last section of this
article. Dimer 36 was also partially quaternized with 9-
anthracenylmethyl group [50]. A pyridazine linker sub-
stituted with a short alkyl chain flanked with a terminal
alkyne group was also obtained. The functionalized reactive
dichloroheterocycle 44 was obtained via the sequential Diels-
Alder and retro-Diels-Alder reactions of dichlorotetrazine
(42) and 1,7-octadiyne (43) in one pot. After the coupling of
44 with dihydroquinidine the terminal alkyne group of the
dimer DHDQ-45 remained reactive in the copper-catalyzed
Huisgen 1,3-dipolar “click” cycloaddition (CuAAC) [51].
Thus 1,2,3-triazoles were obtained with various azides
including small molecules [52] and polymers (Fig. 14) [51].

Pyrimidine-based dimers 51 (PYR) constitute another
important group of ligands, particularly useful in AD of
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Fig. 14 Synthesis of PYDZ derivative reactive in “click” chemistry

Fig. 15 Representative syntheses of PYR-type dimers

branched olefins. Their major distinction is that the alka-
loid units are positioned meta instead of para to each other.
The synthesis again relied on refluxing the dichlorohete-
rocycle 50 with the alkaloid in the presence of a base in
toluene and the azeotropic removal of water (Fig. 15). The
reactive dichloride 50 was obtained in a two-step proce-
dure starting from the condensation of adequately substituted
diethyl malonate 47 and amidine 48. Subsequent reaction
with either POCl3 or PCl5 gave the required reactive inter-
mediate 50. An important feature of the pyrimidine scaf-
fold is that 2- and 5- substituted derivatives are often eas-
ily accessible. Sharpless obtained dimers with pyrimidine
linkers substituted at position 2 and 5 with combinations
of phenyl and tert-butyl groups [53]. However, groups with
greater steric demands at position 2 impede the formation of
the dimer, and only monomeric alkaloid derivatives could be
obtained from 2-CEt3-5-tBu-substituted pyrimidine [54]. In
later reports, more differently 2- and 5-substituted and unsub-
stituted pyrimidine dimers were mentioned [55]. The diver-
sity of the products was further enhanced in a synthesis of sev-
eral 2-aryl substituted dimers. The commercially available
4,6-dichloro-2-methylthio-5-phenylpyrimidine (52) reacted

with a series of arylboronic acids in a Suzuki-type reac-
tion. The obtained intermediates with quinine provided the
dimers QN-51a–d in very good yields (Fig. 15) [56]. Also,
an analogue of DHQN-51 substituted at the 2-position of the
pyridine with 3,4,5-trimethoxyphenyl group was specifically
designed for AD step in a synthesis of a natural product [57].
It was established that for applications in AD the presence of
2-tert-butyl is detrimental, while substitutions at 5-position
are more tolerated [53]. Nevertheless, such tuning of the cat-
alyst structure with bulky groups improved its performance
in an asymmetric Feist–Bénary reaction [55,56].

Also, a related spacer with 1,3,4-triazine core was
exploited. The synthesis was based on the reaction of inex-
pensive cyanuric chloride (53) with aniline to replace one
of the reactive chlorides. Then, dichloride 55 was reacted
with the prepared in situ quinine sodium salt in THF to
provide the respective dimer QN-56 in nearly quantitative
yield. Although the authors used only 4-bromoaniline (54),
they proposed that a diverse array of products could be
obtained using different aniline or amine derivatives. Inter-
estingly, an excess of quinine sodium salt with cyanuric chlo-
ride gave C3-symmetric trimeric derivative QN-57 (Fig. 16).
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Fig. 16 Synthesis of 1,2,3-triazine-linked dimer and trimer

Fig. 17 Synthesis of AQN-type dimeric ligands

However, only dimer 56 showed promise in AD reactions
[58].

Anthraquinone derivatives

Apart from the heterocyclic spacers, also the anthraquinone
unit was extensively studied. 1,4-Difluroanthraquinone (60)
was obtained in the Friedel–Crafts reaction of phthalic anhy-
dride with p-difluorobenzene. For the coupling, dihydroalka-
loid was converted in situ into a lithium salt with butyllithium,
and then a reaction with difluorocompound 60 yielded the
anthraquinone dimers (AQN, DHQN-61, DHQD-61) in very
good yield (Fig. 17) [59]. These ligands are superior in AD
of alkenes with aliphatic substituents.

Similarly to the phthalazine ligands, also a stepwise syn-
thesis was devised. Consecutive reactions of 60 were car-
ried out with alkaloid sodium salts in DMF. This approach,
although lower in yield, allowed for the synthesis of
heterodimers namely, alkaloid-dihydroalkaloid pair QN/
DHQN-61 suitable for immobilization (Fig. 18) [60].

Other immobilization attempts included addition of thiols
to quinine and quinidine homodimers (QN-61 and QD-61)

[61]. Also, the spacer was modified to accommodate fur-
ther transformations. 6-Bromoderivative of anthraquinone
66 was obtained from 4-bromo-o-xylene (64) in a four-step
synthesis. The coupling with the alkaloid afforded 6-bromo
derivative of AQN-dimer DHQD-67, which was reactive in
a Suzuki coupling with TBS-protected 4-hydroxyphenylbor
onic acid. The silyl ether was cleaved, and the obtained phe-
nol group was exploited to obtain a series of derivatives 69–
73 (Fig. 19) [62]. Among these were linear polystyrene [63],
silica gel supported material, polyethylene glycol derivatives
[62] including a tetramer DHQN-73 formed from tethered
dimeric quinine units [64].

9-Alkyl ethers

Dimeric alkaloid alkyl ethers constitute a much less stud-
ied group of compounds. Their synthesis is, however,
straightforward and involves the Williamson etherification
of an alkali metal alkaloid salt and the respective alkyl
dihalide. For xylylene-linked dimers, all three isomers: ortho
[65], meta [66], and para [67,68] were reported or men-
tioned in the literature. The shortest known link was made
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Fig. 18 Stepwise synthesis of AQN-type heterodimers, and their immobilization

Fig. 19 Synthesis of dimers with modified anthraquinone spacer

with E-butene, still in very good yield [68]. A trimeric
ether QD-77 was also obtained in an analogous reaction
with 1,3,5-tris(bromomethyl)benzene (76) (Fig. 20) [69].
Some of the dimeric ethers were converted to polymeric
quaternary ammonium salts (vide infra) with a series of
bis(bromomethyl)arenes and served as effective PTC cata-
lysts [68].

Alkyl ethers are much less suitable ligands for the asym-
metric dihydroxylation reaction in comparison to the corre-
sponding aryl ethers. For example, a dimer with p-xylylene
linker (DHQD-74) gave merely 22 %ee in AD reactions
where aryl ethers provided excellent enantioselectivity [67].
Nevertheless they showed promise in organocatalytic appli-
cations such as asymmetric aminooxygenation of oxindoles
(meta-xylylene linker) [66].

9-Ester-linked dimers

The dimeric esters of alkaloids have the longest history of the
presented groups of compounds. The carbonic acid diester is
known from the patent literature dating to the end of the XIX
century (German patent No. DE105666, 1898). In a later pub-
lished work, the carbonate CD-79 was obtained in a reaction
of excess of cinchonidine with a carefully controlled amount
(0.25 equiv) of phosgene (Fig. 21). When the amount of phos-
gene was increased, an unreactive byproduct, identified then
as alkaloid chloroformate, was formed. On the other hand,
the carbonate CD-79 was reported to decompose in water
[70].

Esters of dicarboxylic acids are generally more stable.
They were most often obtained in a reaction of dicarboxylic
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Fig. 20 General synthesis of dimeric and trimeric alkaloid alkyl ethers

Fig. 21 Synthesis of dimeric alkaloid carbonate

acid chlorides and the alkaloids. Usually the transforma-
tion was carried in the presence of a base such as triethy-
lamine [71] and sometimes with catalytic amounts of 4-
dimethylaminopyridine (DMAP). The yields, when reported,
were above 70 %. The dimers were also obtained in a one-pot
procedure, where the starting diacids were first transformed
to the corresponding chlorides with thionyl or oxalyl chloride
and subsequently coupled with the alkaloids. Alternatively
the dicarboxylic acids were activated with a carbodiimide
(e.g., EDC); however, this milder method often resulted in
poor yields [72]. Following one of these general methods, a
relatively large array of dimeric esters was synthesized (Figs.
22, 23). Links were formed from simple aliphatic diacids
with 3–10 carbon atoms [71,72], as well as those with ether
(German patent No. DE237450, 1909) and disulfide bonds
[72,73].

Dimers linked with spacers having unsaturated bonds, aro-
matic rings, and bicyclic scaffolds were also obtained, mostly

using corresponding acid chlorides for coupling. Cinchona
dimers with all of the isomers of benzenedicarboxylic acid
were obtained, namely terephthalic [71], isophthalic [74],
and o-phthalic esters 86, 88, and 90, respectively. Dimeric
esters with linkers incorporating heteroatoms were obtained,
starting from dichlorides of pyridine 2,6-dicarboxylic acid
[75], 2,2′-diselenodibenzoic acid [76], and ferrocene 1,1′-
dicarboxylic acid (Fig. 24) [77]. Also, a C3-symmetric trimer
QN-95 was formed in a reaction of trimesic acid chloride with
quinine (Fig. 25) [71].

A few of the esters were tested in AD reaction. Some,
like the ferrocene-linked dimer DHQN-91 provided only
moderate enantioselectivity (<61 %ee). In the group of sim-
ple diesters, hexadionate DHQN-81b turned out an effective
catalyst (92 %ee) in contrast to malonate. The most attrac-
tive catalytic properties were found for the terephthalate lig-
and (DHQN-86, >98 %ee), which in AD of certain sub-
strates outperformed the classic PHAL-type ligand DHQN-3
[71,78]. On the other hand, isophthalic ester, while still effec-
tive in AD, provided worse enantioselectivity than terephtha-
lates in all the cases studied [74]. In a later study, improved
results in AD and AA reactions were achieved for isoph-
thalates and a series of analogous pyridine-linked dimers 89
[79].

Diversity in the linker structure was also introduced by
subsequent modifications of an already dimeric molecule.
In the reaction of fumaroyl dichloride with cinchonine and
cinchonidine, the respective dimeric esters CN-96 andCD-
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Fig. 22 General synthesis of alkaloid dimeric esters

Fig. 23 Linear spacers with heteroatoms

96 were formed in 78–86 % yield [80]. The reactivity of the
activated double bond was further exploited in a Diels-Alder
reaction with cyclopentadiene and isoprene (Fig. 26). Con-
sequently, a set of cyclohexene- and bicyclic dicarboxylic
acid esters 97 and 98 were obtained. These were, however,
not viewed as target compounds, instead Cinchona alka-
loids were used as chiral auxiliaries for the Diels-Alder reac-
tion, and the esters were cleaved afterward. The transfor-
mations using dimers provided much improved enantiose-
lectivity compared to that of monomeric esters also used
in the study (94–99 % vs. 6–93 %ee) [80]. Interestingly, an
inverted sequence of Diels-Alder and acylation reactions
was also explored. The enantiomeric diacids, adducts of
anthracene and fumaric acid, were converted to acid dichlo-
rides and reacted with dihydrocinchonidine. The products
were assayed in asymmetric dihydroxylation of stilbene giv-
ing 52–85 %ee. Better results were obtained for ester of
11R,12R configuration DHCN-94b than the 11S,12S dias-
teromer DHCN-94a (Fig. 24) [81].

Another strategy for the synthesis of dimeric esters of Cin-
chona alkaloids was to first obtain monomeric esters with
linker precursors that could be coupled later. In one such
approach esters with a terminal alkyne group 99a–d and
azido-esters 100a–d of various chain length were formed
by carbodiimide coupling. Using these components a com-
binatorial library of dimers 101aa–dd was obtained in a
copper-catalyzed 1,3-dipolar ‘click’ cycloaddition (Fig. 27).
In products 101 the linker units are non-symmetric. Since the
esterification step is performed separately, well-defined het-
erodimers could also be obtained. The products were studied
for inhibition of P-glycoprotein, and optimum linker length
was established at 6 methylene groups at each side of the
triazole unit (as in QN-101cc) [82].

Few examples of dimers with more elaborate and func-
tional linkers relevant to supramolecular and coordination
chemistry were obtained. One such scaffold incorporated
a chiral crown ether. Ether 102 with two hydroxymethyl
groups was modified with phthalic anhydride, and the result-
ing diacid was converted to acid chloride 104. Subsequent
reaction of 104 with cinchonine gave dimeric ester CN-105
in 78 % yield (Fig. 28). Although the authors saw potential in
the product for phase transfer catalysis, they did not develop
the idea further [83].

In a study on the derivatization of annulenes, a one-pot
procedure to introduce one or two alkoxycarbonyl groups
to nickel dibenzotetraaza[14]annulene complex (106) was
developed. The sequence of reactions involved Friedel–
Crafts acylation with oxalyl chloride, followed by decarbony-
lation and alkoxydehydrohalogenation [84]. The chirality of
the product was assured with nonracemic alcohols, including
quinine. The respective dimeric ester QN-107 was formed in
20 % yield (Fig. 29). This result is similar to that obtained
for other explored alcohols [85].

A series of dimeric carbamates was obtained according to
two general protocols [73,86]. In the first one, the alkaloid
was treated with diisocyanate derived from the correspond-
ing diamine. This process was highly efficient furnishing the
dimers in 64–87 % yield; however, it was only attempted
for the commercially available diisocyanates. Alternatively,
a two-step procedure was used: First the alkaloid was con-
verted to an active carbonic ester QN-111 in a reaction with
nitrophenyl chloroformate (110). Then, reaction of an excess
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Fig. 24 Representative dimer structures with aromatic spacers

Fig. 25 Trimeric Cinchona alkaloid ester

active ester with diamine gave the corresponding dimeric car-
bamates in 35–66 % yield (Fig. 30). In both approaches the
lowest yields were noted for 1,2-diamine derivatives [86].

Some of the Cinchona carbamates were subsequently
immobilized on silica (through addition of thiols to the vinyl
group) and used as chiral solid phases for anion exchange
chromatography of amino acids. The use of dimers, com-
pared to monomeric carbamates, led to longer retention times
of the analytes, however, offered no improvement in the enan-
tioselectivity of the separation. Out of the dimeric modifiers
of silica gel, the best separation of enantiomers was achieved
using the 1,3-adamantyl-linked QN-114 [86].

The esters and carbamates of Cinchona alkaloids were
also examined as antimalarial agents. They were tested in
vivo against drug-resistant Plasmodium falciparum and for
the inhibition of PfCRTCQR—a multidrug resistance trans-
porter protein. Dimers linked with (CH2)8 ester QN-80e and
(CH2)6 carbamate QN-112d (both with the same number of
bonds separating two quinine units) turned out to be the most
effective [73].
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Fig. 26 Cyclic linkers obtained in diastereoselective Diels-Alder reaction

9-Nitrogen-linked dimers

The 9-hydroxyl group in the Cinchona alkaloids can be
replaced with an amino group with inversion of configura-
tion at C-9 [87]. The alkaloid undergoes a Mitsunobu reac-
tion with an azide source (e.g., HN3, diphenylphosphoryl
azide) to give 9-epi-azido-alkaloid 116. This azide is sub-
sequently reduced with triphenylphosphine to amine 117
(Staudinger reduction). This sequence was often followed
as a one-pot procedure. Alternatively, the azido-alkaloid 116
can be obtained in an SN2 reaction from alkaloid methane-
sulfonate and NaN3 in DMF. The primary amino group
of the 9-epi-9-deoxy-9-aminoalkaloid 117 was then sub-
jected to reactions with various activated linker molecules
producing a series of derivatives including amides, ureas,
imines, etc. Reaction of oxalyl and isophthalic acid dichlo-
rides with 9-aminocinchonine eCN-117 gave the respective
dimers eCN-118 and eCN-119 [88]. Dimeric amide eCN-
120 was obtained in a reaction of aminoalkaloid and sebacic
acid applying HATU, a standard peptide coupling reagent
(Fig. 31) [73]. The oxalyldiamide eCN-118 was tested as
catalyst in the diethylzinc addition to benzaldehyde pro-
viding only moderate enantioselectivity, though the ee was
improved compared to monomeric amide analogs [88].

Gawroński and coworkers obtained dimeric imides
eDHCN-122 and 124 in the reaction of Cinchona alkaloids
with 1,2,4,5-benzenetetracarboxylic anhydride (121) and
1,4,5,8-naphthalenetetracarboxylic anhydride (123). The ini-
tially formed dimeric amide was cyclized to imide eDHCN-
122 by heating of the reaction mixture with acetic anhydride.
The linear alignment induced by the linker resulted in observ-
able conformer populations, in which the alkaloid units were
oriented either syn (C) or anti (S) (Fig. 32) [89].

Without an additive, the conformer populations were
equal. However, the ratio varied in response to carboxylic
and dicarboxylic acids [90]. The prevalent conformation and
their equilibria were studied by circular dichroism (CD) [89]
and 1H NMR spectroscopy. In addition, an analytical system
composed of eQD-124 and bromophenol blue allowed for
visual identification of α-hydroxycarboxylic acids, as well as
their spectrophotometric estimation. This indicator displace-
ment technique allowed for the determination of tartaric acid
in wine as well as some differentiation of enantiomers [91].

A bis-alkaloid-thiourea eCN-126 was obtained in a reac-
tion of CS2 with 9-aminocinchonine eCN-117 in 51 % yield
[92]. Dimer eDHQN-126 with the same linker was fur-
nished in a reaction of aminoalkaloid eDHQN-117 with thio-
carbonyldiimidazole (TCDI) in DCM in 73 % yield (Fig.
33) [93]. However, other researchers obtained merely 2 %
of the identical product eDHQN-126 using THF as a sol-
vent [94]. The monomeric alkaloid thioureas are now well-
established bifunctional organocatalysts in asymmetric syn-
thesis [95], while the dimers 126 were found to provide
higher level of enantioselectivity in a few cases including
dynamic kinetic resolution (DKR) of racemic azalactones
(91 %ee with eDHCD-126) [93] and cooperative sulfonation
of enones (76 %ee with eQN-126) [96]. Also dimer eDHQN-
126 had pronounced cytotoxic and cytostatic effects on SH-
SY5Y and HL-60 tumor cell lines [94].

A set of ferrocene spacers was applied for the dimeriza-
tion of eDHQN-117 (Fig. 35). Diamide eDHQN-129 was
formed in a reaction between the aminoalkaloid and 1,1′-
bisfluorocarbonylferrocene, while analoguous urea deriva-
tive eDHQN-131 was obtained from 1,1′-bisisocyanatoferro-
cene. 1,1′-Bis(chlorocarbonyl)ferrocene was treated with
KSCN in acetone giving a reactive 1,1′-bisisothiocyanatocar
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Fig. 27 “Click” assembly of quinine esters

Fig. 28 Synthesis of crown ether-linked dimer

Fig. 29 One-pot synthesis of dibenzotetraaza[14]annulene-linked dimer

bonyl intermediate 132. After solvent exchange, reaction
of 132 with aminoalkaloid eDHQN-117 provided dimeric
acylthiourea eDHQN-133. The reported yields for the
urea derivatives were very poor (2 %) and were attributed
to numerous acylation and polymerization reactions, and
tedious purification processes. In the same work, the authors
obtained benzenetricarboxylic acid triamide eDHQN-134 in
87 % yield from the respective acid trichloride (Fig. 36). The
dimers, in particular eDHQN-129 with the shortest ferrocene
link, exhibited pronounced cytotoxic and cytostatic effects on
HepG2, SH-SY5Y, HL-60, and MCF-7 human tumor cells
[94].

Dimeric guanidine derivative eDHCN-127 was also noted.
It was obtained from 9-amino-dihydrocinchonine eDHCN-
117 and BrCN (Fig. 34). This dimer was tested in a diastere-

oselective Henry reaction, but it was not more selective than
other catalysts [97].

Amides of squaric acid (1,2-dihydroxy-cyclobuten-3,4-
dione) with Cinchona alkaloid units were recently shown to
be effective hydrogen bond donors in organocatalysis [98].
The synthesis of dimeric squaramides was straightforward.
It entailed mixing 9-aminoalkaloid 117 and squaric acid
dimethyl ester (135a) in methanol for 24h, while the products
136 precipitated in nearly quantitative yields (Fig. 37) [99].
The dimers were exploited in dynamic kinetic resolution of
azalactones. Unlike the monomeric Cinchona squaramides,
the dimers do not form self-associates [99]. Nevertheless,
these two classes of compounds have different application
scope, and often unsymmetrically substituted monomeric
squaramides were superior catalysts [100].
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Fig. 30 9O-Alkaloid carbamate dimers and their synthesis

Fig. 31 Synthesis of dimeric amides
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Fig. 32 Synthesis of bisimide and a simplified representation of their conformation equilibrium

Fig. 33 Synthesis of dimeric alkaloid thiourea

Fig. 34 Guanidine-linked dimer

Thus, dimer eCN-138 with two unsymmetrically substi-
tuted squaramide units was synthesized, as well as analo-
gous trimers eCN-139 and eCN-140 (Fig. 38). First, 9-

aminocinchonine eCN-117 was treated with an equivalent
amount of diethyl squarate (135b), and the intermediate
monoester-monoamide eCN-137 was treated with 0.5 equiv-
alents of m-xylylenediamine to give a C2 symmetric ana-
log of monomeric squaramides. Analogous C3-symmetric
trimeric compounds were obtained in 81–87 % yield, when
instead of diamine, the reactive eCN-137 intermediate was
treated with 0.32 equivalents of selected triamines [101]. The
trimers eCN-139 and eCN-140 were effective catalysts in the
asymmetric Michael addition of 1,3-dicarbonyl compounds
to nitrostyrenes [101] and Friedel–Crafts alkylation reactions
[102].
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Fig. 35 Synthesis of ferrocene-linked dimers: amide, urea, and thiourea

Fig. 36 C3-symmetric trimeric Cinchona alkaloid trimer

Although a few monomeric alkaloid sulfonamides are
known [103], the only example of the corresponding dimers
(with m-benzenedisulfonamide linker) appears in the patent
literature (Chinese patent No. CN103570708, 2013).

Few Schiff bases obtained from the aminoalkaloids 117
and aromatic aldehydes were described. The reaction of

aminoquinine eQN-117 with phthalic aldehyde gave rise
to dimeric imine eQN-141 in 54 % yield. The efficiency
of a single step corresponds to the yields achieved with
monoaldehydes under similar conditions (75–81 %) [104].
Also, a dendrimeric Schiff base eCN-144 incorporating
eight alkaloid units was obtained. The first generation
dendrimeric aldehyde 143 was obtained from 5-bromo-
1,3-bis(dimethoxymethyl)benzene (142) through halogen-
lithium exchange, reaction with bis(dichlorophosphino)
ethane (75 %), and subsequent hydrolysis of dimethyl acetal
(95 %). The condensation of aldehyde 143 with 9-aminocin
chonine eCN-117 using trimethyl orthoformate proceeded in
nearly quantitative yield (Fig. 39) [105].

9-Carbon- and 9-sulfur-linked dimers

In our research we demonstrated the formation of dimer QN-
147 in which the alkaloid units are connected with a direct
chemical bond between two C-9 carbon atoms. This product
was obtained by treating quinine-derived 9-halides 145–146

Fig. 37 Representative synthesis of dimeric squaramide
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Fig. 38 Synthesis of C2 and C3-symmetric divergently substituted squaramide dimer and trimers

Fig. 39 Synthesis of dimeric and dendrimeric imines

with lithium or butyllithium in THF (Fig. 40). The same iso-
mer of the product (9R) was obtained from both 9R- and 9S-
halides: QN-145 and eQN-145, respectively. The most likely
explanation for this process was the transient formation of a
9-radical (either direct, or through oxidation of carbanion),
followed by radical recombination. The dimers QN-147 and

DHQN-147 are sterically hindered, thus anti and syn atropi-
somers (arising from rotation of the quinoline ring, Fig. 41)
were separated. The rotational barrier was estimated at ca. 23
kcal/mol in solution [106]. The reaction of organomagnesium
reagents with 9-haloquinine [107] was shown to result in a
stereoconvergent Würtz-type coupling (the similarity of this

123



404 Mol Divers (2015) 19:385–422

Fig. 40 Dimers bound by C-9 carbon–carbon bonds

Fig. 41 Atropisomers of the dimer QN-147, X-ray structure (left) and DFT calculated structure for C1 rotamer (right)

process with the direct dimerization to QN-147 is only super-
ficial, since the products had different configuration at C-9)
[108]. The extension of this approach with divalent Grignard
reagent 148 gave the respective dimer eQN-149 in moderate
yield (Fig. 40) [106].

Also, a set of dimeric 9-disulfides was obtained in a
sequence of Mitsunobu, reduction, and oxidation reactions.
Seven different alkaloids including CD, QN, QD, DHQN,
DHQD, as well as 9-epi-quinine (eQN), and 9-epi-quinidine
(eQD) reacted giving the corresponding dimers 152 in 24–
45 % yield with inversion of configuration. It is noteworthy
that the oxidative dimerization step was the least demand-
ing. The authors also regarded dimerization as a means for
transient protection of the thiol group in 151, which could be
cleanly regenerated with LiAlH4 (Fig. 42) [109].

N1-Qarternary ammonium salts

Quaternary ammonium salts of Cinchona alkaloids were
applied in the 1980’s in the asymmetric synthesis under

PTC conditions providing decent level of enantioselection.
C2-symmetric quaternary ammonium salts derived from
binaphthalene emerged as even more effective catalysts in
1999 [110]. Shortly thereafter, highly efficient C2-symmetric
dimeric Cinchona alkaloid quaternary ammonium salts were
developed [111]. Park and Jew obtained dimers CD-168a,
CD-153a, CD-169a in a direct reaction of excess cinchoni-
dine with ortho, meta, and para-xylylene dibromides, respec-
tively, in a mixture of solvents (DMF/EtOH/CHCl3, 6:5:2
v/v). The obtained dimers were then alkylated at the 9-
hydroxyl group with allyl bromide. The preparative yields
were in the range of 90–94 % over two steps (Fig. 43) [111].

In Park’s subsequent development of catalyst CD-153b, a
dozen of analogs (CD-156b–167b) were obtained from dif-
ferently 2- or 5- substituted m-xylylene dibromides in 85–
95 % yield [112]. In later works, a quinine analogue was also
obtained [113]. The same group synthesized dimers with an
extended ring system of the linker, as in naphthalene deriva-
tives DHCD-170–175. The appropriate reactive halides were
obtained from dimethylnaphthalenes through radical bromi-
nation with NBS (88 % yield for 2,7-derivative). Reaction of
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Fig. 42 Representative synthesis of 9-disulfide dimer

Fig. 43 General synthesis of dimeric ammonium salts

the dibromides with 2.03 equiv of dihydrocinchonidine and
dihydrocinchonine and subsequent 9O-allylation gave the
respective dimers 170b–175b in 90–95 % yield [114]. Fur-
ther expansion of the ring system was done by the Najera
group, who introduced a 9,10-dimethylanthracenyl linker
[115]. The required bis(chloromethyl)anthracene (154) was
obtained from anthracene, paraformaldehyde, and HCl [116].
The reaction of 154 with cinchonidine proceeded with
slightly better yield than with cinchonine. One of the obtained
dimers was subsequently allylated (Fig. 44) [115]. Also
dimers CD-177–179 incorporating a 4,4′- [117], 3,3′-, and
2,2′-dimethylbiphenyl linkers as well as DHCD-176 with
3,6-dimethylphenanthrene unit were obtained [39]. Apart
from the benzyl-type linkers, also chains of E- and Z -butene
as well as butyne were applied in the dimers CD-180–182
(Fig. 45) [39].

The dimeric quaternary ammonium salts 153, 155, and
169 were also converted to ionic polymers (e.g., CD-184a)
with adequate disulfonates 183a–i. The obtained materials
were insoluble in water and most organic solvents (Fig. 46).
Nonetheless, these polymers were effective in asymmetric
transformations and were easily recovered from the reaction
mixture [118,119].

Internal quaternary ammonium salts (i.e., betaines) where
both cationic and anionic centers are present within a sin-

gle molecule are also known. They differ in acid–base prop-
erties with the compounds described previously, in which
there is no covalent bond between the oppositely charged
species. The Gong group obtained a set of zwitterionic dimers
187 with a binaphthophenolate linker starting from all major
Cinchona alkaloids and two axial enantiomers of BINOL
[120]. The reactive MOM-protected 3,3′-bis(bromomethyl)-
BINOL derivative 185 was obtained in 5 steps from com-
mercially available BINOL in 68 % yield [121]. The reac-
tion of enantiomeric (aR)-dibromide 185 with the alka-
loids afforded the respective dimeric ammonium salts 186
in 64–74 % yields. The coupling was slightly more effi-
cient for the alkaloids of quinine configuration (i.e., 8S,9R).
Then, the protecting MOM groups were removed produc-
ing betaines 187 in 68–75 % yield (Fig. 47). Diastereomeric
dimer (aS)-QD-187 was obtained from quinidine and (aS)-
BINOL derivative (aS)-185 in overall 70 % yield. The authors
also obtained species QD-188 with a net-positive charge,
using monomethyl BINOL ether (Fig. 48). The obtained
dimeric betaines 187–188 were tested as organocatalysts
in Mannich reaction of azalactones and aliphatic imines.
Dimeric betaine (aR)-QD-187 was particularly successful
providing 96–98 %ee [120].

Few dimeric Cinchona alkaloid quaternary ammonium
salts incorporate functional linkers relevant to supramolecu-
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Fig. 44 Synthesis of dimethylanthracene-linked dimer

Fig. 45 Linkers in dimeric Cinchona quaternary ammonium salts

123



Mol Divers (2015) 19:385–422 407

Fig. 46 Ionic polymer of dimeric Cinchona quaternary ammonium salt and structures of disulfonates

Fig. 47 Synthesis of dimeric betaines

Fig. 48 Example of unsymmetrical dimer

lar chemistry, such as macrocyclic amine 190, calixarene 193,
and polyethylene glycol 195. Siva and Murugan obtained
di(bromobutyl)tetraazacyclotetradecane derivative, which

was subsequently used for double N1-quaternization of both
cinchonine (94 %) and cinchonidine (87 %). The obtained
dimeric products 190a were subsequently 9O-allylated to
give 190b in high yield (Fig. 49). In the original paper there
are, however, some discrepancies between the reported spec-
tral data and structures of 189–190 [122].

Similarly, linkers of various lengths incorporating the
calix[4]arene scaffold were synthesized. The reactive
dihalides 192a–c were obtained from 4-tert-butylcalix[4]
arene (191) and α,ω-dibromoalkanes [123]. The dihalides
192 were then used to N1-alkylate cinchonidine furnishing
dimers CD-193a–c. The yield of the coupling increased with
the separation between the alkaloid units in 86–96 % range
(Fig. 50) [124].

Polyethylene glycol (PEG2000) was also used in the role
of a linker [125]. For this purpose, PEG was converted
to a reactive intermediate 194 by introduction of terminal
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Fig. 49 Synthesis of macrocycle-based dimers

Fig. 50 Synthesis of calix[4]arene-linked dimers

Fig. 51 Synthesis of PEG-linked dimers

chloroacetamide groups [126,127]. A subsequent reaction
with the alkaloids (CD, QN, and CN) in refluxing chloro-
form for 4 days afforded the respective dimers 195 (Fig. 51)
[125].

It has to be noted that in addition to the dimers, the
C1 and C3-symmetric trimers were obtained. The reaction
of α,α’,α”-tribromomesitilene (76) and cinchonidine pro-
ceeded in nearly quantitative yield and was not impeded
by steric interactions. Subsequent 9O-allylation gave CD-
196b in high yield (Fig. 52) [128]. Also, symmetric and non-
symmetric trimers 197–199 with farther separated alkaloid
units were obtained in 79–88 % yield (Fig. 53) [129–131].

Quaternary ammonium salts of Cinchona alkaloids were
most often employed in asymmetric phase transfer cataly-
sis (PTC), which is useful, for example, for the synthesis
of nonracemic amino acids [110,132]. Phenylalanine deriv-
atives can be obtained through enantioselective benzylation
of glycine benzophenone imine esters under PTC conditions.
This reaction serves as a benchmark for various catalysts
(Table 1) [133].

The first generation of Park’s catalyst CD-153b, with
meta-xylylene linker applied in the PTC benzylation of
glycine imine outperformed the monomeric Cinchona cat-

alysts both in terms of enantioselectivity and reactivity.
On the other hand, application of the isomeric dimer with
ortho-xylylene linker gave poor ees. The allylation of the
9-hydroxyl in the catalysts often significantly improved the
enantioselectivity in the PTC transformation [111]. Study
of analogues of CD-153 revealed that 2-fluorine atom in
the xylylene linker as well as 10,11-hydrogenated alkaloid
unit further improved the enantioselectivity [112]. A highly
hindered trimer CD-196b provided high enantioselectivity
(94 % ee at −20◦C) at a cost of reactivity [128] The second
generation Park’s catalyst DHCD-170b with 2,7-naphthyl
link was one of the most efficient and enantioselective cat-
alysts for the benzylation of glycine imine under PTC con-
ditions providing 97 %ee at 0◦ C and 1 %mol loading [114].
This catalyst is commercially available and can be acquired
from major reagent suppliers (Fig. 54).

Functional linkers in the dimeric quaternary ammonium
salts, in some cases improved their application scope or facil-
itated the recycling of the catalyst. The macrocyclic dimer
CD-190b was claimed to be more suitable for PTC reac-
tions carried in low base concentration [122]. Incorporation
of PEG within the linker facilitated recovery of the PTC epox-
idation catalyst CD-195 [125].
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Fig. 52 Synthesis of C3-trimer

Fig. 53 C3 and C1-symmetric trimeric Cinchona alkaloid ammonium salts

Unfortunately, in many of the studied transformations
the replacement of cinchonidine with pseudoenantiomeric
cinchonine units resulted in more or less noticeably lower
enantioselectivity and conversion. Another major concern in
asymmetric catalysis is that the success of a particular cata-
lyst structure in one reaction (e.g., PTC alkylation of glycine
imine) does not necessarily translate to other asymmetric
processes. For example, epoxidation of enones required a
catalyst with free 9-hydroxyl group in the alkaloid unit, and
the best results were obtained for quinine analogue QN-
156a. Moreover, this epoxidation failed to proceed enantios-
electively when using analogous monomeric catalysts [113].
Cyanation of aldehydes gave good enantioselectivities with
CD-155a [134] and so did the Mannich reaction of azalac-
tones catalyzed by QD-187 (up to 99 %ee for adequately
modified reactants) (Fig. 55) [187].

3-Vinyl group

The vinyl group of Cinchona alkaloids is an attractive site of
derivatization and was often used to couple the alkaloid (and

even their dimers) to solid support. This was often achieved
by a ‘click’ thiol-ene radical addition. The corresponding
reaction of dithiols (butane-1,4-dithiol, and 2-mercaptoethyl
ether) and cinchonidine led to dimeric products CD-200a–
b in fair yields [135]. The dimers were subsequently poly-
merized by tethering at the quinuclidine nitrogen atom (vide
supra) producing an array of polymers CD-201 (Fig. 56).
These were assayed in the asymmetric benzylation of glycine
imine under PTC conditions providing 71–88 %ee.

Similar polymers, tethered alternatively by quinucli-
dine nitrogen and vinyl groups, were developed using the
Mizoroki-Heck reaction at the alkaloid vinyl groups. First,
the dimer CD-202 was obtained in a palladium-catalyzed
reaction of cinchonidine and 4,4′-diiodobiphenyl and sub-
sequently was polymerized by quaternization with 4,4′-
bis(chloromethyl)biphenyl. Polymers CD-203 were effective
in the benzylation of N -diphenylmethylene glycine tert-butyl
ester. Surprisingly, when using an inverted reaction sequence,
i.e., polymerization of the dimeric quaternary ammonium
salt CD-179a in a Heck reaction, the obtained polymeric
material CD-203 had superior catalytic qualities (Fig. 57)
[136].
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Table 1 Benzylation of
N -diphenylmethylene glycine
tert-butyl ester catalyzed by
quaternary ammonium salts

N
OtBu

O

PhCH2Br, 5 %mol catalyst
50% aq KOH
PhCH3 / CHCl3 (7:3)
0 °C, 2-10 h

N
OtBu

O

Catalyst Time, h Yield, % Ee, % (S)

DHCD-170b 0.5 95 97

DHCD-156b 6 94 96

CD-156b 6 93 94

DHCD-172b 2 92 91

CD-153b 2 91 90

CD-155a 6 88 86

DHCD-175b 3 90 86

CD-179b 93 84

CD-169b 4 92 80

CD-175b 3 92 80

DHCD-174b 3 90 79

O-allyl-N1-benzyl-cinchonidinium
bromide

2 92 75

CD-155b 1 84 70

DHCD-173b 10 82 44

DHCD-171b 10 88 36

CD-168b 3 90 31

Fig. 54 The most effective 1st and 2nd generation Park’s and Jew’s catalysts for the alkylation of Schiff bases under PTC conditions

Fig. 55 Asymmetric reactions catalyzed by dimeric quaternary ammonium salts of Cinchona alkaloids: epoxidation of enones, cyanoformylation
of aldehydes, and Mannich reaction
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Fig. 56 Synthesis of dimer and polymer with dithiol linker

Fig. 57 Synthesis of dimers and polymeric materials using the Mizoroki-Heck reaction

Fig. 58 Synthesis of silicon-linked dimers

Cinchonidine dimer CD-205 tethered at the vinyl groups
with silicon linker was also synthesized. First the 9-hydroxyl
group of cinchonidine was transiently protected with TMS
ether. Then, hydrosilylation of the ether CD-204 with biva-
lent silane (1,2-bis(dimethylsilyl)ethane) was performed
applying Karstedt’s catalyst. The coupling gave dimer
DHCD-205 in moderate yield, similarly to reactions of
CD-204 with other bulky mono-silanes. Finally, the TMS
group was removed giving DHCD-206 (Fig. 58). The dimer

CD-206 was applied for modification of Pt/Al2O3 cata-
lyst surface for asymmetric hydrogenation of ethyl pyru-
vate and phenylpropanedione. Unfortunately the enantios-
electivity was lower than for unmodified cinchonidine (62
vs. 84 %ee) [137].

The terminal vinyl group is also reactive in alkene
metathesis reactions. This approach was used to obtain a
series of dimeric phosphite ligands derived from BINOL and
Cinchona alkaloids. The phosphite esters QN-208, QD-208,
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Fig. 59 Metathesis dimerization of Cinchona alkaloid derivatives (for starting materials of different configuration yields are given in parentheses)

and CN-208 were obtained in a one-pot reaction from BINOL
(of both aR and aS configurations) and the corresponding
alkaloids. The metathesis reaction of 208 with Hoveyda-
Grubbs catalyst produced dimers 209 which were isolated in
fair yields (Fig. 59). The authors also obtained libraries con-
taining heterodimers by combining different stereoisomers
of the alkaloid phosphites 208 in the metathesis reaction.
Dimers 209 along with crude metathesis mixtures were sub-
sequently used in asymmetric iridium-catalyzed asymmetric
hydrogenation of α,β-unsaturated carboxylic acids. Out of
the studied compounds, the dimer (aR)-QN-209 provided up
to 92 %ee and outperformed the initial monomer (�ee 8–
32 %) [138].

The vinyl group in the alkaloids can also be converted to
a terminal alkyne by bromine addition followed by two HBr
elimination reactions [139,140]. The alkynes QN-11 and
QD-11 (didehydroalkaloids) were then directly coupled in a
Sonogashira-type oxidation reaction. With iodine as an oxi-
dant, the yields were good (71–72 %) and further improved
when 9O-acetylated didehydroalkaloids 210 were used (86–
95 %; Fig. 60) [36].

Direct dimerization of 210 using typical Glaser coupling
(copper(I) salt/O2) gave merely 15 % yield [36]. In con-
trast, a similar homocoupling of didehydroalkaloid quater-
nary ammonium salt QN-212 with copper(II) salt (Eling-
ton reaction) proceeded smoothly giving dimer QN-213 in
89 % yield. Also, Sonogashira coupling of the alkaloid alkyne
QN-212 with aryl diiodides gave dimers 215a–b with pheny-
lene and biphenylene linkers, respectively. Unfortunately, the
authors found that the dimerization cannot be performed as
a one-pot reaction, instead a stepwise protocol had to be
followed using excess of reagents at each coupling step:
First QN-212 was coupled with 1,4-diiodobenzene or 4,4′-
diiodobiphenyl giving iodoaryl derivatives QN-214a and
QN-214b, respectively. The subsequent coupling with QN-

212 required significant catalyst loading only to proceed
in low yields (Fig. 61). The products QN-213 and QN-
215a–b were tested in the asymmetric aldol reaction under
PTC conditions. Optimum performance was reported for the
phenylene-linked dimer QN-215a, although only moderate
enantioselectivity was achieved [141].

Quinoline ring

Quinoline and 6-methoxyquinoline rings also offer useful
sites for modification. The 6′-methoxy ether in quinine and
quinidine can be cleaved either by HBr or with alkyl thio-
lates in DMF giving cupreine and cupreidine, respectively.
The latter conditions are tolerant of the 10,11-double bond
[142]. The acidity of the phenol group in cupreine (QN-27)
and cupreidine (QD-27) facilitates a selective Williamson
etherification. The reaction of dihydrocupreine salts with
various α,ω-dihaloalkanes provided a library of compounds
DHQN-216–218 (Fig. 62). First dimers of this type were
reported in the 1920’s and used 1,4-E-but-2-ene and butane
linkers in DHQN-216 and DHQN-217a, respectively [143].
Cowman obtained a series of dimers with linkers of 4-14 car-
bon atoms DHQN-217a–f as well as with piperazine-derived
linker DHQN-218 [144]. Cupreidine (QD-27) was also
dimerized using m-xylylene dibromide into QD-219 [66]
and trimerized into QD-220 with tris(bromomethyl)benzene
[69].

Nitration of the quinoline ring of dihydrocinchonine and
dihydrocinchonidine occurs preferentially at the 8′ position.
Subsequent reduction of the nitro group with hydrazine on
palladium catalyst yielded primary aromatic amine DHCD-
222. The reactions of 8′-aminoalkaloid with several dicar-
boxylic acid chlorides yielded the corresponding dimers
DHCD-225a–f in good to excellent yields. Similar reactiv-
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Fig. 60 Palladium-copper-mediated dimerization of didehydroalkaloids

Fig. 61 Dimerization of quaternary ammonium salt

ity of 8′-amino and 9-hydroxy groups required prior use of a
transient protecting group (i.e., salicylate) (Fig. 63) [144].

Both 6′-ethers DHQN-217a–f and 8′-amides DHCD-
225a–f were assayed for inhibition of various strains of
Plasmodium falciparum. In vitro tests showed that dimers
containing an 8-methylene unit linker were most effective.
The amide DHCD-225d (IC50 0.02–0.05 μM) was more
active than ether DHQN-217c (IC50 0.08–0.26 μM). Unfor-
tunately, in vivo study of DHCD-225d revealed lower activity
compared to chloroquine and pronounced toxicity [144].

Electrophilic substitution in 6′-metohxy- (QN, QD) and
6′-hydroxyquinoline (QN-27, QD-27) occurs favorably at
the 5′-position. Susceptibility of cupreines to such aro-
matic substitution was exploited in the synthesis of alkaloid-
derived dyes (Fig. 64). A dimeric dye DHQN-226 was
furnished in a reaction of cupreine sodium salt with bis-
diazonium salt obtained from benzidine [145]. Also the
phenol group in cupreine DHQN-27 was converted to an
amine and diazotized. The coupling of the alkaloid 6′-

diazonium salt with cupreine yielded a heterodimer DHQN-
227 [146].

The 6′-methoxyquinoline ring of Cinchona alkaloids was
also partially hydrogenated to give tetrahydroquinoline. The
reaction for both QN and QD led to mixtures of 4′-epimers
which were separated by 2–3 recrystallizations of mandelic
acid salts (8–15 % yield for pure stereoisomers of 228).
The secondary amines 228 were then coupled with gluta-
conic aldehyde enolate to give polymetine dyes 229 (Fig.
65). The dyes exhibited interesting chiral optical properties:
markedly high specific rotation and maximum absorbance
at 506–511 nm. The rotatory power was mostly depen-
dent on the configuration at the 4′ center, as exemplified
by the [α]D(c0.01, EtOH) values of −1545 and +1135 for
(4′ R)- and (4′S)-DHQN-229, respectively [147].

The quinoline ring of the alkaloids is also susceptible to
Grignard reagents addition at the 2′ and 4′ positions. In non-
etheral solvents the Grignard adds at the 4′-position, and
consecutively the deprotonated 9-hydroxyl group adds at the
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Fig. 62 Dimeric and trimeric cupreine and cupreidine ethers

Fig. 63 Synthesis of dimeric 8′-anilides

Fig. 64 Dimeric diazo dyes

2′-position yielding a cyclic aminal with complete diastere-
oselection. The reaction gave fair yields (typically 65–35 %)
for small and moderately bulky organomagnesium reagents.

Consequently, dimers QN-230 and CD-231 were obtained
in 11–12 % yield in a reaction of divalent 1,4-phenylene and
4,4′-biphenylene Grignard reagents, respectively (Fig. 66).
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Fig. 65 Synthesis of dimeric polymetine dyes

Fig. 66 Formation of C4′-linked dimers

The formation of monomeric products was avoided by using
an excess of the less reactive organomagnesium reagents
[148].

Double-bridged dimers

There are only few reported cases where the Cinchona alka-
loid units are connected simultaneously at two distinct sites
using two independent linkers. These include linear polymers
201, 203 as well as copolymerized compound 10. However,
multiple connections between just two alkaloid units would
result in a cyclic product of restricted conformation. In stud-
ies conducted to explain the stereoselectivity of the asym-
metric dihydroxylation, two such structures DHQD-235 and
DHQN-237 were described by the groups of Corey and
Lohray, respectively. Both used a pyridazine linker attached
with 9-ether bond and additionally tethered the dimer by
either the vinyl group (235) [149] or the quinoline ring (237)
[150]. The 9,11-tethered structure was prepared in a sequence
of reactions starting from a Brown hydroboration of quini-
dine at the vinyl group, followed by protection of the primary
11-hydroxyl group with the triisopropylsilyl (TIPS) group.
The protected alcohol DHQD-232 was then coupled using
dichloropyridazine (35), and the silyl ether was cleaved to
form the dimeric 11-diol DHQD-234. In the last step, esteri-
fication of the dimer DHQD-234 with adipoyl chloride gave
the bridged dimer DHQD-235, as confirmed by X-ray, in a
total of 9.7 % yield over 7 steps (Fig. 67) [149,151].

Lohray obtained cupreine DHQN-27 by cleavage of the
6′-methoxy ether. Then, reaction with 1,5-ditosyloxypentane

gave the 6′-tethered dimer DHQN-236. A subsequent reac-
tion with dichloropyridazine (35) concluded the synthesis of
DHQN-237 in 14 % overall yield in 3 steps (Fig. 68) [150].

Asymmetric dihydroxylation reaction using 9,11-double
tethered dimer DHQD-235 provided enantioselectivity sim-
ilar to AD with classic PYDZ-ligand (DHQD-36), and even
outperformed it for some olefins. However, the additional
6′-link in DHQN-237 resulted in much lower level of enan-
tioselectivity (32–72 %ee vs. 88–99 %ee).

Rowan and Sanders studied dynamic self-organization
processes of modified Cinchona alkaloids possessing both
a reactive ester and hydroxyl functionalities. Instead of care-
ful stepwise tethering of the alkaloid molecules, they built a
dynamic library of cyclic oligomeric alkaloids. They hydro-
borinated the 3-vinyl group, and the resulting 11-alcohol
239 was oxidized to the corresponding acid using the Jones
reagent and then esterified to give 241 [152]. In an alterna-
tive approach, the 11-alcohol 239 was converted to a halide
and etherified with methyl 4-hydroxybenzoate to give 245
[153]. The transestrification of 241 and 245 was carried
with catalytic potassium methoxide and 18-crown-6. Under
these conditions dynamic libraries of cyclic dimers, trimers,
tetramers and acyclic products were formed (Fig. 69). The
composition of these mixtures depended on both the linker
and the alkaloid configuration. For quinine and cinchonidine-
derived species, the cyclic trimer was the predominant (QN-
247b, CD-247b) or nearly the exclusive product (QN-246b,
CD-246b) that could be isolated upon crystallization [154].
In the case of quinidine, cyclic dimers were major prod-
ucts both with (QD-247a) and without a p-hydroxybenzoic
spacer (QD-246a). In mixtures containing multiple types
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Fig. 67 Synthesis of 9- and 11-tethered dimer

Fig. 68 Synthesis of 9- and 6′-tethered dimer

of precursors, the transesterification resulted in only small
amounts of hybrid dimers and oligomers.

Experiments toward the total synthesis of the Cinchona
alkaloids led to the formation of an unexpected dimer. One
of the steps in Jankowski’s synthesis was the aldol condensa-
tion of 3-quinuclidinone (248) and quinoline-4-carbaldehyde
(249). When this reaction was performed under high pres-
sure conditions, in addition to the desired product 250, a
dimeric hemiacetal 251 was formed. The dimer 251 did not
dissolve in any of the usual solvents, but heating a suspension
in methanol resulted in a cleavage of the hemiacetal bonds
to form hydroxyketone 250 (Fig. 70) [155]. The structure of
251 was suggested based on MALDI-MS and IR data, and
the relative configuration was not determined.

Closing remarks

There are many ways of combining multiple Cinchona alka-
loid units into dimeric and oligomeric species, few avoid
the use of linkers, and even highly hindered dimers can be
formed. Most of the dimeric products were a result of planned
stepwise syntheses of target molecules; nevertheless, meth-
ods of combinatorial chemistry were applied, including for-
mation of dynamic libraries. The most exploited points of
chemical diversity involve the central 9 position (Sharpless-
type ligands and organocatalysts) and the quinuclidine N-1
nitrogen atom (phase transfer catalysts).

When compared to a monomeric analogue, the dimer has
twice the number of reactive polar or electrically charged
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Fig. 69 Synthesis of dynamic self-organizing libraries of cyclic oligomeric Cinchona alkaloids

Fig. 70 High pressure formation of dimeric hemiacetal

groups in close vicinity. The proximity of two bulky units
also significantly restricts molecular conformation and may
lead to formation of cavities. These factors are of principal
significance in catalysis, and, in proper arrangement, have
caused certain Cinchona alkaloid dimers to become some of

the most effective asymmetric ligands and catalysts. A few
of such products are now commercially available (e.g., 3, 51,
61, 170).

The dimeric Cinchona alkaloids are often more basic than
their monomeric analogs and were more retained during their
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chromatographical isolation. Apparently, the same phenom-
enon seems to cause longer retention times on the solid phases
modified with dimeric alkaloids.

In medicinal chemistry, the interaction of biomolecules
with a tethered dimer may induce functional changes that
could contribute to novel pharmacological properties. Few
of the studies indicate that biological activity (cytotoxic-
ity, transporter inhibition and antiplasmodial activity) can
be found among the Cinchona dimers.
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