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Abstract: Growing evidence has shown that proNGF-p75NTR-sortilin signaling might be 

a crucial factor in neurodegeneration, but it remains unclear if it may function in nigral 

neurons under aging and disease. The purpose of this study is to examine and quantify 

proNGF and sortilin expression in the substantia nigra and dynamic changes of aging in 

lactacystin and 6-hydroxydopamine (6-OHDA) rat models of Parkinson’s disease using 

immunofluorescence, electronic microscopy, western blot and FLIVO staining methods. 

The expression of proNGF and sortilin was abundantly and selectively identified in 

tyrosine hydroxylase (TH)-containing dopamine neurons in the substantia nigra. These 
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proNGF/TH, sortilin/TH-positive neurons were densely distributed in the ventral tier, 

while they were less distributed in the dorsal tier, where calbindin-D28K-containing 

neurons were numerously located. A correlated decrease of proNGF, sortilin and TH was 

also detected during animal aging process. While increase of proNGF, sortilin and cleaved 

(active) caspase-3 expression was found in the lactacystin model, dynamic proNGF and 

sortilin changes along with dopamine neuronal loss were demonstrated in the substantia 

nigra of both the lactacystin and 6-OHDA models. This study has thus revealed the 

presence of the proNGF-sortilin signaling complex in nigral dopamine neurons and its 

response to aging, lactacystin and 6-OHDA insults, suggesting that it might contribute to 

neuronal apoptosis or neurodegeneration during pathogenesis and disease progression of 

Parkinson’s disease; the underlying mechanism and key signaling pathways involved 

warrant further investigation. 

Keywords: pro-neurotrophins; pro-neurotrophin receptors; neurodegeneration;  

Parkinson’s disease 

 

Abbreviations: 6-OHDA, 6-hydroxydopamine; AD, Alzheimer’s disease; ALS, amyotrophic lateral 

sclerosis; BDNF, brain-derived neurotrophic factor; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; 

NGF, nerve growth factor; NT-3, neurotrophin-3; p75NTR, p75 neurotrophin receptor; PBS, phosphate 

buffered saline; PD, Parkinson’s disease; proBDNF, proform of brain-derived neurotrophic factor; 

proNGF, proform of nerve growth factor; TH, tyrosine hydroxylase. 

1. Introduction 

Parkinson’s disease (PD) is a severe debilitating and neurodegenerative disease in human beings 

that is characterized by motor symptoms of tremor, bradykinesia, rigidity and postural instability. 

Since it results from the progressive death of dopamine neurons in the substantia nigra and 

pharmacological levodopa intervention to elevate dopamine alleviates the patient symptoms but cannot 

halt disease progression, neurotrophic therapy is widely recommended for PD treatment [1–3]. 

Dopamine neurons, particularly those located in the ventral tier group of substantia nigra pars compacta 

with their dendrite extension ventrally into the substantia nigra pars reticularis (and biochemically 

calbindin-D28K negative), showed selective neuronal cell death or high susceptibility to various 

neurotoxin insults, e.g., 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydopamine 

(6-OHDA), or lactacystin that were used to induce PD animal models [4–6]. Until now, the selective 

death mechanism has remained obscure and a serious obstacle in clinical cure of the disease. Growing 

evidence has suggested a role for proNGF-p75NTR-sortilin signaling in neurodegeneration and 

pathogenesis of PD [7], and we have identified the p75 neurotrophin receptor (p75NTR) in the 

dopamine neurons and kainic acid-induced up-regulation of p75NTR accompanying neuronal 

degeneration in the substantia nigra [8]. Studies from other authors also indicated some functions of 

proNGF, p75NTR, and sortilin in regulating neuronal cell survival, apoptosis and growth cone 

collapse in aging and pathological events [9–12]. In addition, abnormality in neurotrophic support or 
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deficiency in neurotrophic factor might be significant contributing factors in neurodegeneration, 

pathogenesis and progression of PD [2,7]. 

Moreover, recent studies have revealed that p75NTR may act as “molecular signaling switch” that 

determines neuronal cell survival or neuronal cell death [10,13]. The proNGF triggers neuronal cell 

apoptosis by high-affinity binding to p75NTR, while p75NTR mediates neuronal cell death by 

formation of the p75NTR-sortilin signaling complex [9,12,13]. In fact, proNGF, p75NTR and sortilin 

exhibited roles in neurodegeneration of aging, onset or progression in various neurodegenerative 

diseases like Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS) and acute trauma of the 

nervous system [14–19]. Currently, however, there is still a lack of studies on the implication of 

proNGF-p75NTR-sortilin signaling in pathogenesis or progression of PD. Based on previous evidence, 

we hypothesize that proNGF-p75NTR-sortilin signaling may possibly contribute to the vulnerability of 

nigral neurons. This research study was thus conducted in aging, 6-OHDA and lactacystin animal 

models by using immunohistochemistry, laser scanning confocal microscopy, electron microscopy, 

western blot and FLIVO staining methods. Results of this study have presented novel proNGF-sortilin 

signaling complex specifically assembled in dopamine neurons of substantia nigra, which might be 

possibly involved in neuronal apoptotic and degenerative death subject to brain aging, 6-OHDA and 

lactacystin insults. 

2. Results and Discussion 

2.1. Identification of Abundant proNGF in A9 Ventral Tier Dopamine Neurons of the Substantia Nigra 

Immunoreactivity to proNGF was clearly identified in the dopamine neurons of midbrain sections 

of adult rats. The proNGF/TH-positive neurons were densely distributed in the ventral tier of the 

substantia nigra pars compacta (SNc), while they were scarce in the substantia nigra pars lateralis  

(SNr) and ventral tegemental area (VTA) (Figure 1A–C). Under higher magnification confocal 

microscopy, proNGF-positive punctuates were seen within neuronal cytoplasm, attached to neuronal 

dendrites or distributed in the extracellular matrix (Figure 1D,E). The specificity of the proNGF 

antibody used for immunohistochemistry was confirmed by substitution and adsorption control 

experiments (data not shown). Cell count data indicated that proNGF/TH double-labeled neurons 

constituted about 68% of total TH-positive cells in the substantia nigra. 

Immunoelectron microscopy was further applied to show ultrastructure of proNGF-containing 

neurons in nigra and striatum of adult rats. Dense proNGF-immunoreactivity was observed in neuronal 

somas, dendrites and axonal terminals of the nigral neurons (Figure 2). The proNGF-positive products 

were densely located in the endoplasmic reticulum, vesicles, mitochondrial membrane and cytoplasm. 

These proNGF-positive soma (Figure 2A) and dendrites (Figure 2B,C) were clearly shown in the 

substantia nigra, while proNGF-positive axons or axonal terminals were numerously detected in the 

striatum (Figure 2D,E). The proNGF-positive dendrites received synaptic buttons from axonal 

terminals in the substantia nigra (Figure 2B,C), while these proNGF-positive axon terminals made 

synaptic contacts on dendrites in the striatum (Figure 2D,E). 
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Figure 1. Laser scanning confocal microscopy showing localization of proNGF in  

dopamine neurons of the substantia nigra of adult rats. The proNGF/TH double-labeled 

cells are densely distributed in the A9 ventral tier of the substantia nigra pars compacta (A–C); 

The proNGF-positive punctuates or granules (green or yellow color) are localized in 

neuronal cytoplasm, membrane and extracellular matrix (D,E). Arrows indicate proNGF/TH 

double-labeled neurons (Cꞌꞌ), while arrowheads indicate TH single-labeled neurons (Cꞌꞌ) 

or show proNGF-positive punctuates (D,E). Abbreviations: SNc, substantia nigra pars 

compacta; SNr, substantia nigra pars reticularis; VTA, ventral tegemental area. 

 

To examine the properties of proNGF-positive neurons, proNGF/calbindin-D28K double labeling 

was performed to assess whether proNGF-positive neurons overlap calbindin-D28K-containing 

neurons in the substantia nigra and the VTA. Distribution of proNGF-positive neurons in the ventral 

tier of SNc scarcely overlapped calbindin-D28K-positive neurons, whereas calbindin-D28K-positive 

ones were mainly distributed in the dorsal tier of the SNc and VTA (Figure 3A–Aꞌꞌ). Nevertheless, a 

few of the scarce proNGF/calbindin-D28K double-labeled neurons were still detected in the ventral 

tier group of SNc region and shown with high magnification (Figure 3B–Bꞌꞌ). 
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Figure 2. Electron microscopy showing proNGF-positive neuronal somas, dendrite and 

axonal terminals in nigral and striatal regions of adult rats. The proNGF-positive neuronal 

somas and dendrites in the substantia nigra (A–C) and proNGF-positive axonal terminals 

in the striatum (D,E) are representatively showed. The proNGF-positive products with high 

density are observed in soma (A), dendrites (B,C), and axonal varicosities or terminals 

with synapses or synaptic buttons (D,E). Abbreviations: Ax, axon; Den, dendrite;  

ER, endoplasmic reticulum; Mit, mitochondria; Nuc, nucleus. 

 

2.2. Selective Distribution of proNGF/TH Neurons in Substantia Nigra and Age-Related Changes 

Double immunofluorescence was performed to determine if proNGF/TH neurons were selectively 

distributed in the substantia nigra of all A1–A17 cell groups including medulla (A1–A3), pons 

(A4–A7), midbrain (A8–A10), hypothalamus (A11–A15), olfactory bulb (A16) and retina (A17).  

It was revealed that proNGF/TH double-labeled neurons were predominately located in the A9 ventral 

tier group of the substantia nigra, scarcely observed in A1 medulla and A17 retina regions, and they  

were not detected in A11–A15 hypothalamic and A16 olfactory bulb regions where numerous 

proNGF-positive cells or structures were also distributed (Figure 4A). In the locus coeruleus, however, 

proNGF-positive axonal processes were also distributed among TH-positive somas and some of them 

contacted TH-positive somas. In addition, numerous proNGF-positive ependymal cells were densely 

observed in the forebrain, diencephalons and brain stem as well. 
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Figure 3. Double immunofluorescence showing colocalization of proNGF and calbindin-D28K 

in the nigral neurons. (A-Aꞌꞌ) Only are a few of proNGF/calbindin-D28K double-labeled 

neurons detected in the ventral tier group of substantia nigra, and double-labeled ones are 

indicated with arrows; and (B-Bꞌꞌ) while more single-labeled ones are representatively 

indicated with arrowheads, which are shown with higher magnification in the right column. 

Abbreviations: SNc, substantia nigra pars compacta; SNr, substantia nigra pars reticularis. 

 

Western blot analysis was further performed to show aging changes of proNGF and TH expression 

in the substantia nigra at 5 days, 15 days, 2 months, 8 months and 2 years old. Expression of proNGF 

and TH in the substantia nigra was weak at 5 days and 15 days (developing stage), went up and 

reached the highest level at 2 months (adult stage), and gradually went down at 8 months and 2 years 

(aging stage) (Figure 4B,C). Interestingly, in aging animals, dying neurons were consistently observed 

in the substantia nigra by Fluoro-Jade staining that could visualize neuronal degeneration (data not 

shown). Quantitative analysis indicated that significant decreases of proNGF and TH protein 

expression levels occurred along with neuronal loss in the substantia nigra of aging rats with 8 months 

and 2 years old (Figure 4D). 
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Figure 4. Selective distribution of proNGF/TH neurons and age-related changes in the 

substantia nigra. (A) Distribution patterns of proNGF/TH-positive neurons in all A1–A17 

cell groups of whole rat brains. Immunoreactive cells are shown in A1 (lateral reticular 

area of medulla), A2 (nucleus of solitary tract), A6 (locus coeruleus), A9 (substantia nigra), 

A10 (ventral tegemental area), A11 (periventricular hypothamic nucleus), A12 (arcuate 

hypothalamic nucleus), A16 (olfactory bulb) and A17 (retina) areas; (B) Immunoblotting 

of proNGF expression in substantia nigra of postnatal 5 days, 15 days, 2 months, 8 months 

and 2 years old; (C) Immunoblotting of TH expression in substantia nigra of postnatal 5 

days, 15 days, 2 months, 8 months and 2 years old; and (D) Comparison of proNGF and TH 

expression levels in the substantia nigra in ratio to internal control β-actin. ANOVA 

indicates significance, * p < 0.005, ** p < 0.001 vs. earlier time-point of animals.  

 

2.3. Abundant Distribution of Sortilin/TH Neurons in Substantia Nigra and Age-Related Changes 

Double immunofluorescence was also carried out to examine if sortilin-positive neurons were 

selectively distributed in the substantia nigra of all A1–A17 cell groups in whole brains. It revealed 

that sortilin/TH double-labeled cells were predominate in the A9 ventral tier dopamine group of the 

substantia nigra, scarcely observed in A1 medulla and A17 retina regions, and they were not detected 

in A11–A15 hypothalamic and A16 olfactory bulb areas where sortilin-positive cells were also 

distributed (Figure 5A). In a distribution pattern similar to proNGF, sortilin-immunoreactivity was also 

densely observed in the ependymal cells in the forebrain, diencephalons and brain stem regions. Cell 

count data indicated that the sortilin/TH double-labeled neurons constituted about 73% of total 

TH-positive ones in the SNc region. Additionally, double immunofluorescence showed a high level 

(about 86%) of colocalization of proNGF and sortilin in these nigral neurons (data not shown). 
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Figure 5. Abundant distribution of sortilin/TH neurons and age-related changes in the 

substantia nigra. (A) Distribution patterns of TH/sortilin-positive neurons in all A1–A17 cell 

groups of whole rat brains. TH-, sortilin-, and TH/sortilin-positive neurons are shown in 

A1, A2, A6, A9, A10, A11, A12, A16 and A17 areas, representatively; (B) Immunoblotting 

of sortilin expression in the substantia nigra of postnatal 5 days, 15 days, 2 months, 8 

months and 2 years old; and (C) Comparison of sortilin expression levels in the substantia 

nigra in ratio to β-actin. ANOVA test indicates significance, * p < 0.005, ** p < 0.001 vs. 

earlier time-points. 

 

Western blot analysis was also performed to show aging dependent changes of sortilin expression 

levels in the substantia nigra at 5 days, 15 days, 2 months, 8 months and 2 years old. It revealed that 

expression of sortilin in the substantia nigra was weak at 5 days, went up at 15 days, reached the top 

level at 2 months, and went down at 8 months and 2 years old, which was consistent with the 

expression pattern of proNGF changes (Figure 5B). Quantitative analysis of data indicated that 

significant decreases of sortilin expression also occurred in aging rats at 8 months and 2 years (Figure 5C), 

which was consistent with the occurence of dopamine neuronal degeneration visualized by Fluoro-Jade 

staining in the substantia nigra of aging animals. 

2.4. Neurodegenerative or Dying Sensitivity of proNGF-Containing Neurons to Lactacystin Insult 

Moreover, in a rat model with a unilateral lactacystin lesion, abnormal changes in proNGF and 

TH-positive neurons were also observed by a comparison of normal and lesioned nigra. The proNGF  

or TH-positive dopamine neurons mostly died at 7 days, and completely died at 14 days or 28 days 

after lactacystin lesion. Some proNGF or TH-positive neuronal processes were still detected at 

time-points of 7 days and 14 days, whereas almost all or all proNGF or TH-positive neuronal somas 

disappeared. In addition, the proNGF-positive glial-like cells were observed in nigra and remarkably 

increased their numbers in the substantia nigra pars compacta and reticularis at 28 days following 

lactacystin insult (Figure 6A). 
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Figure 6. The proNGF-containing dopamine neurons in the substantia nigra show 

vulnerability to lactacystin insult. (A) The proNGF/TH double-labeled neurons exist 

numerously in the control nigral side, while they died off mostly at 7 days, or completely at 

14 days and 28 days in the lesioned side; (B) Immunoblotting of active caspase-3 in the 

substantia nigra of the lactacystin model; (C) Comparison of cleaved caspase-3 (17 kDa, 

19 kDa, 32 kDa) expression among control, lac7 days, lac14 days and lac28 days;  

(D) Immunoblotting of proNGF and sortilin in the substantia nigra of rat lactacystin model; 

and (E) Comparison of proNGF and sortilin expression levels among control, lac7 days, 

lac14 days and lac28 days. ANOVA test: * p < 0.005, ** p < 0.001, vs. control or earlier 

time-point of lactacystin model. 

 

Western blot analysis was further performed to detect changes of proNGF, sortilin and cleaved 

(active) caspase-3 in the lactacytsin model at 7 days, 14 days and 28 days. Dynamic change patterns of 

proNGF, sortilin and caspase-3 expression were observed in the substantia nigra after lactacystin 

insult. By densitometry of immunoblots in related ratio to internal control β-actin levels abnormal 

increases of both proNGF and sortilin proteins in lesioned nigra were revealed in comparison with that 
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of controls, which exhibited a correlated increase of cleaved caspase-3 (17, 19 and 32 kDa) expression 

levels (Figure 6B–E). 

2.5. Neurodegenerative Vulnerability of proNGF-Containing Neurons to 6-OHDA Insult 

In a 6-OHDA unilateral lesion rat model, proNGF and TH-positive neurons were also examined by 

the comparison of normal and lesioned nigra. The proNGF-positive dopamine neurons mostly died at  

7 days, and completely died at 14 days following 6-OHDA lesion. However, the TH-positive neurons 

still remained in the lesion side of SNc where proNGF-positive neurons were not detected at 14 days 

following 6-OHDA insult (Figure 7A). Cell count data showed that proNGF-positive neuronal cells in 

lesion side of SNc underwent a dynamic and fast cell death after receiving unilateral 6-OHDA 

injections (Figure 7B). 

Figure 7. The proNGF-containing dopamine neurons in the substantia nigra show  

their vulnerability to 6-OHDA insult. (A) The proNGF/TH double-labeled neurons exist 

numerously in control, died off mostly at 7 days or completely 14 days, while TH 

single-labeled neurons still remain in the lesion side of the substantia nigra at 7 days or 14 

days after 6-OHDA insult; and (B) Comparison of proNGF or TH-positive neuronal cells 

among control, 6-OHDA-7d and 6-OHDA-14d. ANOVA test: * p < 005, ** p < 001, vs. 

control or earlier time-point of 6-OHDA model.  

 

FLIVO staining, which can specifically stain apoptotic cells in vivo [20], was also performed to 

show proNGF-positive or TH-positive neuronal cells under apoptosis in the nigra of 6-OHDA lesion at 

time-point of 7 days. FLIVO-positive cells were clearly detected in lesioned nigra, and some of them 

were overlapped with proNGF or TH-immunoreactive neurons in their distribution (Figure 8). Cell 

count data indicated that about 54% of FLIVO-positive cells were proNGF-containing neurons, while 

88% of FLIVO-positive cells were TH-immunoreactive neurons in lesion nigra side. 
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Figure 8. FLIVO staining shows neuronal cell death in the substantia nigra of 6-OHDA rat 

models. In the left column, proNGF-positive (green color), FLIVO-positive (red color, 

arrowheads) and FLIVO/TH double-labeled (yellow color, arrows) cells are shown.  

In the right column, TH-positive (green color, arrowheads), FLIVO-positive (red color) 

and FLIVO/TH double-labeled (yellow color, arrows) cells are shown. 

 

A new finding of the study is the identification of the presence of a novel proNGF-sortilin signaling 

complex in the ventral tier dopamine neurons of substantia nigra, which appeared to be involved in 

neuronal vulnerability or neuronal death to aging, lactacystin and 6-OHDA insults. Briefly, proNGF 

was abundantly observed in ventral tier neurons and characterized with low calbindin colocalization 

and high sortilin coexpression rate. The proNGF/TH-positive neurons were selectively distributed in 

the substantia nigra (A9 group) of whole A1–A17 cell populations. Correlated dynamic changes of 

proNGF, sortilin and TH were found in aging, lactacystin and 6-OHDA rat models of PD. This study 

has, overall, indicated that the proNGF-sortilin signaling compex assembled in substantia nigra might 

possibly play a role in neuronal vulnerability and contribute to neurodegeneration, pathogenesis and 

disease progression of PD [7,10,14,17,21]. 

Growing attention is being paid to the unexpected and opposing, or double-edge effects  

of various neurotrohins in functional development and pathological implications in neurological  

diseases [13,22]. Neurotrophins such as NGF, BDNF and NT3 are initially synthesized as proforms of 

neurotrophins, i.e., proNGF, proBDNF and proNT3, followed by cleavage to release C-terminal 

mature forms in response to physiological changes. Mature neurotrophins are the preferred ligands for 

Trks and signals emanated from Trks support cell survival, neurite growth and synaptic strengthening 

of neurons, while these pro-neurotrophins bind preferentially to p75NTR-sortillin complex and signals 
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emanated from p75NTR-sortilin induce cell apoptosis, growth cone collapse and synaptic weakening 

of central neurons [12,13,23,24]. Neurotoxic and neurotrophic roles of proNGF and the receptor 

sortilin were observed in the adult and aging nervous system, and proNGF showed effects on both 

neuronal viability and neurite growth [22,25]. By high-affinity binding to p75NTR and sortilin complex, 

proNGF mediated cell death of central neurons, natural killer cells and retina photoreceptors [26–28]. 

Further, proNGF showed an inhibitory effect on NGF-mediated TrkA activation in PC12 cells [29]. 

ProNGF also induced PTEN via p75NTR to suppress Trk-mediated survival signaling in central 

neurons [30]. The p75NTR mediated neuronal cell death by activating GIRK channels through 

phosphatidylinositol 4,5-bisphosphate [31]. Apoptosis induced by p75NTR overexpression required 

Jun kinase-dependent phosphorylation of Bad, and neurotrophin receptor interacting factor was also an 

essential mediator of apoptotic signaling induced by p75NTR [32,33]. In addition, p75NTR-induced 

autophagy was also identified in cerebellar Purkinje neurons [34]. Consistently, new data in this study 

indicated correlation of abnormal changes of proNGF-sortilin molecules with neuronal apoptosis or 

degenerative death in the substantia nigra of aging, 6-OHDA and lactacystin animal models. 

Moreover, proNGF-p75NTR-sortilin signaling might be initiated by released pro-neurotrophins 

from glial cells including microglias and astrocytes. While reactive microglias and astrocytes might 

constitute major sources of released pro-neurotrophins under injury and pathological events [4] 

neuronal cell survival or death might be critically regulated by secreted pro-neurotrophins [35]. 

Microglia-derived proNGF also promoted photoreceptor cell death [36]. Application of microglial 

inhibitor minocycline alleviated death of oligodendrocytes by inhibiting proNGF production in 

microglial cells in spinal cord injury [37]. Astrocytic production of NGF was implicated in motor 

neuronal apoptosis of ALS animal models [38]. Neurotrophic actions initiated by proNGF in adult 

sensory neurons required peri-somatic glia to drive cleavage to NGF [39]. Besides, proNT3, 

proBDNF, and toxic extracellular Abeta also induced neuronal apoptosis by the receptor complex of 

p75NTR and sortilin [40–42]. The reactive glial cells that were commonly detected in excitotoxic, 

traumatic and ischemic brains [38], predominately surrounded the lesion neurons in AD and ALS, and 

were abundantly distributed in nigrostriatal regions of PD models [4], implying that reactive glia cells 

are implicated in neuronal degenerative loss or disease progression via releasing pro-neurotrophins and 

neuronal-glial interaction in ALS, AD, and PD [38]. 

Finally, proNGF-p75NTR-sortilin signaling cascades might be significantly involved in aging, 

brain injury, disease onset and progression of neurodegenerative diseases [10,31,43]. For instance, 

age-dependent alterations in proNGF, sortilin proteins and age-related neurodegeneration were 

correlated in several types of neurons [14,44,45]. Increased proNGF, sortilin and p75NTR also acted 

as mediators of injury and ischemia-induced neuronal apoptosis or degeneration [15,18,46,47].  

The proNGF/NGF imbalance was demonstrated to link vulnerability of cholinergic neurons, neuronal 

degeneration and onset of AD [16,17,48–50]. Diabetes-induced imbalance of proNGF/NGF might 

constitute one cause of neurovascular injury [51]. Up-regulation of proNGF, p75NTR and sortilin was 

also associated with spongiform encephalomyelopathy [52]. Reduced p75NTR delayed disease onset 

in female transgenic ALS mice [19], though treatment with a p75NTR antagonist showed no 

improvement on disease progression [53]. Furthermore, while the lactacystin and 6-OHDA rat models 

of PD were used in this study, previous evidence showed that they might differ in their mechanism to 

induce neuronal death; lactacystin might inhibit proteasomes and induce modified protein, and 
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6-OHDA might function through oxidative stress and induce mitochondrial dysfunction [1,5,6]. In a 

lactacystin rat model of this study, an increase of proNGF and sortilin expression levels appeared to be 

related to cleaved caspase-3 expression in the substantia nigra. The increasing expression of p75NTR 

was also identified in nigral dopamine neurons and neurodegeneration induced by kainic acid insult in 

our previous study [8]. In a 6-OHDA rat model of this study, we found that proNGF-positive 

dopamine neurons were sensitive and highly susceptible to death after 6-OHDA insult in the substantia 

nigra. In addition, Wang et al. also reported involvement of proNGF-p75NTR-sortilin signaling in cell 

apoptosis in a 6-OHDA rat model; their study revealed an increase of proNGF, p75NTR and sortilin 

expression levels, a decrease of NGF and TrkA expression, and activation of a caspase-related signal 

pathway in the cell death of dopamine neurons in the substantia nigra [54]. Obviously, the balance 

between the signal pathways activated by the proNGF-p75NTR-sortilin and the NGF-TrkA system 

might be critical to determine the cell death or cell survival of neurons [7,54]. These data together 

imply that the proNGF-p75NTR-sortilin signaling complex might be involved in neuronal cell death or 

apoptosis of substantia nigra of the PD model [7,8,54]. This study has provided evidence of the relation 

of proNGF-sortilin complex with aging, lactacystin and 6-OHDA animal models. Therefore, it 

suggests a possible important role of the proNGF-p75NTR-sortilin signaling complex in pathogenesis 

or disease progression of PD, which shall need further investigation by gene knock-down or knock-out 

of the proNGF-p75NTR-sortilin complex. Therefore, a further understanding of proNGF-p75NTR-sortilin 

signaling in neuron-glial interaction and neurological disorders shall provide targets for the treatment 

of PD [2,3,21,55]. 

3. Experimental Section 

3.1. Animals and Animal Models 

Ninety-two Sprague-Dawley rats were used in total for this study and supplied from the Animal 

Center of the Fourth Military Medical University (FMMU), China. These rats included the postnatal 

aging group: 5 days (n = 8), 15 days (n = 8), 2 months (n = 8), 8 months (n = 8) and 2 years (n = 8); 

6-OHDA lesion group: control (n = 6), lesion 7 days (n = 10), 14 days (n = 6) and 28 days (n = 6); 

lactacystin lesion group: control (n = 6), lesion 7 days (n = 6), 14 days (n = 6) and 28 days (n = 6).  

All animal experiments were carried out in according with the National Institute of Health guide for 

the care and use of Laboratory animals (NIH Publications No. 80-23) revised 1996, approved by the 

Committee of Animal Use for Research and Education of FMMU, and all efforts were made to 

minimize animal suffering and reduce the number of animals used. 

For preparation of the 6-OHDA model, rats received unilateral injections of 3 µL 6-OHDA solution 

(0.01 mg in 3 µL saline containing 0.2 mg/mL ascorbic acid) into the right medial forebrain bundle 

and were allowed to survive for 7 days, 14 days and 28 days in reference to previous report [5]. 

Similarly, for preparation of lactacystin model, rats received injections of 3 µL lactacystin solution  

(10 µg in 3 µL saline) in the right medial forebrain bundle, and saline injection was used in the 

controls. These animals were allowed to survive for 7 days, 14 days and 28 days after 6-OHDA or 

lactacystin surgical injection, thereafter used for immunohistochemistry and western blotting 

experiments, respectively. 
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3.2. Brain Tissue Preparation 

For sample preparation for immunohistochemstry, these animals included postnatal aging groups:  

7 days (n = 5), 14 days (n = 5), 2 months (n = 5), 8 months (n = 5) and 2 years (n = 5); 6-OHDA lesion 

group: control (n = 3), lesion 7 days, 14 days and 28 days (n = 9); lactacystin lesion group: control (n = 3), 

lesion 7 days, 14 days and 28 days (n = 9), and were deeply anesthetized with sodium pentobarbital 

(40 mg/kg, i.p.) and perfused transcardially with 4% paraformaldehyde in 0.1 M (pH 7.4). The brains 

and retinas (containing A1–A17 cell groups) were removed immediately and placed in 0.1 M PB 

containing 30% sucrose overnight at 4 °C. After, the brain and retina samples were serially cut into 

coronal sections (30 µm) on a frozen microtome and rinsed in 0.01 M phosphate buffered saline  

(PBS, pH 7.4), and retina sections were mounted on glass-slides for immunohistochemistry. The brain 

samples of remaining animals were utilized for western blot experiments.  

3.3. Immunofluorescence 

Double immunofluorescence and laser scanning confocal microscopy (LSCM) were performed to 

reveal localization of proNGF and sortilin in TH-containing neurons in whole brains and retinas of 

above animals. Double staining with proNGF/TH, sortilin/TH, or proNGF/calbindin-D28K was 

performed respectively. Briefly, the sections were incubated with 10% donkey serum-containing 

blocking solution for 30 min at room temperature, and followed by incubation of primary antibody 

solution containing 10% donkey serum, 0.1% triton X-100 in PBS at 4 °C for 24 h, i.e., rabbit 

anti-proNGF (P5498, Sigma-aldrich, St Louis, MO, USA), rabbit anti-sortilin (S0697, Sigma-aldrich), 

mouse anti-calbindin-D28K (C9848, Sigma-aldrich), mouse anti tyrosine hydroxylase (T1299, 

Sigma-aldrich), respectively. After three washes with PBS, the sections were further incubated with 

Alexa Fluor-488, or Alexa Fluor-594 conjugated donkey anti-mouse or rabbit IgG (Molecular Probes) 

for 4 h at room temperature. The sections were mounted with Fluorescence-preserving 

VECTASHIELD Mounting medium (Vector, H-1000, Vectorlabs, Burlingame, CA, USA) and 

examined under LSCM (FV1000, Olympus, Tokyo, Japan). In addition, for immunostaining control 

experiments, primary antibody was substituted with normal mouse or rabbit serum and by adsorption 

control confirmation. The immunoreactive cells were not detected in these control staining samples. 

3.4. Immunoelectron Microscopy 

To enhance the tissue penetration of antibodies for electron microscopy study, the vibrate sections 

were equilibrated in a cryoprotectant solution (0.05 MPB, pH 7.4, containing 25% sucrose and  

10% glycerol) for at least 3 h. The sections were then freeze-thawed by freezing in isopentane cooled 

in liquid nitrogen, followed by liquid nitrogen, and thawing in PBS. The sections were then washed 

several times in PBS and incubated in 10% normal donkey serum in PBS for 1 h. All incubation steps 

were carried out in PBS containing 1% normal donkey serum and sections were washed three times 

between steps. For immunoperoxidase, sections were incubated with rabbit anti-proNGF or mouse anti 

TH for 48 h at 4 °C. The sections were then incubated in biotin-conjugated donkey anti-rabbit IgG or 

donkey anti-mouse IgG (Vector) for 12 h at 4 °C, followed by avidin-biotin-peroxidase complex  

(ABC; Vector) for 4 h at room temperature. After equilibrating in Tris buffer (0.05 M, pH 7.6), the 
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peroxidase was visualized by incubation in 0.025% diaminobenzidine (Sigma-aldrich) in Tris buffer in 

the presence of 0.01% H2O2. The reaction was stopped after 8–10 min by three washes in Tris buffer. 

Processing for electron microscopy was performed in following steps. All sections were washed 

three times in PB and post-fixed with 1% osmium tetroxide for 20 min. After PB washes, the sections 

were dehydrated through a graded series of dilutions of ethanol, with 1% uranyl acetate added to the 

70% ethanol solution. Following absolute ethanol, sections were treated with propylene oxide 

(Sigma-aldrich) and placed in resin overnight. The sections were then mounted on glass slides, a 

coverslip applied and the slides were placed in an oven at 60 °C for 48 h. After examination in the 

light microscope, regions of interest within the substantia nigra were cut out and glued onto resin 

blocks. Serial ultrathin sections (approximately 70 nm) were cut on a Riechert-Jung Ultracut E 

ultramicrotome (Leica, Wetzlar, Germany) and collected on single-slot copper grids coated with 

pioloform. Ultrathin sections were contrasted with lead citrate for 3–4 min and examined under Philips 

CM 10 electron microscope, and selected images were taken for further analysis or demonstration. 

3.5. Western Blot 

Western blot was performed to quantify protein expression levels in midbrain samples in a standard 

protocol. Briefly, protein extracts were prepared from ventral midbrain tissues that were dissected 

from ventral midbrain containing substantia nigra. Fresh brain samples were homogenized at 4 °C in  

5 volumes of extraction buffer [50 mM Tris (pH7.4), 150 mM NaCl, 1% NP-40, 0.5% sodium 

deoxycholate, 0.1% SDS, and protease inhibitor cocktail (Complete, Roche Diagnostics)], and the 

centrifugation of homogenates for 10 min (12,000× g) was performed. After measurement of total 

protein amount, supernatant was mixed with four volumes of protein loading buffer, boiled for 5 min 

at 99 °C and stored at 4 °C. Total protein (20–30 µg per loading passage) was loaded for electrophoresis 

on 10% denaturing PAGE gels and transferred to the nitrocellulose membrane (Bio-Rad). Membranes 

were blocked with 5% skimmed milk in Tris-buffered saline containing 0.05% Tween 20, then 

incubated with proNGF, sortilin, TH, or caspase-3 primary antibody, and followed by secondary 

antibody incubation and final visualization of bands (Bio-Rad). The rabbit anti-caspase-3 active 

(C8487, Sigma-aldrich) was used for immunoblotting. By using β-actin as internal control, quantitative 

analysis of immunoblotting bands was carried out and densitometry results in ratios were presented. 

3.6. FLIVO Staining for Neuronal Degeneration 

FLIVO staining method was applied to detect cell apoptosis of proNGF or TH-containing neurons 

in 6-OHDA rat models at 7 days (n = 4) by combining immunohistochemistry. FLIVO detection kit,  

a fluorescently labeled poly-caspase inhibitor for in vivo detection of apoptosis, can detect neuronal 

apoptosis in living brains of animals by systemic injection [20]. In this study, rats with unilateral 

6-OHDA lesions at 7 days received FLIVO (20 µL diluted in 200 µL buffer (Immunochemistry 

Technologies, LLC, Waterloo, Australia) injection via tail vein and allowed to circulate for 1 h. After 

fixation and freezing, midbrain sections was followed by TH or proNGF immunofluorescence to 

determine if proNGF, TH-positive neurons undergo apoptosis. Dying or apoptotic cells stained by 

FLIVO and immunohistochemistry were visualized and captured in the substantia nigra under 

fluorescent microscopy. 
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3.7. Statistical Analysis 

For quantitative data analysis, proNGF, sortilin, calbindin-D28K, TH and FLIVO-positive cells 

were counted in the substantia nigra and other groups of A1–A17 dopamine cell populations in brains. 

The numbers or percentages of double-stained cells, and density of immunoblotting bands in ratio  

to internal control β-actin were given as mean ± S.E.M. (n = 3–5). The differences between means 

were analyzed by one-way ANOVA (SPSS 18.0, Statistical Package for the Social Sciences). When 

ANOVA test showed significant difference among means, the pair-wise comparisons between means 

were also performed by post hoc testing. The significance level was set at a p value of less than 0.05 

for all data analyses. 

4. Conclusions 

This study revealed the presence of the proNGF-sortilin signaling complex in the A9 ventral tier 

dopamine neuron group of substantia nigra, which appeared to be dynamic in expression levels and 

involved in nigral dopamine neuronal loss in aging, 6-OHDA and lactacystin rat models. Taken 

together with our previous observation, this study suggests that a novel proNGF-p75NTR-sortilin 

signaling complex might possibly contribute to neuronal vulnerability or neuronal death of dopamine 

neurons in the substantia nigra, and pathogenesis and disease progression of PD. Further investigation  

of underlying mechanisms shall benefit the development of new neuroprotection strategies by targeting 

proNGF-p75NTR-sortilin signaling cascades for the treatment of PD. 
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