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We present a numerical spectroscopic study of visible and infrared laser radiation in a biological tissue. We derive a solution of a
general two-dimensional time dependent radiative transfer equation in a tissue-like medium. The used model is suitable for many
situations especially when the external source is time-dependent or continuous. We use a control volume-discrete ordinate method
associated with an implicit three-level second-order time differencing scheme. We consider a very thin rectangular biological-
tissue-like medium submitted to a visible or a near infrared light sources. The RTE is solved for a set of different wavelength source.
All sources are assumed to be monochromatic and collimated. The energetic fluence rate is computed at a set of detector points on
the boundaries. According to the source type, we investigate either the steady-state or transient response of the medium. The used
model is validated in the case of a heterogeneous tissue-like medium using referencing experimental results from the literature.
Also, the developed model is used to study changes on transmitted light in a rat-liver tissue-like medium. Optical properties
depend on the source wavelength and they are taken from the literature. In particular, light-transmission in the medium is studied
for continuous wave and for short pulse.

1. Introduction

Diffuse light imaging and spectroscopy aims to investigate
tissue physiology in subsurface. There is a spectral window
existing within tissues in the near-infrared. The absorption
of hemoglobin and water is small in the near-infrared,
but elastic scattering from organelles and other micro-
scopic interfaces is large. In tissue optics, any measuring is
devoted for either spectroscopy or imaging. Spectroscopy
is useful for measurement of time-dependent variations
in the absorption and scattering of large tissue volumes.
Many spectroscopic methods involving laser interactions in
scattering media were employed to study different types
of biological tissue [1–3]. Photon propagation in a bio-
logical tissue is affected by absorption and scattering. A
computational light propagation model which describes the
interaction of photons with scattering and absorbing media
is essential in biomedical optics. It is useful for setting optical
tissue properties and for the development of optical imaging
algorithms [4–8].

The purpose of this paper is to produce a computational
Laser spectroscopic study in a biological tissue. We aim to

examine light-transmission through a biological tissue for
different wavelength sources. Our concern is with modeling
light propagation using the radiative transfer theory. We
derive a model that unifies the basic applications of diffuse
optical tomography which differ essentially by the time
behavior of the external source. In particular, we will work
with two choices for the external source, continuous wave
and short-pulse. The simplest and easiest source to use
is the continuous wave (CW). In this case, the source
amplitude is constant, and the transmitted amplitude is
measured as a function of source-detector separation or
wavelength. The second type is a short-time-pulse. In this
scheme, a short pulse is launched into the medium, and the
temporal point spread function of the transmitted pulse is
measured. First, we must say a few words about another
way to model propagation of visible and near-infrared light
in biological media which is the diffusion equation [9–
11]. It is a limit behavior of the photon transport equation
in a very high scattering media. However, low scattering
and highly absorbing regions could not be accurately
modeled by diffusion equation. Also, a forward model has
to account for a hyperbolic propagation of the collimated
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laser pulse at the finite velocity of light in the medium, and
diffusion approximations family fails to describe accurately
this phenomenon [12]. For a general biological tissue, it
would be more convenient to use a forward model based
on radiative transfer equation (RTE). So, providing solutions
to the RTE is a crucial research task especially in this
domain. Concerning this problem, many works have used
the RTE model with a variety of numerical techniques [13–
17]. Most of these works are devoted to the numerical
treatment of situations where a unique choice for the external
source is considered. When the source is continuous the
time-independent RTE is used. The supply of short-pulsed
external source requires the use of a time-dependent RTE
model. In all cases there, are many difficulties in implement-
ing these models. To overcome some of these difficulties,
many techniques of RTE-solution have been used either
in time-independent or in time-dependent cases. Klose
and Hielsher [18] have developed an upwind-difference
discrete ordinate formulation of time-independent RTE. The
authors tested their model with experimental data obtained
from homogeneous tissue-phantoms and from phantoms
that contain void-like regions. In another paper, Klose and
Larsen [19] have used a simplified spherical harmonics
equation to approximate the equation of radiative transfer
for modeling light propagation in biological tissues. In that
work, authors tried to demonstrate that the SPN equation
provides accurate solutions for a time-independent RTE.
Boulanger and Charette [20] have used an upwind advection
scheme to treat a propagation wave in homogenous and
heterogeneous media submitted to a short-pulsed laser
source. They proved that this technique can overcome a
difficulty encountered in optical spectroscopy and due to
high scattering regions especially in biological tissues. The
most complete account of this problem is found in the
works of Alfano group which has produced many papers in
this field. Among these, we can cite papers [21, 22] where
Cai et al. developed an analytical cumulant solution of the
time-dependent radiative transfer equation in an infinite
uniform medium with an arbitrary phase function. The same
group of authors has made improvements in this approach
especially by separating the ballistic component from the
scattered component of light in [23, 24]. Such improvements
allowed the authors to consider complicated situations like
a polarized short pulse of light incident on a scattering
medium. They even investigated backscattering of circularly
polarized light from turbid media. Their theoretical results
were validated by experimental data. Recently Pu et al. [25]
investigated time-resolved and spectral measurements of the
SW emission from cancerous and normal prostate tissues.
This contributes to a more comprehension of Laser-tissues
interactions and offers new fields to the radiative transfer
application.

In this work, we derive a control volume discrete-
ordinate method associated with an implicit three-level
second-order time differencing scheme to solve a two-
dimensional time-dependent radiative transfer equation in
a general biological tissue medium. We investigate many
cases concerning the properties of the medium and the
characteristics of the source. We will prove that the used

model suits for all these applications. First, the proposed
model is tested in the case of a heterogeneous tissue-
like phantom illuminated by a continuous wave source.
Experimental results are taken from [18]. Numerical results
concerning the steady-state transmitted light on the bound-
ary are compared with measurements. Next, the proposed
model is used to establish a spectroscopic study with a
continuous wave source. Results concerning transmitted
light through a rat-liver tissue-like medium are presented
for different wavelengths. Also, we present time-dependent
spectroscopy for the same medium submitted to a one short-
pulse. Results concerning transmitted light and internal light
distribution are presented for some source wavelengths.
Before all, theoretical and numerical background of our
simulations is presented below.

2. General Time-Dependent RTE

2.1. Physical Model. Light propagation in a human biological
tissue is modeled by using a general time-dependent RTE
[26]:

n

c

∂Iλ(r,Ω, t)
∂t

+ Ω · ∇Iλ(r,Ω, t) +
(
μa(r) + μs(r)

)
Iλ(r,Ω, t)

= μs

∫ 2π

0
p
(
Ω,Ω′)Iλ

(
r,Ω′, t

)
dΩ′ + Sλ(r,Ω, t).

(1)

In this equation,

(i) Iλ(r,Ω, t) is the monochromatic directional energetic
radiance at the spatial position-vector r = (x, y, z).
When used in a dimensional form, the radiance
Iλ(r,Ω, t) is often expressed in units of W·cm−2sr−1.
The photon direction is described using a unitary
direction vector Ω;

(ii) μa(r) and μs(r) are the absorption and the scattering
coefficients, respectively. They are both given in units
of cm−1. c is the speed of light in vacuum. n is
the medium’s refractive index. Also we make use of
reduced scattering coefficient:

μ′s =
(
1− g

)
μs; (2)

(iii) The source term Sλ(r,Ω, t) is an injected monochro-
matic radiance at the medium boundary;

(iv) The phase function p(Ω,Ω′) describes the proba-
bility that during a scattering event a photon with
direction Ω′ is scattered into the direction Ω. In this
paper, we use a commonly-applied phase function
in tissue optics. It is the Henyey-Greenstein phase
function [27, 28]:

p(cos(θ)) = 1− g2

4π
(
1 + g2 − 2g cos(θ)

)2/3 , (3)
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where g is the anisotropy factor and θ is the angle between
Ω and Ω′. The integral of radiance over all angles Ω at one
point r yields the fluence rate:

Φλ(r, t) =
∫

Iλ(r,Ω, t)dΩ. (4)

In order to lighten the equations, the subscript λ will be
omitted in all the rest of this paper.

2.2. Boundary Condition. The radiance in the boundary is
the sum of the external source contribution and the partly
reflected radiance due to the refractive index mismatch. This
gives

I(rb,Ω, t) = S(rb,Ω, t) + R · I(rb,Ωref, t),

n ·Ω < 0 ,Ωref · n = −Ω · n,
(5)

where rb is a vector position on the boundary and n is the
unit outer normal vector. The reflectivity R is given for each
direction using a Fresnel’s relationship:

R = 1
2

(
nm cosϕtra − n0 cosϕref

nm cosϕtra + n0 cosϕref

)2

+
1
2

(
n0 cosϕref − nm cosϕtra

n0 cosϕref + nm cosϕtra

)2

if ϕref < ϕcr and else, R = 1,

(6)

where ϕref and ϕtra are the reflection and the transmission
angle respectively. In the air, the transmission angles, is
calculated through the following Snell’s law:

nmsinϕref = n0sinϕtra. (7)

The medium refractive index nm depends on the tissue and
n0 is taken as unity. The critical angle is determined by the
following equation:

sinϕcr =
n0

nm
. (8)

Thus, the transmitted fluence rate at the boundary can be
computed in each detector point using the following integral
formula:

Φtra(rb, t) =
∫

Ω·n>0
(1− R)I(rb,Ω, t)dΩ. (9)

The fluence rate on the boundary which enters the detector
for a given aperture AP is computed as.

Φd(rb, t) =
∫

Ap
(1− R)I(rb,Ω, t)dΩ (10)

In this work, Φd will be called detected fluence rate and we
will take AP = 45◦ in all our investigations.

3. Solution Method and
Numerical Implementation

3.1. Control Volume Discrete Ordinates Method: CVDOM. In
this paper, we use a control volume discrete-ordinate method
[29, 30] associated with an implicit three-level second-order
time differencing scheme to solve (1) in a general biological
tissue medium. At first, this requires the integration of (1)
on an elementary control volume noted ΔV. The spatial
calculus domain is divided into a set of I × J elementary
uniform volumes ΔV with unitary depth. This yields a
calculus domain subdivided in I ∗ J rectangular cells. Each
(i, j)-cell is ΔxΔy-sized. So, we can write.

n

c

∂IP,m

∂t
+ Δy · ξm

(
IE,m − IW ,m

)

+ Δx · ηm
(
IN ,m − IS,m

)
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)
IP,m

= Δx · Δy
⎛

⎝SP,m + μs

M∑

m′=1

wm′ pm,m′IP,m′

⎞

⎠,

(11)

where ξ m
= cos(Ωm · nx) and ηm = cos(Ωm · ny) with

nx and ny being two normal vectors to the (x, z)-plane
and the (y, z)-plane, respectively. wm is a weighting factor
depending on the chosen quadrature formula. In this
work, we use a constant weight quadrature. After angular
discretisation, the phase function term becomes

pmm′ = 1− g2

4π
(
1 + g2 − 2g

(
ξmξm′ + ηmηm′

))3/2 . (12)

If the direction cosines are positive, the directional energetic
radiances are known on the faces W and S and they are
unknown on the faces E andN of the (i, j)-cell and also in the
centre P. Therefore, we need two complementary relations to
eliminate IE,m and IN ,m.These relations can be obtained by
using interpolation formula:

IP,m = α IE,m + (1− α) IW ,m,

IP,m = α IN ,m + (1− α) IS,m,
(13)

where α is an interpolation parameter. Using the above
formulae, (11) can be written as

n

c
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∂t
+
Δy · ξm

α
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α
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⎛
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(14)

For time discretization, an implicit three-level second-order
time differencing scheme [31] is used:

∂IP,m

∂t
= 3In+1

P,m − 4InP,m + In−1
P,m

2Δt
, n = 1, . . . nmax, (15)
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whith Δt being the discrete time step. So we can rewrite (14)
as follows:

In+1
P,m

(
3n
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+
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)
)
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⎠.

(16)

Theoretically, if we know IP,m on the (i, j)-cell, we can obtain
results over the cells (i + 1, j) and (i, j + 1) by using the
boundary conditions and the following relations:

IW ,m
(
i + 1, j

) = IE,m
(
i, j
)
, i = 1, . . . , I − 1,

IS,m
(
i, j + 1

) = IN ,m
(
i, j
)
, j = 1, . . . , J − 1.

(17)

If (ξm > 0 and ηm > 0), then we get the following equation:

In+1
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[
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In (18), we have used these notations:

(i) Ini, j,m = I(iΔx, jΔy, ξm,ηm,nΔt)

(ii) Sni, j,m = S(iΔx, jΔy, ξm,ηm,nΔt).

To solve (18), we use successive iterations to actualise the
implicit internal source term in the right member. So, we
obtain for n ≥ 1,
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The iteration process is repeated until a convergence criterion
is attempted and to improve convergence speed, we use a
successive over relaxation technique [32]. So the updated
value (Ini, j,m)k+1

updated
becomes a linear combination of the

iterated value (Ini, j,m)k+1 and the previously computed value

(Ini, j,m)k as

(
Ini, j,m

)k+1

updated
= (1− ρ)

(
Ini, j,m

)k
+ ρ

(
Ini, j,m

)k+1
, (20)

where ρ being a relaxation parameter whose value is usually
between 1 and 2. In most of our calculus, we have used: ρ =
1.1. The solution is obtained when the relative discrepancy
value, ε = |(Ini, j,m)k+1 − (Ini, j,m)k/(Ini, j,m)k|, is smaller than a

tolerance value tol. In that case, we take (Ini, j,m)k as a solution.

It will be noted I
n
i, j,m.

It is worth noting that, in all our simulations, we take
a tolerance value: tol = 10−8 and for initial condition,
we take I

0
i, j,m = 0. We use Δx = Δy and a uniform

time step Δt = 10−13s. Also it is important to mention
that when a continuous source is injected, another iterating
process is implemented to attempt the steady-state solution.
This is obtained by iterating the solution I

n
i, j,m until|Ini, j,m −

I
n−1
i, j,m/I

n−1
i, j,m| ≤ tol. At the equilibrium, all time derivatives

will be vanished and we will get a solution of the time-
independent radiative transfer equation. This procedure
could be a validation criterion for the implemented algo-
rithm convergence. Now, if the direction cosines are not
positive, the precedent equations are valid provided that
the orientation WESN of cells is done according to the
direction of propagation. To sweep the calculus domain, we
use negative increments. So, the set of all angular directions
(Ωm) is divided into four subsets depending on the sign of
ξm and ηm. By the use of direction cosine sign, all cases can
be given through the following general equation:

(
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(21)
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μa = 0.35 cm−1 μ′s = 11.6 cm−1

0.1 cm

2.8 cm

g = 0.8
n = 1.56

Source

Figure 1: Geometry and optical properties of the referencing
medium [18].

3.2. External Source and Computed Quantities. In all our
investigations, the power laser-source is assumed to be
equivalent to a forward collimated radiance injected at a
pinpoint on the bottom side of the boundary. We use two
types of source:

(i) a continuous wave source with a uniform equivalent
intensity value of 20 mWcm−2sr−1.

(ii) a short-Laser-pulse source, applied only at the first
instant of calculus. It is a 100fs-pulse having an
equivalent radiance value of 200 mWcm−2sr−1,

In our presented results on the boundary, we use either
calculated detected fluence rate or normalized detected
fluence rate:

ΦN
d =

φd

1/D
∑D

d wdφd
, (22)

where φd is the computed detected fluence rate at a detector
point d,D is the number of the detector points on the
concerned side of the boundary, and wd is a weighting factor
from the generalized trapezoidal integration rule [34]. Also,
distribution of light in the medium is presented through the
calculated fluence rate matrix which is given at the instant,
nΔt, as:

φni j =
M∑

m=1

wmI
n
i, j,m. (23)

4. Results and Discussion

4.1. Model Validation. To test our model, we have considered
a case of 678 nm-light punctual continuous wave source. Our
Model is tested by comparing obtained results with phantom
experimental data reported in [18]. Figure 1 shows the
phantom, it is assumed to be 4 cm×4 cm sized heterogeneous
medium which contains a water-filled, void-like ring with an
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Figure 2: Comparison of calculated normalized steady state
transmitted fluence rate and experimental data of a heterogeneous
tissue-like medium. Calculus is done in the case of a continuous
wave source for different values of the interpolation parameter (a)
and for different angular grids (b).

inner diameter of 2.8 cm and an outer diameter of 3.0 cm.
A continuous source is placed on the middle of the bottom
side of the boundary. The numerically predicted results are
compared with corresponding experimentally measured data
extracted from in [18, Figure 7]. The convergence of our
algorithm is conditioned by some considerations in grid-
mesh characteristics. In particular, the choice of the cell
dimension should be taken too small. More precisely, to
move from a cell to another neighboring cell, we should
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A rat liver tissue

Source
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λ(nm) μa (cm−1) μ′s = (cm−1) g

488 12.2 173.5 0.93
633 6.5 143.7 0.95
800 5.7 97.0 0.94
1064 5.9 60.9 0.92
1320 6.6 44.2 0.91
2100 27.2 24.5 0.80

(b)

Figure 3: Geometry and optical properties of the rat-liver-tissue at different wavelengths [33].
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Figure 4: Detected fluence rate for different source-wavelengths. Calculus is done in the case of a continuous wave source. Results are shown
for top side (a) and left side (b).

travel less than the total mean free path of photons. So,
it should be more convenient to do calculations under the
condition: Δx < 1/(μa + μ′s). In these calculations, we have
used Δx = Δy = 0.05 cm.

Figure 2(a) represents the calculated steady state normal-
ized transmitted fluence rate on the opposite side to the
source for different values of the interpolation parameter.
The case (α = 0.5) shows the closest results to the
experimental measurements. In the rest of investigations,
the interpolation parameter value will be putted 0.5. Also
Figure 2(b) shows an almost angular grid-independency of
our numerical results. We will take a set of 16 uniformly

distributed discrete angles which is sufficient to do the rest
of our calculus. These results and other results shown in [14]
constitute both numerical tests and experimental validations
of our model.

4.2. Computational Spectroscopy with a Continuous Wave
Source. In this investigation, we consider a rat liver tissue-
like medium as it is shown in Figure 3. Optical properties
of the tissue are taken from [33] from a set of several
wavelengths. Figures 4(a) and 4(b) illustrate transmission
through the considered medium on the top side and on the
left side for different laser-source wavelengths. Calculus is
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Figure 5: Time-dependent detected fluence rate at a detector point
on top side of the rat-liver tissue-like medium. Calculus is done in
the case of a continuous wave source.

carried out as in the previous paragraph for a continuous
wave source. Transmitted directional radiances are calculated
in 18 detector points on the top side and on the left
side of the boundary. Figures 4(a) and 4(b) show that
transmission for 488 nm and 2100 nm is very weak. The
maximal transmission from the tissue is observed in the
red and the near infrared part of radiation spectrum. Also,
Figure 5 shows the time behavior of the detected fluence rate
in a point on the top side of the studied medium. During the
transient period, Figure 4 shows no response of the medium
for 488 nm and 2100 nm and a very weak transmission in
1320 nm and a relative larger global transmission in red and
near infrared zones.

4.3. Spectroscopy with a Short-Laser Pulse. In this investiga-
tion, we study the same medium as in the just precedent
paragraph but we use a short-pulsed source. In all cases,
it is a 100fs-laser pulse injected in the medium through a
point on the middle of the bottom side of the boundary.
Figure 6 shows the transmitted light at a detector point on
the top side of the boundary. Results are presented for a set
of different wavelengths. Only near infrared light displays a
relative appreciable transmission. A maximum of detected
fluence rate is noted at 800 nm-light. A little delay of the
maximum detection of radiation is observed when wave-
length increases. Figure 7 shows fluence rate distribution into
the medium at different moments after the pulse. In all
moments, symmetric propagation of light is observed into
the medium. Also, it can be observed that scattering prevails
in 488 nm while more and more absorption is observed in
2100 nm. At 488 nm, the phenomenon of multiple scattering
is dominant into the medium. The dispersion of the pulse
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Figure 6: Time-dependent detected fluence rate on the top side
of the rat-liver tissue-like medium. Calculus is done in the case
of a 100fs-laser pulse injected in the bottom side with different
wavelengths.

is accentuated in all sides. Light disappears after 250ps.
At 2100 nm, more light is absorbed into the medium so
a fraction of energy persists into the medium for more
time.

Figure 8 shows typical movement of different photons
in the medium at three different wavelengths. Calculations
in our studied medium are carried out by using Monte
Carlo simulations as it is described in [35]. It can be
observed that a typical 800 nm-photon is almost snake. For
488 nm-photon, the mean scattering free path is very small.
Multiple scattering is dominant. The typical trajectory in this
case is not ballistic and the photons are almost diffusive.
For 2100 nm, the mean scattering free path is longer than
the 488 nm-photon but the absorption mean free path is
narrower. A typical photon in this wavelength is almost
absorbed into the medium.

5. Conclusion

This paper investigated situations concerning biological tis-
sue interaction with Laser radiation by using radiative trans-
fer theory. More precisely, a computational radiative transfer
model is used to establish a numerical Laser spectroscopic
study in a rat-liver-tissue-like medium. The response of
the medium to both time-dependent and time-independent
sources is explored. Obtained Results are tested by using
experimental measurements from the literature and by using
Monte Carlo simulations. The maximal transmission from
the tissue is observed in the red and the near infrared part
of radiation spectrum. Also multiple scattering is prevailing
in 488 nm while more and more absorption is observed in
2100 nm.
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Figure 7: Internal light distribution in the rat-liver tissue-like medium for different instants after the pulse. Calculus is done in the case of a
100fs-laser pulse for different wavelengths.
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Figure 8: Typical trajectory of photons for different values of the
wavelength source as obtained through Monte Carlo simulations.

Nomenclature

c: Speed of light, (in vacuum), cm/s
g: Anisotropy factor
I: Intensity, W · cm−2sr−1

n: Refractive index
p(Ω,Ω′): Phase function
r: Position vector, cm
R: Reflectivity coefficient
rb: Position vector in the boundary
S: Source term, W · cm−3sr−1

wd: Weighting factor from trapezoidal integration
wm: Weight associated with discrete direction
x, y: Cartesian coordinates, cm.

Greek Symbols

α : Interpolation parameter
Φ: Fluence rate, W · cm−2

Φd: Detected fluence rate, W · cm−2

λ: Wavelength, nm
Ω: Direction solid angle, sr
μa: Absorption coefficient, cm−1

μs: Scattering coefficient, cm−1

μ′s: Reduced scattering coefficient, cm−1

ρ: Relaxation parameter
θ: Scattering angle, rad
ξ,η: Direction cosines.
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