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Circadian disruption is associated with poor health outcomes, including sleep and mood

disorders. The suprachiasmatic nucleus (SCN) of the anterior hypothalamus acts as

the master biological clock in mammals, regulating circadian rhythms throughout the

body. The clock is synchronized to the day/night cycle via retinal light exposure. The

BOLD-fMRI response of the human suprachiasmatic area to light has been shown to

be greater in the night than in the day, consistent with the known sensitivity of the

clock to light at night. Whether the BOLD-fMRI response of the human suprachiasmatic

area to light is related to a functional outcome has not been demonstrated. In a pilot

study (n = 10), we investigated suprachiasmatic area activation in response to light in

a 30 s block-paradigm of lights on (100 lux) and lights off (<1 lux) using the BOLD-

fMRI response, compared to each participant’s melatonin suppression response to

moderate indoor light (100 lux). We found a significant correlation between activation in

the suprachiasmatic area in response to light in the scanner and melatonin suppression,

with increased melatonin suppression being associated with increased suprachiasmatic

area activation in response to the same light level. These preliminary findings are a first

step toward using imaging techniques to measure individual differences in circadian light

sensitivity, a measure that may have clinical relevance in understanding vulnerability in

disorders that are influenced by circadian disruption.
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INTRODUCTION

The human circadian system is responsible for regulating physiological processes across the 24-
h day. This includes rhythms in alertness, sleep-wake behavior, metabolism, mood and cognitive
function (1–3). The endogenous master clock (the suprachiasmatic nucleus, SCN) generates
rhythms of ∼24 h, which are synchronized to the environmental light/dark cycle via retinal light
exposure (4).

Disrupting the relationship between the light-dark cycle, behavior and internal rhythms has
significant consequences for health. Circadian disruption is a factor in the etiology of mood
disorders (5), cognitive decline (6), the onset of metabolic diseases such as diabetes (3, 7),
cardiovascular health (8), and is associated with an increased risk for cancer (9). Although
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these health concerns may arise from the uncoupling of
rhythms with behavior (e.g., cross-meridian travel, engaging
in shift-work), it has also been suggested that an abnormal
response to environmental light may lead to the development of
circadian disruption in the absence of, or in combination with,
behavioral change (10, 11). Both hyper- and hypo- sensitivity to
environmental light could lead to the development of abnormal
circadian synchronization (10–12). Therefore, an abnormal
response of the circadian system to light is a potentially important
factor for disease vulnerability.

Better characterization of the function of the SCN (master
circadian clock) in response to light cues may provide clinically
relevant information, leading to improved interventions.
However, our understanding of human SCN function in
a clinical context to date has often relied on peripheral
measurements of clock function. For example, the most common
assessments of SCN function involve measuring the timing of
melatonin onset (usually via dim-light melatonin onset; DLMO)
for circadian timing [e.g., (13, 14)], and melatonin suppression
to assess circadian light responsiveness [e.g., (11, 15)]. However,
for patients taking beta-blockers, antidepressants, or sleeping
aids such as exogenous melatonin, these assessments will
be uninformative due to the pharmacological impact on
endogenous melatonin levels, or cross reactivity with existing
assays (16, 17). The ability to directly assess the activity of the
SCN in response to light cues would overcome these limitations.

There is a substantial neuroimaging literature examining non-
visual light responses in humans. For example, the BOLD-
fMRI response of the suprachiasmatic area to light during the
day, evening, and night has been imaged, showing differential
activation across times of day which matches the known rhythm
in the responsiveness of the circadian system to light (18).
Studies have also shown enhancement of activity in brain areas
associated with working memory, alertness and cognition [e.g.,
(19, 20)] and emotional processing (21) in response to blue
light, compared to green. Further, the use of light stimuli which
differentially stimulate melanopsin (high- or low-stimulation)
during fMRI has been utilized to characterize the cerebral
activation associated with non-visual light processes (22).
However, the measurement of suprachiasmatic area function in
humans has yet to be related to individual responsiveness using
established laboratory techniques. In this study we examined,
within individuals, the relationship between suprachiasmatic area
activation in response to light in an fMRI scanner and melatonin
suppression to light in the laboratory.We hypothesized increased
activation of the suprachiasmatic area in response to light
would be associated with increased melatonin suppression to
light.

MATERIALS AND METHODS

Participants
Ten healthy young men and women (5 men, Mage = 20.80, SD
= 1.87) were recruited. Participants were free of medical and
psychiatric conditions andwere not taking anymedications at the
time of the study. Women were naturally cycling (i.e., not using
any hormonal contraception).

In-laboratory Circadian Assessments
All participants completed an in-laboratory assessment of
circadian light sensitivity. This involved an assessment of dim-
light melatonin levels and a subsequent light exposure of ∼100
lux. Sessions ran from ∼4 h prior to the participants’ bedtime,
until 1 h after, during which the participant remained awake and
seated (other than for bathroom breaks). These two sessions were
a minimum of 1 week apart, with the dim-light session occurring
first. Participants maintained a strict 8:16 h sleep-wake dark-light
schedule for at least 1 week prior to, and in between sessions,
whereby >1 deviation of more than 30-min in 1 week would be
exclusionary. Adherence to the schedule was monitored using
wrist-worn actigraphy (Actiwatch Spectrum Plus or L, Philips
Respironics, OR, USA) and sleep diaries. Schedules were selected
to be in line with participants typical sleep-wake behavior, an
example schedule, with an overview of the protocol is available in
the Supplementary Material. During test-sessions, hourly saliva
samples were taken using salivettes (Sarstedt, Germany), which
were then assayed in duplicate for melatonin at the Adelaide
Research Assay Facility using radioimmunoassay with the G280
antibody and the [1251]2-iodomelatonin radioligand (LOD 4.3
pMol).

In MRI Light Exposure and Imaging
Procedure
Participants completed an fMRI scan beginning ∼1 h prior to
habitual bedtime. For 1 h prior to this they were seated in dim-
lighting conditions of <10 lux. Prior to their scan, participants
provided a urine sample for toxicology to be conducted, with
a positive result being exclusionary (n = 0, SureStep 6 Panel,
Medvet, South Australia, Australia).

All subjects were imaged using a 3T Scanner (Siemens
Magnetom Skyra) with 20 channel head coils. High-resolution
anatomical images of the whole brain were acquired using T1-
weighted anatomical scans (TE = 2.07ms; TR = 2.3 s; field of
view: 256 × 256mm; slice thickness: 1mm). Functional images
were acquired using echo-planar-imaging (TR: 2.06 s; TE: 24ms;
field of view: 190 × 190mm; slice thickness: 3mm; number
of slices: 41; flip angle = 90, number of volumes = 177). The
first five images of each session were discarded to allow for T1
equilibration.

Participants were requested to lay supine in the MRI scanner,
while an optic-fiber-based light delivery system was fitted on
the MRI head coil. This device consisted of a halogen light
source (DC950H, Dolan-Jenner Industries, MA, USA), which
transmitted light throughmetal-free fiber optic cables (100 strand
cable with 0.75mm fibers, Optic Fiber Lighting, Sydney, AU)
to two circular plastic diffusers (40mm diameter) positioned
∼50mm above each eye. The diffusers were designed to bathe
each eye in light, achieving an even spread of illumination. Light
stimuli had a CCT of∼2800K (λp= 650 nm), and was delivered
at two intensities, ∼100 lux (42.73 µW/cm2) and ∼1000 lux
(392.28 µW/cm2).

Each participant was exposed to a passive light stimulus
paradigm in which they were requested to keep their eyes open
(other than normal blinking). This was comprised of alternating
periods of lights off (darkness, six 30 s epochs) and lights on
at a moderate level (100 lux, six 30 s epochs) or bright level
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FIGURE 1 | Mask of the suprachiasmatic area used to determine BOLD

activation during the light exposure paradigm.

(1000 lux, six 30 s epochs). Moderate and bright blocks (of 6min
total duration each) were delivered separately, with the moderate
light exposure block always being presented first. Due to the
aversive nature of the 1000 lux bright-light stimuli (which often
led to significant eye closures), only data for the moderate light
exposures are reported here.

Data Analysis
Melatonin Suppression
Area under the curve (AUC) was calculated for the final 2 h
of each dim-light control, and each 100-lux light exposure
(where melatonin levels were adequate in all participants in
our protocol). Average percent suppression across the 2 h was
then calculated by determining the percent change in AUC from
baseline to the 100-lux light exposure for each individual.

MRI Data Processing
Detailed information regarding fMRI data processing and
analysis can be found in the Supplementary Material. Briefly,
MRI data were pre-processed using FSL (FMRIB’s Software
Library, www.fmrib.ox.ac.uk/fsl). For each participant, pre-
processed fMRI data were analyzed using first-level general
linear models. The linear models included regressors for light
on blocks and standard motion parameters (six regressors).
To focus our analysis on the suprachiasmatic area of the
brain, we generated a mask covering hypothalamic area
using a meta-analytic tool NeuroSynth (http://neurosynth.
org/analyses/terms/hypothalamus/). This mask (see Figure 1)
covered both the anterior and posterior hypothalamus including
the suprachiasmatic area.

Statistical Analyses
A correlational analysis was used to assess the relationship
between suprachiasmatic area function in response to light (100
lux relative to dark periods) and melatonin suppression. A
Spearman’s correlation was used due to the small sample size and
potential non-normality of the BOLD response.

RESULTS

There was a significant, strong positive correlation between
suprachiasmatic area activity during light exposure periods
(relative to dark) and melatonin suppression (Figure 2).
Increased suprachiasmatic area activation was associated with an
increase in melatonin suppression (i.e., greater circadian light
sensitivity).

FIGURE 2 | Relationship between the fMRI BOLD response in the

suprachiasmatic area (SCA) during 100 lux light exposures (relative to dark),

and melatonin suppression.

DISCUSSION

This study provides preliminary evidence for a relationship
between suprachiasmatic area activation in response to light
and an established in-laboratory measure of circadian light
sensitivity. We found a significant relationship between
suprachiasmatic area activation and melatonin suppression,
indicating that an increase in fMRI measured suprachiasmatic
area activation in response to light related to an increase in
circadian light sensitivity. Thus, these are the first data in
humans to show a relationship between a proximal measure
of activity in the anterior hypothalamus and a functional
outcome.

An increase in melatonin suppression relates to larger shifts
in circadian phase (23), and has been associated with disease
states (10, 11). Our results suggest that increased melatonin
suppression findings may reflect increased activation of the
SCN in response to environmental light. Light information
is received at the retina by intrinsically photosensitive retinal
ganglion cells (iPRGCs), which then project to the SCN
via the retinohypothalamic tract (RHT), and to other brain
areas (24, 25). Light exposure leads to changes in circadian
timing, amplitude, levels of alertness and mood (23, 26, 27).
The magnitude of the impact of this light on the circadian
system will be partly dependent on individual differences in
light sensitivity, and our results demonstrate that this inter-
individual variability may arise from functional differences
in the ability of retinal light exposure to activate the
SCN.

Circadian dysfunction has been associated with several
chronic disease states, including mood disorders (10, 28),
metabolic and cardiovascular disease (29) and sleep disorders
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(11, 14, 30). Abnormalities in circadian light sensitivity may
be a trait vulnerability for mood disorders with variable or
decreased sensitivity being observed in seasonal affective disorder
(12), while hypersensitivity to light has been observed in bipolar
disorder (10, 28), and in some sleep disorders or disturbances
(11, 31). Imaging of the response to moderate light as used in
this study may reveal abnormal SCN function, which could lead
to circadian dysfunction.

It should be noted that although a significant relationship
was observed here between suprachiasmatic area activation and
melatonin suppression, our sample was small, and these data
do not indicate that an individual scan of the response to light
can currently replace melatonin suppression as an indicator of
circadian light sensitivity. The BOLD fMRI response to light
in the suprachiasmatic area may instead prove a useful clinical
tool for studying changes in light sensitivity associated with
either a clinical diagnosis, or pharmacological intervention.
Given suggestions that light sensitivity can change across a
disease course (12), and may mediate treatment response in
mood disorders (32, 33), this has important clinical implications.
However, further characterization of the relationship between
suprachiasmatic area activation and melatonin suppression is
required in order to establish clinically meaningful ways of
interpreting individual data.

This study has shown, in a small sample, evidence for
a relationship between suprachiasmatic area BOLD-fMRI
activation to light and an established measure of circadian
light sensitivity. This is a first step in the development of
imaging techniques for the assessment of individual differences
in circadian function. This is critical given the pervasive nature
of circadian dysfunction in disease states.
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