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Abstract: The geographic distribution of lung cancer rates tends to vary across a geographic landscape,
and covariates (e.g., smoking rates, demographic factors, socio-economic indicators) commonly are
employed in spatial analysis to explain the spatial heterogeneity of these cancer rates. However,
such cancer risk factors often are not available, and conventional statistical models are unable
to fully capture hidden spatial effects in cancer rates. Introducing random effects in the model
specifications can furnish an efficient approach to account for variations that are unexplained due
to omitted variables. Especially, a random effects model can be effective for a phenomenon that is
static over time. The goal of this paper is to investigate geographic variation in Florida lung cancer
incidence data for the time period 2000–2011 using random effects models. In doing so, a Moran
eigenvector spatial filtering technique is utilized, which can allow a decomposition of random effects
into spatially structured (SSRE) and spatially unstructured (SURE) components. Analysis results
confirm that random effects models capture a substantial amount of variation in the cancer data.
Furthermore, the results suggest that spatial pattern in the cancer data displays a mixture of positive
and negative spatial autocorrelation, although the global map pattern of the random effects term may
appear random.

Keywords: lung cancer incidence; positive spatial autocorrelation; negative spatial autocorrelation;
random effects; spatial autocorrelation mixture

1. Introduction

Spatial scientists, practitioners, and policy makers are interested in understanding the spatial
variation in cancer rates at various geographic scales and resolutions (e.g., [1]). One commonly
employed geographic resolution is the county, because aggregating especially counts of rare cancer
cases by county for ecological analyses almost always preserves patient confidentiality [2]. This ethical
and legal goal is at the expense of data analysis accuracy and precision, as well as data analytic
complications such as the ecological fallacy. Meanwhile, depicting finer geographic resolution rates
with choropleth or kernel density smoothed maps can maintain patient confidentiality while improving
data analysis accuracy and precision (e.g., [3]), and help avoid or minimize such complications as the
ecological fallacy.

Often, one objective of such research is to investigate associations between cancer rates
and socio-economic/demographic characteristics. The availability of such covariates, generally
retrieved from government census publications, tends to be very limited for fine geographic
resolutions (e.g., census blocks). Furthermore, as a rare event, many cancer rates are often zero
in a sizeable number of areal units at a very fine geographic resolution. Because a spatial analysis
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of cancer rates defies conducting scientific human subject experiments on ethical grounds, and,
hence, is observational/correlational in nature, researchers seldom have a priori information about
covariates that would make significant contributions to the geographic variation in cancer rates.
Quasi-experimental designs have uncovered selected surrogate covariates supportable by scientific
rationales, such as income/poverty and access to cancer screening/diagnosis/treatment [4], age and
increased risk of developing cancer [5], and education and lifestyle cancer-prevention behaviors [6].

A random effects (RE) model seeks to control for time-invariant unobserved heterogeneity in data.
RE may be viewed as areal unit specific effects attributable to unknown latent variables. Although
omitted variables influence a regression analysis of georeferenced cancer rates, introducing a RE term
can account for some of their effects. With regard to RE, Besag et al. [7] specify that their geographic
distributions comprise the following two components: spatially structured random effects (SSRE),
and spatially unstructured random effects (SURE). A Bayesian hierarchical model, in which a prior
distribution can substitute for repeated measures in a space-time series, can be specified to estimate
both SSRE and SURE terms. In this Bayesian context, a SSRE component often is modelled with a
conditional autoregressive (CAR) specification that captures spatial autocorrelation (SA) (SA refers
to Tobler’s first law of geography: everything is related to everything else, but nearby phenomena
are more related than distant phenomena. In other words, either similar (positive SA) or dissimilar
(negative SA) attribute values tend to cluster together on a map. Georeferenced data rarely are void of
map pattern (i.e., have no SA)) latent in georeferenced data, and a SURE component is specified with an
independent normal distribution. In this specification, SA is accounted for directly through parameters.
In contrast, for space-time data, a second-order model is specified in which SA is accounted for through
correlations among observations. That is, repeated measures are furnished for each spatial unit over
time in a space-time data series. In this paper, an estimated RE term represents omitted variables,
indicating that geographic distributions of cancer rates contain a considerable amount of unexplained
variation, particularly at the census tract resolution. This cancer data expectation is attributable to
the lengthy exposure lag that characterizes many cancers (i.e., a cancer being triggered long before its
actual diagnosis), combined with the movement of people, and the departure of carcinogenic sources
over time.

The specification of [7] addresses only positive SA (PSA) situations. More recently accumulated
empirical evidence indicates that a number of georeferenced phenomena seemingly exhibiting (near-)
zero SA actually contain a mixture of PSA and negative SA (NSA) as two compensating components [8].
PSA arises from cooperative processes that involve intensifying spatial externalities, whereas NSA
arises from competitive processes that involve abating spatial externalities. In this paper, a SSRE
term consistently decomposes into a PSA-NSA mixture, which is barely investigated in the literature.
Possible reasons for this mixed spatial pattern in cancer data include: (1) that geographic distributions
of cancer cases display some degrees of global, regional, and local map patterns, which potentially arise
from a collocation of similar socio-economic/demographic characteristics in space (e.g., the Schelling
model) (e.g., [9]); and (2) that these geographic distributions may display a degree of alternating map
pattern trend because of local social networks that can induce an increasing cancer screening rate when
someone in a neighborhood has a positive cancer diagnosis.

2. Background

A number of risk factors that are associated with lung cancer incidence have been examined and
characterized in the literature (e.g., [10–12]); cigarette smoking is the most well-known factor that can
trigger lung cancer. Studies also show that nonsmokers exposed to secondhand tobacco have higher
risks of developing lung cancer (e.g., [13]). Other life style related risk factors, such as an unhealthy diet
and alcohol consumption, increase the risk of developing lung cancer (e.g., [14]). Another suspicious
contributor to human lung cancer burden is outdoor air pollution (e.g., fine particulate matter and
a concentration of ozone); a number of studies examine, and the findings support, an association
between air pollution and lung cancer risk (e.g., [15,16]).
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Indicators of socio-economic status also tend to be highly correlated with lung cancer risk. Due to
their availability, the use of these variables has been popular amongst researchers to describe lung
cancer incidence rates in the literature. For example, Mao et al. [10] report a significant inverse
relationship between high socio-economic status, and lung cancer risk. Socio-economic status reflects
one’s lifestyle, including diet, working and living conditions, enabling them to be treated as surrogates,
and assumed to be associated with lung cancer [17,18]. Specifically, the part of the population
with lower socio-economic status (e.g., less educated, below a poverty level, unemployed) tends
to have a higher risk of developing lung cancer than their counterparts that are classified with higher
socio-economic status [19].

In addition, the risk of developing lung cancer tends to vary across racial/ethnic, age, and sex
groups. Alberg et al. [19] argue that lung cancer incidence rates are similar for African and white
Americans; however, a higher risk is observed for black American men than white American men.
Haiman et al. [20] comment that this difference is attributable to varying smoking behaviors among
these ethnic/racial groups. Some case-control studies suggest higher risks of smoking-related lung
cancer in women than men (e.g., [21,22]); however, this sex-difference in susceptibility to lung cancer
still lacks supporting evidence. Age has been an important risk factor for most of cancers; the risk of
lung cancer increases as age increases, seemingly as a part of the natural maturation process. Studies
also report that immigration status plays a role in lung cancer risk; for example, United States (U.S.).
Asian immigrants have higher lung cancer mortality rates than their U.S.-born counterparts; whereas
the rates are lower among U.S. black immigrants than U.S.-born blacks (e.g., [23]), This variation may
be attributable to differences in smoking prevalence between the U.S. and the countries of origin, and
differences across socio-economic classes (e.g., [24,25]).

Lung cancer incidence rates generally are observed to vary substantially across geographic space.
The literature suggest that air pollution is one of the major contributors to this geographic variation [13].
For example, Jacquez and Greiling [26] observe clusters of significantly high lung cancer incidence
rates in central Long Island coinciding with a concentration of air toxics. The spatial variation of
risk for lung cancer also is attributable to the geographic distribution of population. For example,
Kelsall and Diggle [27] report that the prevalence of lung cancer incidence is higher in areas with high
social deprivation, which may directly link to smoking behavior and eating habits. A range of spatial
models, including Bayesian space-time joint models (e.g., [28]), spatial multilevel regression models
(e.g., [29]), and conditional autoregressive models (e.g., [30]), have been applied to account for the
geographic variation present in geospatial cancer data analyses.

A RE model frequently is utilized for a longitudinal data analysis exploiting repeated measures
over time [31]. For example, it has popularly been applied to model economic/social phenomena.
Frondel and Vance [32] specify a RE model to estimate fuel price elasticities with household data.
Clarke et al. [33] use a model with both fixed and random effects to analyze the determinants of
pupil achievement in primary school, finding that a RE model outperforms a fixed effects only model,
based on statistical efficiency. Chen and Tarko [34] employ a RE model to investigate traffic safety in
highway work zones, with their results indicating that a RE model furnishes a good option for that
type of research.

3. Data and Methodology

Lung cancer cases were obtained from the Florida cancer registry. After a data cleaning process
that led to removal of duplicates (e.g., patients were diagnosed with lung cancer as a secondary
cancer), records containing missing information (e.g., age and sex), and unsuccessfully geocoded
records (i.e., failed-to-be-geocoded cases were deleted for the entire state, and then subsets were
extracted from the clean dataset for specific study areas), 172,495 cancer incidences were used in data
analyses. Cancer points are distributed unevenly across the 67 counties of the state, sample size ranging
from 13,918 (Broward County) to 31 (Liberty County), with a median of 1277 (Santa Rosa County).
These lung cancer incidences occurred in a 12-year span, from 2000 to 2011. At the block group
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resolution, a relatively fine geographic resolution, many block groups have zero cancer incidences.
In contrast, only 1.98% of the census tracts, a coarser geographic resolution, have zero cancer counts.
To avoid the issue of excessive zeros, this research focuses on two geographic resolutions, namely
county and census tract, for comparison purpose. In addition, this paper limits its study area to six
different metropolitan statistical areas (MSAs) focusing on relatively highly densely populated areas in
the state: Pensacola, Tallahassee, Jacksonville, Orlando, Miami, and Tampa.

3.1. Lung Cancer Incidence Rates

The crude cancer incidence rate, the ratio of cancer counts and population size at risk, generally is
considered as a limited measure because cancer generally occurs at different rates based on age, gender,
and even racial group composition of a population. A comparison of crude cancer rates over time or
across different geographic areas is likely to be plagued by bias because of different local population
compositions [35]. Standardization of disease rates has been proposed to control for changes in
population structure. Adjustments of cancer rates for age is a frequently applied standardization [36].
The Centers for Disease Control and Prevention (CDC) also adopts this approach for statistical report
purposes. With the availability of age and sex information for lung cancer patients, this research
adjusts lung cancer incidence rates for both age and sex.

Figure 1 portrays the geographic distribution of adjusted lung cancer incidence rates across
the State of Florida and its six MSAs. The Moran coefficient (MC) and Geary Ratio (GR) statistics
suggest adjusted cancer rates exhibit a very weak PSA map pattern at the county resolution (Figure 1a),
and random spatial patterns at the census tract resolution (Figure 1b–g).

Compared with the crude lung cancer incidence rates summarized in the Appendix A (Figure A1),
the standardization process tends to reduce spatial clusters of similar cancer rates (i.e., clusters of high
values or low values), and generate alternating patterns (i.e., a low lung cancer rate is surrounded by
high rates for its neighbors, or a high lung cancer rate is surrounded by low rates for its neighbors)
at both the county and census tract resolutions. In addition, due to relatively small populations at
the census tract resolution, rate adjustment triggers outliers (e.g., high cancer rates). For example,
the highest adjusted cancer rate in the Miami MSA reaches 2.73%, whereas the highest crude rate
is 0.36%. Also, more census tracts stand out with high adjusted cancer rates compared with their
corresponding crude ones. To mitigate negative impacts of extreme outliers, census tracts with small
populations but some cancer counts are aggregated with their neighboring tracts for the analyses
summarized in this paper. Specifically, the Miami MSA has 19 such census tracts that were merged
into their adjacent tracts; the Tampa and Orlando MSAs have, respectively, five and one such census
tracts. Most of these merged census tracts involve commercial, industrial, or coastal land use.
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Figure 1. The spatial patterns of adjusted lung cancer incidence rates. (a) the State of Florida counties. Census tracts for: (b) the Jacksonville MSA; (c) the Orlando 
MSA; (d) the Miami MSA; (e) the Pensacola MSA; (f) the Tallahassee MSA; (g) the Tampa MSA. 

Figure 1. The spatial patterns of adjusted lung cancer incidence rates. (a) the State of Florida counties. Census tracts for: (b) the Jacksonville MSA; (c) the Orlando
MSA; (d) the Miami MSA; (e) the Pensacola MSA; (f) the Tallahassee MSA; (g) the Tampa MSA.
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3.2. Moran Eigenvector Spatial Filtering

Moran Eigenvector spatial filtering (MESF) is a spatial statistical methodology that introduces a
set of eigenvectors into a regression model specification to capture SA. Eigenvectors can be extracted
from a transformed spatial weights matrix C, which can be expressed as:

MCM =
(

I − 11T/n
)

C(I − 11T/n
)

, (1)

where I is an n-by-n identity matrix, 1 is a n-by-1 vector of ones, n is the number of areal units,
and T is the matrix transpose operator. This transformed spatial weights matrix generates n
eigenvectors; however, only a subset of them serves as independent variables to be included in
a model specification [37]. This subset can be identified from a candidate eigenvector set with a
stepwise regression procedure [38].

A RE model can be specified as:
Y = XβX + Z + ε, (2)

where Y denotes a response variable, X denotes a matrix of covariates, βX denotes regression
coefficients for covariates, Z denotes a RE term, and ε denotes a regression error term. The RE
term, Z, is commonly assumed to be normally distributed and uncorrelated with both covariates and
residuals, and to have a mean of zero. In order to estimate the RE term and separate it from the residual
error ε, additional information (e.g., repeated measures furnished in a space-time series, or priors in a
Bayesian analysis) are necessary (e.g., [39]). A RE model can be further extended with MESF, in order
to accommodate both SSRE and SURE terms simultaneously, as:

Y = XβX + EkβE + ZSURE + ε, (3)

where Ek denotes a subset of eigenvectors, and βE are unknown coefficients for these eigenvectors.
EkβE furnishes a SSRE term, and ZSURE denotes a SURE term. That is, the RE term, Z, is decomposed
into the linear combination of EkβE and ZSURE. Furthermore, a separation of the selected eigenvectors,
Ek, into PSA and NSA eigenvectors, can furnish a way to investigate PSA and NSA components in
a SSRE.

In this paper, space-time lung cancer counts (e.g., n-by-T = 67-by-12 for the county resolution)
furnish the repeated measures for the response variable. The count variable is described with a Poisson
probability model by including the logarithmic values of expected lung cancer counts as an offset
variable. After a RE term successfully is estimated using the Poisson RE model, a MESF model is
specified to estimate the SSRE and SURE components, with the estimated RE term as the independent
variable. Essentially, a linear combination of the selected eigenvectors constructs a SSRE term, which is
further decomposed into a PSA-NSA mixture [40], and the MESF model residual constitutes the SURE
term. Poisson RE and MESF models were implemented in R 3.4.2.; the glmer procedure (package lme4)
was utilized to estimate the RE components.

4. Results and Discussion

This section summarizes analysis results for both county and census tract resolutions. Regression
results for quasi-Poisson and Poisson RE models are compared, and the estimated RE components are
portrayed with maps.

4.1. The State Scale and County Resolution

Seven variables were retrieved to describe lung cancer incidence rates at the county resolution,
including smoking rates from the Florida Department of Health, and socio-economic variables,
which are median household income, the percentage of population with a college or higher degree,
the percentage of population below a poverty threshold, the percentage of Hispanic population,
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the percentage of black population, and immigrants, from the U.S. Census Bureau. Table 1 summarizes
the estimation results for a Poisson RE model, as well as the results of a quasi-Poisson model for
comparison purpose. It shows that the lung cancer data has considerable overdispersion (i.e., excess
Poisson variation). However, the extra-Poisson variation successfully is accounted for in the RE model,
with the overdispersion parameter decreasing from 13.36 to 2.15. Moreover, an inclusion of the RE
term leads to an increase in the pseudo-R2, increasing it from 0.30 to 0.74. The VIF values are all less
than 10 (e.g., [41,42]), indicating no excessive multi-collinearity among the covariates.

Table 1. Estimation results for Poisson models at the county resolution.

Variables
Quasi-Poisson Model Poisson Random Effects Model

Coeff. Std. Error VIF Coeff. Std. Error Cor. †

Smoking 4.060 *** 0.317 2.158 1.355 * 0.994 <0.001

Income −0.262 0.262 2.763 0.191 0.617 −0.034

Education −0.983 * 0.443 4.150 1.116 0.928 <0.001

Poverty −4.368 *** 1.027 7.584 1.608 2.191 <0.001

Hispanic pop −0.027 0.161 4.738 0.051 0.074 0.074

Black pop 1.587 *** 0.284 6.005 −0.627 0.427 0.067

Immigrants −0.015 0.013 2.449 0.033 0.050 0.021

Overdispersion 13.02 2.12

Pseudo-R2 0.30 0.75

Significance codes: *** 0.001, * 0.05, · 0.1. † This represents correlation coefficients between the RE term and
the covariates.

Table 1 also reports standard errors increase in the Poisson RE model specification, which results
in significance level changes for some covariates, compared with the results of the covariates-only
quasi-Poisson specification. For example, the ratio of population with a college or higher degree,
the ratio of population under poverty, and the ratio of black population become insignificant in the
RE model. The immigrant variable is included mainly because the State of Florida has gained a large
number of immigrants, and papers in the literature argue that lung cancer risk may vary among U.S.
residents and immigrants, as discussed in the preceding background. However, the immigrant variable
does not have a significant association with lung cancer risk in both models. The only significant
variable in the Poisson RE model is the smoking rate, which exhibits a positive relationship with lung
cancer risk. The estimated RE term has a mean of zero, and is not correlated with the covariates,
as expected.

Figure 2 portrays the geographic distributions of RE components at the county resolution.
The counties with high/low adjusted lung cancer rates in Figure 1a also are conspicuous in Figure 2a,
which captures the major spatial pattern of lung cancer rates. However, the MC values suggest that
both the RE and SSRE terms contain trace amounts of SA, which means inclusion of the covariates
in the Poisson mixed model explains some degrees of the PSA component observed on Figure 1a.
The p-values of the Shapiro-Wilk (S-W) normal diagnostic statistic indicate that neither closely conforms
to a normal distribution. The decomposition of the SSRE term yields a mixture of moderate-to-strong
PSA (Figure 2c) and moderate NSA (Figure 2d). The p-values of the S-W statistic indicate that SSRE-PSA
and SSRE-NSA are normally distributed. The MC suggests no significant SA in the SURE component,
and that it deviates from a bell-shape curve.
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4.2. The Metropolitan Statistical Area Scale and Census Tract Resolution

Smoking prevalence data are not available at the census tract resolution. So only socio-economic
and demographic variables were included to describe lung cancer incidence rates. Results for
Poisson RE models for each MSA are compared with covariate-only quasi-Poisson regression results.
The overdispersion values larger than one in Table 2 indicate the lung cancer counts are slightly
overdispersed for all MSA cases. However, all of them get closer to one for the mixed models.
The pseudo-R2 increases suggest improvements of model performance for all MSAs. A comparison
of Tables 2 and 3 shows that standard errors get larger for the Poisson RE model specifications,
which may have an impact on the significance level of independent variables. Including the RE terms
also enhances model performance; all RE specifications have larger pseudo-R2 values.

Tables 2 and 3 show that median household income is significant in all specifications, and has
a negative association with lung cancer risk. Although the well-educated population variable
is significant in some cases, exhibiting an inverse relationship, the population below poverty
variable tends to be positively associated with lung cancer rates. The relationships between these
socio-economic indicators and lung cancer risk corroborates the findings in the literature (e.g., [43,44]).
For demographic factors, the estimated results suggest lower lung cancer risks for Hispanics,
blacks, and immigrants. Stellman et al. [45] comment that the white and black populations have
similar lung cancer risks if their smoking habits are similar. However, studies (e.g., [46]) find that
Caucasians are more likely to be heavier smokers than African-American, which makes them more
susceptible to lung cancer. Singh and Miller [23] observe that although lung cancer risk varies among
different racial/ethical groups, it tends to be lower among U.S. immigrants due to a relatively lower
smoking prevalence.



Int. J. Environ. Res. Public Health 2018, 15, 2406 9 of 18

Intercept-only RE models are specified for each study area to examine the spatial variation in
lung cancer incidence rates. Table 4 summarizes the amount of variation explained by the RE terms.
It indicates that the RE terms explain a substantially smaller amount of variations at the census tract
resolution than at the county resolution. In addition, this percentage varies across the six MSAs,
with the Tallahassee MSA having the lowest statistical explanation (11.64%), and the Pensacola MSA
having the highest statistical explanation (27.13%). The average percentage of variation accounted
for by the RE terms is roughly 21%, indicating a tremendous amount of unexplained geographic
variation in lung cancer rates, particularly at the census tract resolution. Figure 3 depicts the amount
of variation accounted for by each RE component beyond that by the covariates. The SSRE and SURE
components constituting a RE term explain almost the same amount of variation across all MSAs.
Meanwhile, for the two sub-terms of the SSRE, the SSRE-NSA term outperforms the SSRE-PSA term
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Figure 4 portrays the spatial patterns of RE components for the six MSAs. Because the RE
components account for relatively low percentages of the geographic variation at the census tract
resolution, Figure 4(a1–a6) do not reflect the map patterns of adjusted lung cancer rates well; however,
they capture high cancer rates in urban areas, and low rates in rural areas for most of the MSAs,
which also are highlighted on their corresponding cancer rates maps. For example, Figure 4(a3)
highlights census tracts within Fort Lauderdale and Pompano Beach that have relatively high cancer
rates, which also stand out in Figure 1d. The MCs imply a presence of weak PSA in the RE components,
except for the Pensacola and Tallahassee MSAs, and the p-values of the S-W statistic indicate that they
all barely conform to normal distributions.

After a removal of the SURE components from the RE terms, stronger PSA is detected in
the SSRE components, with increasing MC values for most MSAs (Figure 4(b1–b6)). However,
the SSRE components in the Pensacola and Tallahassee MSAs still exhibit (near-) zero SA. Similarly,
a decomposition of these SSRE terms yields mixtures of moderate-to-strong PSA components
(Figure 4(c1–c6)) and weak-to-moderate NSA components (Figure 4(d1–d6)) for all MSAs. The p-values
of the S-W statistic suggest that all of the SSRE-PSA and SSRE-NSA terms closely conform to
normal distributions, except for the Jacksonville MSA. Map patterns displayed in Figure 4(e1–e6)
appear random, an outcome confirmed by their insignificant MCs. All of the SURE components are
normally distributed.
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Table 2. Estimation results for quasi-Poisson model specifications at the census tract resolution.

Variables
Pensacola MSA Tallahassee MSA Jacksonville MSA Orlando MSA Miami MSA Tampa MSA

Coeff. Std.
Error Vif Coeff. Std.

Error Vif Coeff. Std.
Error Vif Coeff. Std.

Error Vif Coeff. Std.
Error Vif Coeff. Std.

Error Vif

Income −1.10 *** 0.19 3.25 −0.91 ** 0.17 2.68 −0.80 *** 0.09 2.46 −0.73 *** 0.07 1.75 −0.40 *** 0.03 1.75 −0.58 *** 0.05 1.77
Education −0.62 0.33 2.80 0.43 0.40 2.32 −0.86 *** 0.20 2.56 −0.44 * 0.20 2.47 −0.35 *** 0.09 4.00 −0.56 *** 0.12 2.29

Poverty 0.85 ** 0.31 3.15 0.94 * 0.37 3.15 0.12 0.19 2.66 1.23 *** 0.19 2.18 0.01 0.10 2.54 0.54 *** 0.11 2.24
Hispanic pop 0.96 0.72 1.14 −0.68 0.54 1.14 0.81 *** 0.24 1.11 −0.58 *** 0.07 1.39 −0.51 *** 0.03 2.22 −0.17 *** 0.06 1.44

Black pop −0.55 *** 0.13 2.56 −0.72 *** 0.16 2.15 −0.19 *** 0.06 2.10 −0.30 *** 0.07 1.95 −0.19 *** 0.03 1.92 −0.08 0.05 1.50
Immigrants −6.61 * 3.12 1.16 −2.69 4.29 1.28 −3.07 1.60 1.06 −9.15 *** 1.32 1.29 10.21 *** 1.29 1.11 −6.06 ** 1.86 1.21

Overdispersion 1.08 1.16 1.26 1.22 1.27 1.30
Pseudo-R2 0.14 0.17 0.17 0.40 0.43 0.36

Significance codes: *** 0.001, ** 0.01, * 0.05, · 0.1.

Table 3. Estimation results for Poisson RE model specifications at the census tract resolution.

Variables
Pensacola MSA Tallahassee MSA Jacksonville MSA Orlando MSA Miami MSA Tampa MSA

Coeff. Std.
Error Cor. † Coeff. Std.

Error Cor. † Coeff. Std.
Error Cor. † Coeff. Std.

Error Cor. † Coeff. Std.
Error Cor. † Coeff. Std.

Error Cor. †

Income −1.06 *** 0.27 0.02 −0.99 *** 0.23 0.08 −0.78 *** 0.12 <0.01 −0.79 *** 0.10 −0.02 −0.41 *** 0.05 <0.01 −0.65 *** −0.65 −0.04
Education −0.79 * 0.48 0.01 0.53 0.56 −0.05 −0.86 *** 0.31 <0.01 −0.48 * 0.28 0.01 −0.47 *** 0.14 <0.01 −0.66 *** −0.66 <0.01

Poverty 0.73 0.46 −0.01 0.91 0.48 −0.07 0.17 0.28 −0.01 1.02 *** 0.27 0.01 0.06 0.15 <0.01 0.30 * 0.30 0.05
Hispanic pop 0.44 1.02 0.01 −0.61 0.79 0.10 0.86 *** 0.37 <0.01 −0.69 *** 0.10 0.01 −0.58 *** 0.04 <0.01 −0.17 *** −0.17 −0.02

Black pop −0.50 *** 0.20 −0.01 −0.69 *** 0.22 −0.04 −0.17 *** 0.09 <0.01 −0.31 *** 0.10 <0.01 −0.27 *** 0.05 <0.01 −0.03 −0.03 −0.02
Immigrants −7.82 * 4.52 0.02 −4.91 5.80 −0.05 −2.86 2.58 <0.01 −9.59 *** 1.95 <0.01 8.06 *** 2.13 <0.01 −9.33 *** −9.33 −0.02

Overdispersion 1.03 1.12 1.10 1.06 1.09 1.07
Pseudo-R2 0.19 0.23 0.22 0.44 0.51 0.45

Significance codes: *** 0.001, * 0.05, · 0.1. † This represents correlation coefficients between the RE term and covariates.

Table 4. The amount of variation accounted for by the RE terms.

Models Florida Pensacola MSA Tallahassee MSA Jacksonville MSA Orlando MSA Miami MSA Tampa MSA

RE models intercept-only 58.39% 27.13% 11.64% 25.14% 13.68% 24.46% 23.88%
RE models with covariates 58.19% 25.53% 9.91% 21.20% 11.14% 23.47% 22.98%
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5. Conclusions

This research examines the spatial patterns of lung cancer incidence rates at different geographic
resolutions and scales in Florida, and also investigates factors that are associated with lung cancer
risk. Major findings are as follows. First, lung cancer count data contain a substantial amount of
overdispersion (13.36) at the county resolution, whereas they are much less overdispersed (less than 2)
at the census tract resolution. A RE model specification successfully addresses this issues. Because
the estimated overdispersion parameter is closer to 1 for the RE model specifications, substitution of
a negative binomial model becomes unnecessary, which is a desirable outcome given reservations
expressed by [47] concerning the suitability of this latter specification for SA situations. Second,
a RE model furnishes an efficient method to correct for biased estimation (e.g., underestimated
standard errors). Regression results indicate that an inclusion of a RE term, which can serve as
a proxy for omitted variables, improves model performance (e.g., it increases pseudo-R2 values).
Third, estimated results suggest that a risk of lung cancer is positively associated with smoking
behavior, and the percentage of population with low socio-economic status (e.g., low household
income, poor education), and negatively associated with the percentage of black/Hispanic population,
and immigrants. These positive/negative relationships corroborate findings already appearing in
the literature.

This research contributes to the literature in the following two ways. First, this research shows
that the RE model specifications improve model performance by including a RE terms that successfully
accounts for variation beyond that attributable to covariates. Here the RE terms account for 58.39%
of the geographic variation in lung cancer incidence rates at the county resolution, and 21% of
this variation, on average, at the census tract resolution. This outcome indicates that considerable
unexplained variation exists in the lung cancer data at the census tract resolution. This poor statistical
explanation probably is attributable to two major factors: aggregating cancer cases into a coarser
resolution (e.g., county) averages out noise that present in a finer resolution (e.g., census tract) [48];
and, the massive immigration to Florida of seniors. Generally speaking, population migration over
time can contribute to a change in cancer rates, and results in an introduction of a source of variation
that is not well described with RE. A purposeful migration for health issues can have a large impact.
For example, unhealthy immigrates would choose to move closer to health facilities, or move away
from contaminated areas, whereas healthy people relocate to regions that are economically better off
(e.g., [49,50]). Immigration, thus, may muddle disease rates in a region with rates increasing in some
areas while decreasing in others [51]. In addition, the State of Florida is a well-known destination for
retired people. Such movement of elderly people can distort the age pyramid of the state, resulting in
an impact on adjusted cancer rates.

Second, the RE term comprises SSRE and SURE components; their MCs indicate the existence
of weak-to-moderate PSA (e.g., the Miami MSA) or (near)-zero SA (e.g., the Tallahassee MSA) in the
SSRE components. However, a decomposition of the SSRE terms explicitly shows that they essentially
are mixtures of moderate-to-strong PSA and weak-to-moderate NSA. Griffith and Arbia [8] utilize
a two-SA-parameter spatial simultaneous autoregressive model to uncover a mixture of SA, where
the PSA component counterbalances the NSA component. A discovery of SA mixtures has rarely
been reported in literature, especially in epidemiology, and its detection can help researchers gain a
better understanding of the geographic distribution of, geographic variation of, and risk factors for a
disease. As discussed earlier, the moderate-to-strong PSA largely is associated with the geographic
distribution of socio-economic phenomenon (e.g., employment status, population migration), whereas
the weak-to-moderate NSA likely is linked to mechanisms such as a decrease of lung cancer rates
because of increasing cancer screening when lung cancer cases are detected in neighboring places.

This study furnishes motivation for a number of future research efforts. First, a comparison
of research outcomes at the county and census tract resolutions reveal a presence of substantial
heterogeneity in lung cancer data, and more noise is expected if a spatial analysis is conducted
at a finer resolution (e.g., block groups). Thus, extending current research to a finer resolution
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would be beneficial. Second, a comparison of crude and adjusted lung cancer incidence rates
suggests the disappearance of some prominent spatial patterns (e.g., PSA) at both geographic
resolutions. However, this observation has rarely been discussed in the literature, and hence a
further examination of rate standardization and/or more similar case studies is necessary. Third, to
date, the literature about PSA-NSA mixtures is relatively scant. This study only explores the scenario
that a weak-to-moderate PSA or (near)-zero SA can be partitioned into a mixture of moderate-to-strong
PSA and weak-to-moderate NSA. Other scenarios (e.g., a global strong PSA; moderate NSA) remain to
be investigated. Finally, SA mixtures are discovered in the lung cancer data in Florida. Similar research
should be conducted to examine if consistent results would be obtained with different empirical data,
or for different study areas.
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