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Introduction

A powerful tool in combating cardiovascular disease (CVD) is
automatedclinical decision support for risk assessment. This is

particularly valuable in identifying at-risk patients for initiat-
ing risk communication and management. Numerous efforts
have sought to advance CVD risk prediction to better identify
and manage populations at risk. These include the Systematic
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Abstract Background Automated clinical decision support for risk assessment is a powerful
tool in combating cardiovascular disease (CVD), enabling targeted early intervention
that could avoid issues of overtreatment or undertreatment. However, current CVD risk
prediction models use observations at baseline without explicitly representing patient
history as a time series.
Objective The aim of this study is to examine whether by explicitly modelling the
temporal dimension of patient history event prediction may be improved.
Methods This study investigates methods for multivariate sequential modelling with
a particular emphasis on long short-term memory (LSTM) recurrent neural networks.
Data from a CVD decision support tool is linked to routinely collected national datasets
including pharmaceutical dispensing, hospitalization, laboratory test results, and
deaths. The study uses a 2-year observation and a 5-year prediction window. Selected
methods are applied to the linked dataset. The experiments performed focus on CVD
event prediction. CVD death or hospitalization in a 5-year interval was predicted for
patients with history of lipid-lowering therapy.
Results The results of the experiments showed temporal models are valuable for CVD
event prediction over a 5-year interval. This is especially the case for LSTM, which produced
the best predictive performance among all models compared achieving AUROC of 0.801
and average precision of 0.425. The non-temporal model comparator ridge classifier (RC)
trained using all quarterly data or by aggregating quarterly data (averaging time-varying
features) was highly competitive achieving AUROCof 0.799 and average precision of 0.420
and AUROC of 0.800 and average precision of 0.421, respectively.
Conclusion This study provides evidence that the use of deep temporal models
particularly LSTM in clinical decision support for chronic disease would be advanta-
geous with LSTM significantly improving on commonly used regression models such as
logistic regression and Cox proportional hazards on the task of CVD event prediction.
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COronary Risk Evaluation (SCORE),1,2 the Pooled cohort equa-
tions,3 and in New Zealand the PREDICT equations.4 Recently,
research has also advanced the prediction of long-term risk of
recurrent CVD events as improvements in disease manage-
ment have contributed to a growing number of patients with
established CVD in the community.5 Modern risk assessment
tools use statistical methods to identify vulnerable patients
andquantify their level of risk.6 For patientswhoare identified
as high risk, an array of interventions are available to reduce
the level of risk aswell as to prevent an acute CVDevent. These
include, adopting lifestyle changes (e.g., smoking cessation,
regular exercise), pharmacological therapy, and closer moni-
toring (e.g., more frequent risk assessments).6 A CVD event is
the prediction outcome of paramount clinical interest due to
its high cost to the health care systems (hospitalizations
and rehabilitation), associated disability-adjusted life years
burden, and patient mortality.7 The ability to accurately
predict CVD events within a population enables targeted early
intervention that could avoid issues of overtreatment or
undertreatment in the population.4

All current CVD prediction models use predictors at
baseline. The central question that the current study seeks
to investigate is whether by including an observation
window leading up to the baseline, thus accounting for
patient history, CVD risk prediction may be improved. Addi-
tionally, in this study,we focus on lipidmanagement. TC/HDL
(total cholesterol to high density lipoprotein ratio) is a
known important CVD risk factor.8–10 In New Zealand, clini-
cal guidelines recommend patients assessed to have a 5-year
CVD risk of 15% or more to use lipid-lowering pharmaco-
therapy to reduce risk of CVD event or death.6 Further,
despite the strong evidence of the benefits of preventive
medicine, non-adherence to medication is a long-standing
challenge in health care delivery and presents a significant
obstacle to patients benefiting from treatment.11 Both inter-
national and New Zealand studies have found long-term
adherence to statin (a lipid-lowering drug) to be low.12,13

In New Zealand, adherence to statin in secondary prevention
has been found to be 69 and 76% in the first year and drops
down to 66% in the third year. For primary prevention,
adherence to statin was found to be 63% in the first
year.14,15 A U.S. study found non-adherence to statin to
be as high as 56.0% for secondary prevention patients and
56.4% for primary prevention patients.16 Similarly, a United
Kingdom-based study found patterns of discontinuation of
treatment for 41% of patients who are using statin
as secondary prevention and 47% of patients who are using
statin as primary prevention, although many of these
patients restarted their treatment following discontinuation
(75 and 72%, respectively).17 The current study hypothesizes
that by integrating the temporal dynamics of TC/HDL levels
and adherence to lipid-lowering therapy, the prediction of
CVD risk can be improved. This hypothesis informs our
cohort selection criteria which is detailed in Section Cohort
Selection.

In the domain of health care, over a period of years, aided
by government efforts, there has been growing uptake of
electronic health record (EHR) systems. In New Zealand,

government initiatives in the 1990s supported development
of health IT infrastructure, including creation of a national
health index (NHI), providing the sector with a unique
individual patient identifier; implementing a health infor-
mation privacy code; and actively encouraging the private
sector to develop and sell electronic services.18 In the United
States, in the wake of the Global Financial Crisis massive
growth in EHR uptake was driven by the HITECH act.19 Of
particular interest to this study are EHRs that are routinely
collected. These data are often the biproduct of health care
services and, in socialized health care systems such as New
Zealand’s, tend to have a whole-of-population coverage.
When linked across various datasets, they have a longitudi-
nal structure, allowing treatment and disease trajectories
(e.g., patient’s physiological changes) to be examined over
time.20

The present resurgence of deep learning in the machine
learning community is chiefly facilitated by advances in
computational power, specifically graphics processing units
(GPUs) and the increasing availability of enormous datasets.
Many of the notable breakthroughs in the application of deep
learning are in the area of computer vision and natural
language processing: image classification, object detection,
machine translation, and natural language generation.21,22

A shared feature of these tasks is the use of unstructured data
(images or plain text) where deep learning models’ capacity
for representation learning is exploited. In the domain of
health care, computer vision has achieved some of the most
significant successes in the application of deep learning.
Here, medical image analysis, often using convolutional
neural networks, has achieved levels of performance on
par or exceeding human experts on a range of complex
diagnosis tasks.23–27 However, the performance gain of
deep learning methods against conventional machine learn-
ing methods on structured/tabulated data, the type of data
that is ubiquitous in EHRs, is less certain.28–30

Deep learning/neural networks (NNs) overcome some of
the limitations of regression-based models. Deep learning
models can jointlyexploit feature interactions andhierarchy.31

Of specific interest to this study is the class of artificial NNs
called recurrent neural networks (RNNs) which are temporal
models that are explicitly multivariate and sequential. In the
context of risk prediction in public health, RNNs afford the
opportunity for patient history to be modeled in a temporal
manner, in contrast to conventional risk modelling where risk
assessment is based on patient data at a specific point in time.
Here, the temporal dynamic relationships between risk factors
is integrated into the risk assessment. A variant of RNNs called
LSTM includes an internal cell state and gated units that
regulate what is inputted, retained, and outputted from the
cell. LSTM was developed to overcome the problem of long-
rangedependencies (remembering significant events from the
distant past)32 and has the capacity to reset its internal state33

(forget unimportant events in thepast). Since its development,
LSTM-basedmethods have proven remarkably competitive on
a range of tasks.34–39 and have been successfully applied to a
range of sequential tasks in the biomedical domain.40–42

Given the long-term nature of CVD progression and CVD
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management, this study hypothesizes that LSTM will be
well suited for CVD event prediction, where an observation
window of patient history is integrated into the prediction
task.

Vascular informatics using epidemiology and the web
(VIEW) is a vascular health research program based at
University of Auckland; the program includes a research
streamnamed PREDICT.43 For the current study, the PREDICT
dataset is linked to other routinely collected national data-
sets including pharmaceutical dispensing, hospitalization,
laboratory test results, and deaths, to investigatemethods for
multivariate sequential modelling in the context of CVD risk
prediction. From the data linkage, features that have clinical
feasibility are derived. The study focuses on a cohort with
lipid management.

Objective

This study is motivated to investigate if risk prediction
performance in CVD can be improved if temporal deep
learningmethods are utilized, specifically in a context where
structured/tabulated data are used. The model long short-
term memory (LSTM) appears to be an excellent fit to the
problem of chronic disease risk prediction and thus is central
in our investigation. LSTM allows patient history to be
explicitly modeled in a multivariate and sequential fashion,
where internalmechanisms of the unit control the content of
its memory. As such, LSTM should be well suited for predic-
tion tasks where the progression and management of a
disease are prolonged and long term. Of particular interest
to the current study is the relevance of the temporal dynam-
ics of lipidmanagement.Wehypothesize that patient history
over time in the 2 years run up to PREDICT assessmentwill be
informative for CVD risk prediction.

Our study compares LSTM against several model compa-
rators. The models are selected to assess: the consequence of
explicitly modelling time through the use of sequential data,
the usefulness of learning long-term dependencies and
“forgetting” facilitated by the LSTM units, the advantages
of modelling non-linear relationships in the predictor vari-
ables and the benefits of overcoming the problem of multi-
collinearity for the task of CVD event prediction against
traditional risk models used in clinical decision support.

Methods

Data Sources
PREDICT is a web-based CVD risk assessment and manage-
ment decision support system developed for primary care in
New Zealand. The system is integrated with general practice
EHR and since its deployment in 2002 has produced a con-
stantly growing cohort of CVD risk profiles. Through the use of
encrypted NHI, the de-identified cohort is annually linked to
other routinely collected databases to produce a research
cohort. The PREDICT cohort and its use in improving CVD
risk assessment have been described in detail previously.4,44

The current study links the PREDICT cohort to TestSafe
(Auckland regional laboratory test results45) and national

collections by the Ministry of Health – the pharmaceutical
collection, the National Minimum Dataset (hospital events),
and the Mortality Collection.46 TestSafe is used to obtain
laboratory test results of clinically relevant measures (see
next section). The Pharmaceutical collection is used to obtain
dispensing history of medication relevant to the manage-
ment of CVD including lipid-lowering, blood pressure low-
ering, antiplatelets, and anticoagulants aswell as dispensings
of drugs used in the management of important comorbid-
ities, e.g., insulin. The National Minimum Dataset (NMDS) is
used to identify hospitalizationwith their dates of admission
and discharge and diagnosis. The mortality collection ena-
bles the identification of patients who died during the study
period and their cause of death. From these sources, history
of CVD, treatment trajectories, important comorbidities as
well as CVD events can be derived.

A lookup table constructed by the VIEW research team is
used to identify relevant chemical names from the Pharmaceu-
tical collection. Identified chemical names using this lookup
table are grouped into three broad categories: lipid-lowering,
CVD, and other. Similarly, a lookup table constructed by the
VIEW research team is used to identify ICD-10 codes in the
hospitalization collection that are related to CVD conditions:
more, specifically, International Statistical Classification of
Diseases and Related Health Problems, Tenth Revision,
Australian Modification, ICD-10-AM, which was used in New
Zealand from1999 to2019.47The conditions arebroadly in two
categories:historyandoutcome,with theadditionofmortality.
For thelistof theCVDconditionsand their respective categories
see ►Appendix Table 1 in Appendix. For the definitions of
listed conditions see https://wiki.auckland.ac.nz/display/
VIEW/CompleteþVariableþNamesþIndex.

Laboratory Tests
Through TestSafe, records of high-density lipoproteins
(HDL), low-density lipoproteins (LDL), triglycerides (TRI),
total cholesterol (TCL), cholesterol ratio (TC/HDL), serum
creatinine (sCr), and glycated hemoglobin (HbA1c) are
obtained.45 TC/HDL is the ratio of TCL divided by HDL. TCL
is calculated by48

sCr is a measure used to determine the health of a patient’s
kidney.However, an individual’ssCr level canvarydependingon
one’s sex, age, ethnicity, and body size. Amore precisemeasure
for determining an individual’s kidney health is the estimated
glomerular filtration rate (eGFR)49which is estimated for every
sCr laboratory test in the TestSafe record. HbA1c measures the
glucose level in an individual’s blood, it is used for diabetes
diagnoses and to assess long-term glucose control for patients
diagnosed with diabetes.50 Patients with kidney disease or
diabetes have significantly increased CVD risk.6

TestSafe Feature Construction
The measures from TestSafe are irregularly sampled. For
TC/HDL, some patients might have one test over the period
of 2 years, while othersmight have three tests in one quarter.
To construct time-series from TestSafe, values from tests are
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linearly interpolated and extrapolated over the study period.
The method connects a straight line between any two adja-
cent data points within the studywindow. If no feature value
exists before the first and or after the last feature value,
the first/last feature values are linearly extrapolated. Linear
extrapolation uses the first/last value of a feature and sets all
values of that feature before/after to that value. Laboratory
tests generally occur intermittently within a patient’s
history, however, for intervals without a measure for Lipid,
HbA1c, or GFR it does not mean these biometric measures
cease to exist (drop to zero) in these intervals. Experiments
were conducted exploring spline interpolation as a potential
method for interpolating between feature values within a
study window. However, the variability between when
measures are taken meant spline interpolation could poten-
tially introduce extreme values that are biologically implau-
sible. It was decided that interpolating and extrapolating
linearly offer the most parsimonious explanation of a
patient’s biometric trajectory without introducing extreme
values. In addition, auxiliary features TEST, TESTED, and

DIED are constructed, these are binary time-series indicating
whether the patient had a cholesterol test in this quarter
(encompassing HDL, LDL, TRI, TCL, and TC/HDL), whether
the patient has ever had a cholesterol test and whether the
patient has died, respectively. Using TC/HDL as an example,
the rules used in constructing the cholesterol time-series
are illustrated in ►Figs. 1 and 2.

►Figs. 1 and2 showexamples of TC/HDL, TEST, TESTED, and
DIED time series. TC/HDL laboratory test results and their
interpolated and extrapolated values are represented by
orange dots and orange lines, respectively. TC/HDL values are
point estimates, representingwhere the TC/HDL line intersects
with the blue dotted line at ti . TEST, TESTED, and DIED are
binary indicators. TEST values are evaluated over an interval,
between ti�1 (exclusive) and ti (inclusive). If thepatienthashad
anycholesterol testwithinthis interval, thevalueofTESTwould
be 1, otherwise 0. For simplicity, the above examples comprise
only TC/HDL tests in the study window. TESTED indicates
whether the patient has ever had a cholesterol test and DIED
indicates whether the patient has died.

Fig. 1 If TC/HDL test results outside the study window exist (before t0 and after t11), they are used in the interpolation. HDL, high-density
lipoprotein; TC, total cholesterol.

Fig. 2 If TC/HDL laboratory test results outside the study window do not exist the TC/HDL values are extrapolated from the first test result
leftward and from the last test result rightward. HDL, high-density lipoprotein; TC, total cholesterol.
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Laboratory test results of eGFR and HbA1c are treated
similarly in the construction of their respective time series.
Additional auxiliary time series of TEST_GFR, TEST_HBA1C,
TESTED_GFR, and TESTED_HBA1C are also included as time-
series features.

Pharmaceutical Dispense
A lookup table constructed by the VIEW research team is
used to identify relevant categories of medications. The
categories constructed by VIEW are lipid_lowering, statins,
bp_lowering, antiplatelets, anticoagulants, antianginals,
loop diuretics, anti-diabetes, insulin, metformin,
other_oralhypos, metolazone, ppi_h2a, corticosteroid, and
nonasp_nsaids. Identified chemical names using this look up
table are grouped into three broad categories: lipid-lowering
(comprised of lipid_lowering and statins medications), CVD
(comprised of bp_lowering, antiplatelets, anticoagulants,
antianginals, loopdiuretics and metolazone medications),
and other (comprised of anti-diabetes, insulin, metformin,
other_oralhypos, ppi_h2a, corticosteroid, nonasp_nsaids
medications).

Data Cleansing
We calculate the proportion of days covered (PDC) as a
percentage for pharmaceutical features. To do so, the field
DAYS_SUPPLY is used to infer the number of days covered by
a specificmedication. However, anomalous values need to be
addressed before PDC can be calculated. For each drug, if
DAYS_SUPPLY is 0 or outside a range specific for that
drug (there were no missing values in this field), the
value of DAYS_SUPPLY is inferred using the value of
QUANTITY_DISPENSED divided by the value DAILY_DOSE if
these values are available. Otherwise, the most frequently
occurring QUANTITY_DISPENSED and/or DAILY_DOSE for
that drug is used in the calculation. Following this inference,
if the value of DAYS_SUPPLY is still outside the range for this
drug we assign the most frequently occurring DAYS_SUPPLY
value that is nonzero for this drug to DAYS_SUPPLY. With a
few exceptions, all medications used the minimum of seven
and maximum of 90 as the range for DAYS_SUPPLY.

Insulin treatment and usage pattern are not one where
medication adherence can be reliably calculated from dis-
pensing records through the variables available. In the vast
majority of cases DAYS_SUPPLY is 0 and no sensible value
could be derived from dividing QUANITY_DISPENSED by
DAILY_DOSE, as DAILY_DOSE is not measured in pill counts
but volume, e.g., mL. Additionally, insulins are covariates in
our analysis, indicating the patient is managing the comor-
bidity of diabetes and an overall more complex health state.
Therefore, it is important for the signal of insulin dispense to
be kept in the data but it is not required for it to be of a value
where patient adherence to insulin can be measured. All
DAYS_SUPPLYof insulins are set to the most frequent nonze-
ro QUANTITY_DISPENSED.

Pharmaceutical Collection Feature Construction
A PDC time series for each chemical name is constructed. It is
common for patients to switch treatments in the lipid-

lowering category. To address this, an extra PDC time series
bounded to 100, representing PDC for all lipid-lowering
medication is added to the features.

Chemical names in the category of CVD and other are
treated as covariates. For these chemical names, we con-
structed PDC time series for each name, where in the case of
combined treatment we split the chemical name with the
word “with” and construct a time series for each of the
elements in the combined treatment.

Hospitalization Discharge
The NMDS contains hospitalization records including varia-
bles DIAG_TYP (diagnosis type), ADM_TYP (admission type),
EVSTDATE (event start date), EVENDATE (event end date),
and CLIN_CD_10 (ICD-10 code). There are four relevant
DIAG_TYPs in the record51:

A. Principal diagnosis.
B. Other relevant diagnosis.
O. Operation/procedure.
E. External cause of injury.

Each admission can have up to 99 diagnosis/procedure
codes where there exists only one that is of DIAG_TYP A –

principal diagnosis.With remaining codes categorized by the
other DIAG_TYPs. A list of the retired and current ADM_TYPs
exist in the dataset51:

CURRENT

AA Arranged admission
AC Acute admission
AP Elective admission of a privately funded patient
RL Psychiatric patient returned from leave of more than

10 days
WN Admitted from DHB booking system (used to be

known as “waiting list”)

RETIRED

ZA Arranged admission, ACC covered (retired June 30,
2004)

ZC Acute, ACC covered (retired June 30, 2004)
ZP Private, ACC covered (retired June 30, 2004)
ZW Waiting list, ACC covered (retired June 30, 2004)
WU Waiting list – urgent (code not used from August 20,

1993)

A lookup table constructed by the VIEW research team is
used to identify ICD-10 codes in the NMDS that are related to
CVD conditions of interest. The conditions are broadly
divided in two categories: history and outcome.

Hospitalization Discharge Feature Construction
Binary time series are constructed for all CVD conditions
defined by the VIEW research team, including 21 CVD
history, two CVD mortality and 18 CVD outcome categories.
Patients’ NMDS records prior to the observation
window/study period are searched for evidence of CVD
history. If there exists a clinical code mapping to any of
the CVD history categories, the corresponding time series
will contain 1s otherwise 0s.
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All hospitalization records that fall within the study
period are parsed. Any hospitalization record with a clinical
code mapping to any CVD history categories will switch the
time series for the categories from 0s to 1s from the time step
the hospitalization event occurs and onward. Only clinical
codes with DIAG_TYP A, O and E are used to identify CVD
mortalities and outcomes. If there exists a clinical code with
DIAG_TYP A, O or E mapping to one of the CVD mortality
and/or outcome categories, the corresponding categories
will be 1 in the time step(s) in which the record of the event
falls.

In addition to the features constructed based on CVD
conditions defined by VIEW two time series NUMBER_OF_-
DAYS and ACUTE_ADM are constructed. NUMBER_OF_DAYS
is of the number of days within this time step (quarter) the
patient was in hospital. The equation

is used to derive the value for the variable to account for
day patients. ACUTE_ADM is a binary vector that has the
value 1 if the event is an acute admission (holding the value
of AC or ZC in ADM\_TYP), otherwise 0.

Study Design
To investigate whether patients’ CVD event prediction may
be improved by the inclusion of patient history a study
design is formulated using each patient’s PREDICT assess-
ment as the index date, and approximately 2 years (8�90
day quarters) prior to the index date and approximately
5 years (20�90 day quarters) after the index date as the
observation window and prediction window, respectively
(►Fig. 3). An approximately 5 years interval for the predic-
tion window is chosen because it aligns with Ministry of
Health guidelines for CVD risk assessment and is under-
pinned by the fact that patients’ CVD risk and risk manage-
ment can change considerably over a longer period (e.g., 10
years), most randomized controlled trials of CVD medica-
tions are based on a period of 5 years or less and that
practitioners are accustomed to this approach.6 An approx-
imately 2 year interval for the observation window is
chosen in the interest of retaining enough samples in the
dataset.

Cohort Selection
The study cohort was selected through several exclusion
criteria. First, patients having their first PREDICT assessment
prior to January 01, 2007 and after December 30, 2013 are
excluded as their pharmaceutical records are censored in the
observation or predictionwindows. Second, informed by our
interest in integrating the temporal pattern of disease states,
patients without all components of lipid profile (HDL, LDL,
TRI, TCL, and TC/HDL) in either the observation or prediction
windows are excluded. Third, informed by our interest in
integrating the temporal pattern of disease management
process, patients without lipid-lowering medication dis-
pensed in the observation windowwith a 2 week look ahead
post PREDICT assessment (to account for patients prescribed
lipid-lowering medication around the time of PREDICT
assessment) are excluded. Patients with infeasible data
values and patients under the age of 18 are excluded.
See ►Fig. 4 for the study cohort selection flowchart.

Preprocessing
This subsection outlines the actions taken during prepro-
cessing to address categorical variables, missing values as
well as data imbalance and removing erroneous data. During
preprocessing, four samples were removed from the data
because the value of the variable PT_DIABETES_YRwas<0. If
a sample’s PT_DBP2 value is missing the PT_DBP value is
assigned to the PT_DBP2 variable (seven samples). PREDICT
variables PT_RENAL which is ordinal and PT_ATRIAL_FIBRIL-
LATION which is binary with missing values have 0 assigned
to the missing values and all other values changed to the
valueþ1. Missing PT_DIABETES_YR is assigned 0 (65,084
samples). Missing PT_EN_TCHDL is assigned the last TC/HDL
result before PREDICT assessment from TestSafe (889 sam-
ples). SEX is encoded as a binary variable and ETHNICITY is
one-hot encoded. Ethnicities MELAA (Middle Eastern, Latin
American and African; comprise only 1.5% of the New
Zealand population52) and Other are excluded due to small
sample size. Ethnicities Chinese and Other Asian are com-
bined. This resulted in five ethnicity groups: European,
Māori, Pacific, Chinese/Other Asian, and Indian. Samples
missing PT_SMOKING (two samples) and PT_GEN_LIPID
(one sample) are removed.

Fig. 3 Study design showing date range from index date for the observation window (shaded in green) and the prediction window (shaded in red).
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The above steps leaves 100,096 samples in the data. These
samplesare randomlyshuffled, thenatest setof thelast10,096
samples is set aside. Using data not in the test set, linear
regression models were developed to impute missing HBA1C
and eGFR values in the entire dataset using AGE, SEX, NZDEP,
and ETHNICITYas predictor variables. See►Appendix Table 2

in Appendix for the list of PREDICTvariables and their descrip-
tions. See ►Appendix Table 3 in Appendix for the affected
variables, their conditions that require addressing, the actions
taken, and the number of affected cases.

Descriptive Statistics
Based on the study design outlined in the StudyDesign section
and the result of the cohort selection outlined in the Cohort
Selection section, quarterly time series based on 90 day quar-
ters are constructed for each patient in the cohort using the
linkeddataoutlined in theDataSourcessection. Thefeaturesof
the data fall into eight categories: demographic, lipid profile,
lipid-lowering drugs, CVD drugs, other drugs, hospitalization,
HbA1c and eGFR, and PREDICT (i.e., other clinical variables
such as systolic blood pressure, diastolic blood pressure,
smoking status collected at the same time of CVD risk assess-
ment). See ►Appendix Tables 4 to 8 in Appendix for the
features’ descriptive statistics. Due to commercial sensitivity
of pharmaceutical data, the descriptive statistics of lipid-
lowering drugs, CVD drugs, and other drugs are not shown.

Test Data
Anattribute of time series constructed through interpolation is
that the gradient of slopes afford the chance for data in the
observation window to peek ahead into data in the prediction
window. Obviously, this is strictly illegal in the taskof forecast-
ing or prediction, becausewhat the experiments are seeking to
quantify is how well the models can perform on these tasks
using only data up to the index date, hence peeking ahead
constitutes cheating. To avoid this problem, separate test data
are created that extrapolates from the last test value in the
observationwindow to the end of the observationwindow for
all the interpolated features (TestSafe tests: HDL, LDL, TRI, TCL,
TC/HDL,HbA1c, andeGFR). See►Fig. 5 for an illustrationof this
treatment. In all experiments, the TestSafe features used for
training are the unaltered interpolated time series, while the
separate extrapolated testdataareused for testing toensureno
peeking ahead occurs during testing.

Prediction Outcome
The problemof CVD event prediction is formulated as a binary
classification task; predicting event and no event. In the

Fig. 4 Flowchart of study cohort selection.

Fig. 5 Test data are flattened beyond the last laboratory test result in the observation window to prevent looking ahead; laboratory test results
beyond the observation window influencing the gradient within the observation window. Here, the dots are the laboratory test measures, the
solid line is the constructed time-series and the dashed line represents the test data.
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context of this study, the outcomeof a CVDevent (fatal or non-
fatal) is defined as having an acutehospital admissionwith the
ICD-10-AM code of the principal diagnosis matching one of the
CVD mortality or outcome categories defined by VIEW
(excluding atrial fibrillation, the feature OUT_ATRIAL_FIBRIL-
LATION), or a CVD-related death without hospitalization.
See ►Appendix Table 1 in Appendix for the set of CVD
categories. A PREDICT variable (PT_IMP_FATAL_CVD) is used
to identify all patients who died due to CVD. This feature
captures thosewhohaveCVDasa causeofdeathon theirdeath
certificate with or without hospitalization, as well as those
without CVD recorded on their death certificate butwho had a
CVD hospital admission up to 28 days before their date of
death. The VIEW research group refers to this as “the 28 day
rule” for reclassifying non-CVD death as CVD death.53

Of the 100,096 patients, 25,419 patients have prior history
of CVD, defined as having a hospital admission prior to their
PREDICT assessment date with an ICD-10-AM code matching
the “broad CVD history” category (HX_BROAD_CVD) defined
by VIEW. The remaining 74,677 patients are patients without
priorCVD. Theproportionsofeachsubcohort (withorwithout
prior CVD) having a CVD event and a fatal CVD event in their
prediction window are shown in ►Table 1.

Prediction Models
This study investigates the performance of LSTM against five
model comparators on the task of CVD event (fatal or non-
fatal) prediction. These model comparators are: simple
recurrent neural network (Simple RNN), multilayer percep-
tron (MLP), ridge classifier (RC), logistic regression (LR), and
Cox proportional hazards model (Cox).

Conventionally, with the exception of the output layer,
MLP layers incorporate a non-linear activation, common
among which are sigmoid, tanh, or the more recently devel-
oped rectified linear unit. It is the non-linear activation that
provides the expressive power ofMLP. Evenwith only a single
hidden layer, an MLP can be universal (represent arbitrary
functions) under certain technical conditions.54 Increasing
the depth of the network allows the network to represent
complex functions more compactly. The hidden layer(s) of
MLP can be thought of as learning nonlinear feature map-
ping, transforming a nonlinearly separable representation of
the features to one that is linearly separable.54,55

Ridge regression and its classification variant RC are linear
models that address the problem of multicollinearity in the
predictor variables.56 The models are part of a family of
penalized regression models including Lasso57 and Elastic
Net58 that adds a penalty to the loss. This penalty constrains
and shrinks the size of the model coefficients, which has a

regularization effect and prevents overfitting. For classifica-
tion problems, RC first modifies binary response to �1 and 1
and then treats the task as a regression task, minimizing the
penalized residual sum of squares. The sign of the regressor’s
prediction then represents the predicted class.59 Ridge
regression/classification has shown to be a promisingmodel-
ling technique in the domain of epidemiology, particularly in
high dimensional settings where the number of features is
large, such as in genomic data analysis.60,61 As a compara-
tively more interpretable model, it has shown to be compet-
itive against black-box models such as support vector
machines and NN.62

LR is a statistical method for modelling the relationship
between one or more predictor variables and a dichotomous
response variable of the values 1 or 0. It is a function of the
odds ratio, and it models the proportion of new incidents
developed within a given period of time. Cox is a statistical
method for modelling the relationship between one or more
predictor variables and the amount of time to pass before an
occurrence of an event. It differs from LR by assessing a rate
instead of a proportion. Cox regression is a function of the
relative risk and itmodels thehazard rate, the number of new
incidents per population per unit time. Although penalized
LR and regularized Cox variations exist, here we are interest-
ed in the utility of LR and Cox as widely used in traditional
clinical riskmodels4,63,64–i.e., without regularization – in the
context of CVD event prediction. Their inclusion in the
investigation provides baselines for the prediction task.
The performance benefits of adding a penalty to linear
models is represented in our investigation of RC.

The input datasets for LSTM and Simple RNNare explicitly
sequential. The input datasets for MLP, RC, and LR are
flattened across the time step dimension and concatenated.
To examine the effect ofmulticollinearity aswell as the effect
of using history on RC and LR, two other input datasets are
constructed. First, instead of concatenating the features
across multiple time steps, an input dataset is constructed
that uses the values of the last time step in the observation
window (quarter 8) for features that are invariable across
time (i.e., SEX, ETHNICITY, NZDEP) and the mean value of
features that are variable across time (i.e., TC/HDL, LL_SIM-
VASTATIN, HX_BROAD_CVD). Here, an exception is AGE
where the value at the 8th quarter is used. This dataset is
from here on referred to as aggregated. Second, an input
dataset is constructed using only the values of the last
quarter in the observation window. This dataset is from
here on referred to as last quarter. Due to the effect of
multicollinearity only the aggregated and last quarter data-
sets are used to evaluate Cox.

Table 1 Number of patients in the cohort with andwithout prior CVD and proportions of each respective subcohort that had a CVD
event and a fatal CVD event in their prediction window

CVD event Fatal CVD

Patients with prior CVD: 25,419 7,242 (approximately 28%) 2,116 (approximately 8%)

Patients with no prior CVD 74,677 4,989 (approximately 7%) 882 (approximately 1%)

Abbreviation: CVD, cardiovascular disease.
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All NN models used a two-unit densely connected layer
with softmax activation as the output layer. The unrolled
view across the time step dimension of the RNN models is
shown in ►Fig. 6.

Software Setup
Experiments are performed using Python 3.6.8,65 with NN
models using library Keras 2.2.466 with Tensorflow 1.13.167

backend and linear models RC and LR using library Scikit-
learn 0.21.2.59 Experiments also used R version 3.6.0,
package pROC 1.16.268 for conducting DeLong’s test and
packages survival 3.2.769 and pec 2019.11.370 for Cox
regression analysis. The package Autorank 1.1.1 is used
for comparing models’ performance as measured by average
precision.71

Procedures for Hyperparameter Search
This section outlines the procedures performed to search for
the optimal set of hyperparameters for the LSTM, Simple
RNN, and MLP models. From the entire dataset, 10,096
samples are set aside as the test set and removed from the
search process. The remaining data (90,000 samples) are
used in the search process. For each combination of hyper-
parameters, a five-fold cross validation is performed where
while the proportion of data used for the train and validation
sets are consistent, with 90% train (81,000 samples) and 10%
validation (9,000 samples), different splits of train and
validation sets are used in the experiments. See ►Fig. 7 for
a visual illustration of how the data are split into train and
validation sets across the five-folds. In these experiments we
use categorical cross-entropy as loss, where the validation
loss is monitored and the lowest mean validation loss is used
to determine the best set of hyperparameters.

For all experiments, the optimizer ADAM772 is used due
to its capacity to adaptively adjust the learning rate during
the training process and because its default hyperpara-
meters have been shown to work on a range of problems.
The ADAM optimizer is used with the default hyperpara-
meter values outlined in the original paper.72 These
hyperparameter values are, learning rate α¼0.001, the
exponential decay rate for the first moment estimate β1 ¼
0.9, the exponential decay rate for the second moment
estimate β2 ¼ 0.999 and the small constant for numeric
stability ¼1e�7.66

See ►Table 2 for the found optimal hyperparameters of
the NN models.

For RC, hyperparameter search for the L2 regularisation
parameter and assessment of model performance on the
validation set is done at the same time using the data split
shown in Fold 1 in ►Fig. 7. Here, the values 1e�6, 1e�5, 1e�4,
1e�3, 1e�2, 0.1, 1 and 10.0 are searched. The found optimal L2
values and their respective accuracy on the validation set are
shown in ►Table 3, where the value of L2 is estimated using
the training samples, the accuracies reported are calculated
using the validation set.

Multicollinearity and Cox
When fitting the Cox model, several features returned a
coefficient of NA: “unknown.” These features were removed
from the analysis to ensure predictions from the model
could be made. For Cox (aggregated) seven features were
removed. For Cox (last quarter) nine features were removed.
See ►Appendix Table 9 in Appendix for the removed
features.

Fig. 6 An unrolled view of RNN across the time-step dimension. Here,
RNN can be a layer of Simple RNN or LSTM. NN is a layer of densely
connected NN with softmax activation. Xn are the inputs across n
timesteps. ŷ is the output. LSTM, long short-termmemory; NN, neural
networks; RNN, recurrent neural network. Fig. 7 Illustration of the procedure used in splitting data into test,

train, and validation sets across different folds.
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Assess Model Performance
Once the optimal hyperparameters for each NN model have
been found, the models are trained using the found hyper-
parameterswith the data split shown in Fold 1 in►Fig. 7. The
Test set that is held aside is then used to assess model
performance. To ensure fairness, all linear models RC, LR,
and Cox are trained using the same training samples in Fold 1
and use the same test samples to measure model perfor-
mance. For LR and Cox, the samples from the validation set
are simply set aside in the process of model fitting and
assessing model performance.

Taking into consideration the skewness of the classes (i.e.,
having a CVD event in the prediction window is much less
frequent than not having one), a further set of experiments
are conducted to address class imbalance. For theNNmodels,
sample weighting that balances the two classes by making
each sample inversely proportional to their class frequency
in the training set is utilized. Sample weighting scales the
loss function during training; here the less frequent class
samples are given more weight thus contributing to greater
loss.73,74 The same weighting is applied to the classes for the
RC and LR models.

The analysis uses AUROC and average precision as metrics
for assessing model performance. Average precision is a
summary statistic for a precision–recall (PR) curve. PR curves
can providemore discerning informationwhen the dataset is
highly imbalanced.75,76 Recall (the x-axis of the PR curve) is
defined as

and precision (the y-axis of PR curve) is defined as

In PR space, the position of (1, 1) represents perfect discrim-
ination – as opposed to (0, 1) in ROC space, where closer
the curve is to this point thebetter the discriminatory power of
the model. A horizontal line at , where P and N are the
positive class and negative class frequencies, represent a no-
skill classifier. The no-skill classifier is equivalent to the classi-
fier alwayspredicting theminority class.77Average precision is
amoreconservativemeasure thancalculating theAUCwith the
trapezoidal rule. The average precision is formally defined as

here, Pn and Rn are precision and recall at the nth thresh-
old.59 Our experiments use a large number of thresholds
(equal to the size of the test set), so the difference is likely to
be small.

DeLong’s test is used to statistically compare the resulting
AUROC of each model’s predictions. Currently, there is no
known significance test for comparing two PR curves.78,79 To
compare the performance of models in PR space, the evalua-
tion utilizes bootstrapping to sample 100�10,000 depen-
dent samples of models’ predictions. From using 100 equal
splits of the sampled predictions, 100 average precision
scores are calculated for each model. The resulting average
precision scores are evaluated using the Autorank package.71

The Autorank package is built for conducting statistical
comparison between (multiple) paired populations. The
package uses the guidelines described in Demšar80 to first
assess data normality and homoscedasticity before selecting
the appropriate statistical test for comparison.

Finally, to ascertain that the improvement in predictive
performance as the result of integrating patient history, an
ablation study using one-quarter and four-quarters observa-
tion windows is conducted using LSTM. The resulting two
models’ predictive performance are then compared with the
LSTM trained on eight quarters of observation window.

Results

The results of the models’ performance on the test set are
shown in ►Table 4. The best performing models’ ROC curves
and PR curves (with or without sample/class weighting) are
shown in ►Figs. 8 and 9. In ►Fig. 10 details of the PR curves
are shown (with the same mapping of line colors to classi-
fiers as in ►Figs. 8 and 9).

Table 2 NN model hyperparameters for the CVD event
prediction experiment

Models Hyperparameters

LSTM Layers: 1 LSTM and 1 Dense
Units: 32 (LSTM) and 2 (Dense)
Batch size: 16,384
L2: 6.422e�2

Loss: categorical cross-entropy
Epochs: 200

Simple RNN Layers: 1 Simple RNN and 1 Dense
Units: 4 (Simple RNN) and 2 (Dense)
Batch size: 8,192
L2: 1.318e�1

Loss: categorical cross-entropy
Epochs: 200

MLP Layers: 3 Dense and 2 Dropout
Units; 32, 32, 2
Batch size: 64
Dropout rate: Layer 1 2.500e�1

Layer 2 2.500e�1

Loss: categorical cross-entropy
Epochs: 50

Abbreviations: CVD, cardiovascular disease; LSTM, long short-term
memory; MLP, multilayer perceptron; RNN, recurrent neural network.

Table 3 Optimal L2values found for ridgeclassifiers forCVDevent
prediction and their respective accuracy on the validation set

L2 Accuracy

RC 1.0 0.886

RC (aggregated) 0.1 0.889

RC (last quarter) 0.1 0.887

Abbreviations: CVD, cardiovascular disease; RC, ridge classifier.
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The significance level of 0.05 is used for the comparison of
models’AUROC. See►Table 5 for the results of DeLong’s tests.
The same significance level is used for the comparison of
bootstrapped average precision scores using Autorank. The
internal evaluation using Shapiro-Wilk test and Bartlett’s
test showed the data from all models are normal and
homoscedastic. For that reason, repeated measures ANOVA
and Tukey’s HSD test are used to determine if a significant
difference of the mean exists between the models’ average
precision scores and which differences are of statistical
significance. See►Fig. 11 for the mean and 95.0% confidence
interval of the models’ average precision scores. The result of
the analysis shows that no significant differenceswere found
within the groups: RC (aggregated), RC, LR (aggregated), and

Simple RNN; RC, LR (aggregated), Simple RNN, and Cox
(aggregated); LR (aggregated), Simple RNN, Cox (aggregated),
and RC (last quarter); Simple RNN, Cox (aggregated), RC (last
quarter), and MLP; Cox (aggregated), RC (last quarter), MLP,
and LR (last quarter); LR (last quarter), LR, and Cox (last
quarter). However, all other differences are of statistical
significance.

Lastly, the results of the ablation study are shown
in ►Fig. 12.

Discussion

The results of the CVD event prediction experiment show
using average precision, LSTM is the overall leader (0.425) in
this prediction taskwith RC (aggregated) and LR (aggregated)

Table 4 Model performance on CVD event prediction

Model Without weighting With weighting

AUROC Average precision AUROC Average precision

LSTM 0.801 0.425a 0.800 0.423

Simple RNN 0.798 0.402 0.795 0.418a

MLP 0.797 0.415a 0.798 0.414

RC 0.799 0.420a 0.798 0.409

RC (aggregated) 0.800 0.421a 0.798 0.410

RC (last quarter) 0.794 0.417a 0.794 0.400

LR 0.798 0.411a 0.798 0.409

LR (aggregated) 0.801 0.421 0.802 0.421a

LR (last quarter) 0.797 0.414a 0.798 0.413

Cox (aggregated) 0.798 0.417 – –

Cox (last quarter) 0.793 0.411 – –

Abbreviations: AUROC, area under the receiver operating characteristic; CVD, cardiovascular disease; LR, logistic regression; LSTM, long short-term
memory; MLP, multilayer perceptron; RC, ridge classifier; RNN, recurrent neural network.
aThe best performing average precision of the model.

Fig. 8 ROC curves of CVD event prediction. CVD, cardiovascular
disease; ROC, receiver operating characteristic.

Fig. 9 PR curves of CVD event prediction. CVD, cardiovascular
disease; PR, precision recall.

Methods of Information in Medicine Vol. 61 No. S2/2022 © 2022. The Author(s).

Cardiovascular Disease Event Prediction Hsu et al. e159



Fig. 10 Detail plots of CVD event prediction PR curves, with the same
mapping of line colors to classifiers as in Figs. 8 and 9. CVD,
cardiovascular disease; PR, precision recall.

Table 5 p-Values of pairwise comparison of AUROC using DeLong’s test. The results are based on the best performing results of the
models, where the models Simple RNN and LR (aggregated) are trained with sample/class weighting. Using significance level of
0.05, values under the Bonferroni adjusted significance level of 9.091e� 4 are highlighted

Simple
RNN

MLP RC RC
(aggr)

RC
(last)

LR LR
(aggr)

LR (last) Cox
(aggr)

Cox
(last)

LSTM 1.429e�3 8.107e�2 0.2171 0.4420 3.262e�3 0.1638 0.5561 4.218e�2 5.551e�2 5.901e�4

Simple
RNN

0.4844 0.1420 6.848e�2 0.6908 0.2948 1,365e�3 0.5711 0.2678 0.4641

MLP 0.3744 0.2219 0.2235 0.7310 2.972e�2 0.8878 0.7782 0.1666

RC 0.3885 1.602e�3 0.6324 8.400e�2 0.2690 0.6262 1.222e�2

RC (aggr) 3.631e�3 0.4285 0.1238 0.1698 0.2954 9.491e�3

RC (last) 0.1166 1.054e�3 5.921e�2 0.1466 0.6304

LR 4.035e�2 0.5481 0.9589 4.179e�2

LR (aggr) 4.848e�3 1.738e�4 9.985e�5

LR (last) 0.5733 1.269e�3

Cox
(aggr)

2.094e�2

Abbreviations: CVD, cardiovascular disease; LR, logistic regression; LSTM, long short-termmemory; MLP, multilayer perceptron; PR, precision recall;
RC, ridge classifier; RNN, recurrent neural network.

Fig. 11 Statistical comparison of models’ performances on the CVD
event prediction task. The plot shows the average precision mean and
95.0% confidence intervals of the mean. Tukey’s HSD test determined
no significant differences exist within the groups: RC (aggregated),
RC, LR (aggregated) and Simple RNN; RC, LR (aggregated), Simple
RNN and Cox (aggregated); LR (aggregated), Simple RNN, Cox (ag-
gregated) and RC (last quarter); Simple RNN, Cox (aggregated), RC
(last quarter), and MLP; Cox (aggregated), RC (last quarter), MLP, and
LR (last quarter); LR (last quarter), LR and Cox (last quarter). All other
differences are found to be statistically significant. CVD, cardiovas-
cular disease; HSD, honestly significant difference; LR, logistic re-
gression; MLP, multilayer perceptron; PR, precision recall; RC, ridge
classifier; RNN, recurrent neural network.
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ranked second equal (0.421). Our results confirm that PR
curves provide further valuable information when the
data are highly imbalanced. As an example, LR and Cox
(aggregated) both achieved AUROC of 0.798. However, the
same predictions achieved average precisions of 0.411 and
0.417, respectively (►Table 4), a substantial difference in PR
space without any noticeable difference in ROC space. This
discrepancy is further confirmedwhen visually assessing the
ROC curves and PR curves plots (►Figs. 8 and 9). In ROC space,
the curves of the models are densely packed together,
virtually indistinguishable from one another, whereas there
is a region in the PR space where the curves are noticeably
more variable and spread out. The detail plots of the PR
curves of recall in the interval of [0.4, 0.8] show there are
regions where LSTM clearly dominates the other models.
However, at the other end of the PR space where recall is in
the interval of [0.8, 1.0], the results are much more mixed.

The statistical analysis using ANOVA and Tukey’s HSD test
comparing average precision scores of bootstrapped samples
shows significant differences exist between groups, and that
the LSTMmodel is determined to be significantly better than
all other models at this prediction task. It appears that the
capacity to retain and discard significant and unimportant
events in the patient’s past in addition to modelling patient
history sequentially provides LSTM the predictive advantage,
making it the best performing model, by a small margin,
overall for this task.

The results also show that for this problem RC, RC (aggre-
gated) and LR (aggregated) are highly competitive against
the NN models. These models performed equally well as
Simple RNN. Here, it can be observed that RC (aggregated) –
the best performing regression-based model – achieved an
average precision mean of 0.421 and 95.0% confidence
interval of (0.418, 0.425) and Simple RNN achieved an
average precision mean of 0.418 and 95.0% confidence
interval of (0.415, 0.422). From the statistical analysis,
both models are found to belong to the same group (as

well as RC and LR [aggregated]) where there is no group
differences that are determined to be significant. The statis-
tical analysis also found no significant differences in the
group containing MLP, Cox (aggregated), RC (last quarter),
and LR (last quarter).

With the exception of LR, the worst performing linear
models are the models using only features from the last
quarter of the observation window. This indicates that for
this task, patient history is important irrespective of whether
it is explicitly sequential or in another representation. The
method of aggregating data by taking the mean of features
that vary across time in the observation window is the most
effective treatment of data for the linear models with RC
(aggregated), LR (aggregated), and Cox (aggregated) achiev-
ing the best results of each respective models. LR’s relatively
poor performance (i.e., of the model using 8 quarters of
history) can be seen as the result of its incapacity to handle
multicollinearity. The findings of this experiment suggest
there are no or limited non-linear interactions between the
features that the NN model could exploit.

In addition to the predictive advantage of LSTM, a
surprising finding is the competitiveness of RC and RC
(aggregated) in integrating patient history in a risk predic-
tion task when using structured data. These models are by
comparison much smaller than the NN models and require
far less hyperparameter tuning. This result shows that the
traditional regression-based approaches for risk modelling
can be improved by moving toward approaches in this
direction, by combining: (a) Integrating patient history by
capturing more factors across more time steps instead of
only using features from the last quarter before the index
date; and (b) Fitting a model with regularization such as
using RC so the fitted coefficients are apt to deal with
multicollinearity.

Given the complexity of LSTM architecture a question
regarding the results might be whether LSTM’s predictive
advantage is entirely due to model capacity rather than it

Fig. 12 Results of ablation study.
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being a temporal model that is explicitly sequential. The
LSTM model used in our experiment contained 27,714
trainable parameters. In contrast, the MLP had 47,522
trainable parameters. This shows that model capacity alone
does not explain LSTM’s performance. Additionally, the
results of the ablation study show that by including patient
history beyond just using patient data at the index date the
model performance improved, while the slight dip in AUROC
between using observation windows of 4 and 8 quarters
(from 0.802 to 0.801) is unlikely to be significant. Further, the
metric better suited for imbalanced classification – average
precision – shows a monotonic increase in performance as
the observation window lengthened.

Recent results in clinical risk prediction using sequential
modelling typically focus on a short prediction horizon, e.g.,
next visit or 6 months.81–83 In contrast, the current study
adopted a 5-year prediction horizon used in an established
clinical decision support system,4 and leveraged routinely
collected EHR from a diverse population level dataset to
facilitate comparison. If LSTM is adopted as a model for
assessing CVD risk, it will be applied at a large scale. PREDICT
has been used>500k times in New Zealand. If a performance
difference is statistically significant, then even if it is only
moderately better, it is a meaningful difference because, at
this scale, there would be many more cases where the
clinician gets the right answer, instead of the wrong answer,
from the model.

Two decades ago, there was a paradigm shift in CVD risk
management in clinical practice from prevention based on
managing individual risk factors (e.g., high blood pressure
and high cholesterol) to one that is based on the combination
of risk factors; a shift from focusing on relative risk to one
that focuses on absolute risk.84 Since then, many guidelines
on CVD risk assessment have moved from using paper charts
to computerized clinical decision support systems as the
number of predictor variables have grown over the inter-
vening years.1–3,6,85–88 This trend is likely to continue as
non-classical CVD risk factors such as socio-economic depri-
vation are found to be strongly associated with CVD risk.1,4

Conventionally, Cox proportional hazardmodels are used for
these clinical decision support systems. Recently, studies
have focused on machine learning techniques to improve
predictive performance.89,90

Like many other non-communicable diseases, the devel-
opment, progression, and management of CVD are pro-
longed and long-term. This characteristic of the disease
makes the ability to include in the analytics of CVD risk
patient history in a multivariate and explicitly sequential
manner a desideratum, so that the dynamic temporal
interactions between the risk factors can be modeled.
Until recently, sequentially modelling long-range depen-
dency has remained computationally infeasible as shown in
the case of the widely studied and used Hidden Markov
Models.91 This study demonstrates the suitability of using
LSTM for sequentially modelling patient history on struc-
tured/tabulated data and a proof of concept that gains can
be made using LSTM for predicting CVD event over a 5-year
interval.

There are several limitations of the current study. “Long-
term” in the context of CVD can mean decades. Researchers
of CVD therapy have pointed to the knowledge gap that exists
between the evidence from randomized clinical trails, typi-
cally only lasting a few years, and the effect of long-term
medication treatment (it is common for therapy to continue
for decades) in secondary prevention.92 The study designwas
unable to capture the long-term (defined in the scale of
decades) effect of disease progression and treatment trajec-
tory. While preserving a useful number of cases, the data
construction used in this study was only able to achieve a
7 year window to divide between observation and predic-
tion. In the future, however, this will change as routinely
collected EHRs lengthen year on year. Another limitation of
the study is that LSTM like other NNmodels, is a class of black
boxmodels where the influence of and interactions between
predictor variables cannot be readily explained. Consider-
able research has been performed investigating methods to
interpret and explain neural models,93,94 and some specifi-
cally for RNNs.95,96 These methods are clearly worthy direc-
tions of future work as they hold the potential for aiding risk
communication. Another possible future direction is to
incorporate time information such as by using: a decay
function, temporal encoding, or by combining a vector
representation for time with model architecture in sequen-
tialmodelling83,97,98; or to utilize an attentionmechanism to
boost model performance.81–83,95 Lastly, the current study
focused on event prediction not time-to-event estimation
nor risk level prediction, which Cox proportionate hazards
models facilitate. Determining if the results of the present
study extend from event prediction to risk level and time-to-
event estimationwould be a valuable next step inmaking the
case for widespread use of explicitly-temporal models in
chronic disease decision support.

Conclusion

The investigationsperformed in this study foundthat routinely
collected health data can be leveraged to predict patients’ risk
of a CVDevent (fatal or non-fatal).Moreover, it is observed that
the LSTM model, outperformed linear additive models. For
CVD event prediction, LSTM provided the best average preci-
sion, significantly outperforming all other models compared.
The additive models RC (aggregated), RC and LR (aggregated)
were found to be highly competitive, outperforming MLP and
matching the performance of Simple RNN as measured by
average precision. These results suggest for this prediction
task, apart from LSTM, classical statistical models are equally
performant as non-linear models. In our experiments, various
inputs were examined for the linear models to quantify the
potential for patient history to be used to improve their
performance. These include using the full sets of features
across the eight quarters of observationwindow, using aggre-
gated features and using only the last quarter of the observa-
tion window. For all linear models, using aggregated data
provided the best performance andRC (aggregated)was found
to be the best performing linear model for the prediction task.
Alongside the strength of LSTM, these findings regarding the
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inputs of linear models further corroborate that history
matters in the context of CVD event prediction. As routinely
collected EHR continues growing, alleviating one of the pri-
mary obstacles in applying deep learning methods, this study
provides incentive for LSTM to be further explored as an event
prediction model in the management of CVD, where even a
marginal gain can have substantial economic and social
benefits.
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Appendix Table 1 VIEW CVD categories: CVD history, CVDmortality and CVD outcome, feature names under the categories and
feature descriptions. Feature names prefixed with MORTALITY or OUT are used to identify outcome events (with the exception of
OUT_ATRIAL_FIBRILLATION)

VIEW CVD categories

Category Feature name Description

History HX_BROAD_CVD
HX_ATHERO_CVD
HX_CHD_DIAG
HX_ACS
HX_MI
HX_UNST_ANGINA
HIST_ANGINA
HX_OTHER_CHD
HX_CHD_PROCS
HX_PCI
HX_CABG
HX_OTHER_CHD_PROCS
HX_PVD_DIAGS
HX_PVD_PROCS
HX_HAEMORRHAGIC_STROKE
HX_CEVD
HX_ISCHAEMIC_STROKE
HX_TIA
HX_OTHER_CEVD
HX_HEART_FAILURE
HX_ATRIAL_FIBRILLATION

History of broad CVD
History of atherosclerotic CVD
History of coronary heart disease (diagnoses)
History of acute coronary syndrome
History of myocardial infarction
History of unstable angina
History of angina
History of other coronary disease
History of coronary heart disease
History percutaneous coronary intervention
History of coronary artery bypass graft
History of other coronary procedure
History of peripheral vascular disease
History of peripheral vascular procedure
History of hemorrhagic stroke
History of cerebral vascular disease
History of ischemic stroke
History of transient ischemic attack
History of other cerebral vascular disease
History of heart failure
History of atrial fibrillation

Mortality MORTALITY_BROAD_CVD_WITH_OTHER
MORTALITY_OTHER_RELATED_CVD_DEATHS

Death involving broad CVD
Death involving other related CVD

Outcome OUT_BROAD_CVD
OUT_ATHERO_CVD
OUT_CHD
OUT_MI
OUT_ACS
OUT_UNST_ANGINA
OUT_ANGINA
OUT_OTHER_CHD
OUT_PVD_DIAGS
OUT_PVD_PROCS
OUT_PCI_CABG
OUT_HAEMORRHAGIC_STROKE
OUT_CEVD
OUT_ISCHAEMIC_STROKE
OUT_TIA
OUT_OTHER_CEVD
OUT_HEART_FAILURE
OUT_ATRIAL_FIBRILLATION

Outcome of broad CVD
Outcome of atherosclerotic CVD
Outcome of coronary heart disease
Outcome of myocardial infarction
Outcome of acute coronary syndrome
Outcome of unstable angina
Outcome of angina
Outcome of acute coronary syndrome
Outcome of peripheral vascular disease
Outcome of peripheral vascular procedure
Outcome of percutaneous coronary intervention
Outcome of hemorrhagic stroke
Outcome of cerebral vascular disease
Outcome of ischemic stroke
Outcome of transient ischemic attack
Outcome of other cerebral vascular disease
Outcome of heart failure
Outcome of atrial fibrillation
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Appendix Table 2 PREDICT variables and their descriptions

Variable name Description

PT_SBP Current systolic blood pressure (sitting)

PT_SBP2 Previous systolic blood pressure (sitting)

PT_DBP Current diastolic blood pressure (sitting)

PT_DBP2 Previous diastolic blood pressure (sitting)

PT_SMOKING Smoking history or current status

PT_EN_TCHDL TC/HDL cholesterol result

PT_DIABETES Diabetes status

PT_FAMILY_HISTORY Family history of premature CVD

PT_GEN_LIPID
PT_RENAL

Diagnosed genetic lipid disorder
Renal disease status

PT_DIABETES_YR Number of years since diabetes diagnosis

PT_ATRIAL_FIBRILLATION ECG confirmed atrial fibrillation

PT_IMP_FATAL_CVDa Improved fatal CVD using mortality record and 28 day rule

Abbreviation: CVD, cardiovascular disease.
aThis feature captures all patients with CVD as cause of death on their death certificate with or without hospitalization. In addition, those without
CVD recorded on their death certificate but who had a CVD hospital admission up to 28 days before their date of death are included. The VIEW
research group refers to this as “the 28 day rule” for reclassifying non-CVD death as CVD death.

Appendix Table 3 Affected variables, their conditions that require addressing, the action taken, and the number of affected cases

Variable Condition Action Number of cases

PT_DIABETES_YR <0 Remove samples 4

PT_DBP2 Missing Assign PT_DBP value 7

PT_RENAL Missing Assign 0 to missing values and
change all other values to valueþ1

65,086

PT_ATRIAL_FIBRILLATION Missing Assign 0 to missing values and
change all other values to valueþ1

22

PT_DIABETES_YR Missing Assign 0 to missing values 65,084

PT_EN_TCHDL Missing Assign last TC/HDL result from TestSafe 889

SEX String values Encode as a binary variable 100,096

ETHNICITY
(MELAA and Other)

Small
sample size

Remove samples MELAA (1568), Other (8)

ETHNICITY
(Chinese and Other Asian)

Small
sample size

Combined Chinese (5,317)
Other Asian (3,655)

PT_SMOKING Missing Remove samples 2

PT_GEN_LIPID Missing Remove sample 1

ETHNICITY String values One-hot encoded 100,096

HBA1C Missing Impute using a linear model with
AGE, SEX, NZDEP and ETHNICITY
as predictor variables

983

EGFR Missing Impute using a linear model with
AGE, SEX, NZDEP and ETHNICITY
as predictor variables

56
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Appendix Table 4 Descriptive statistics: demographic variables. Number of patients in each category

ID 100,096 NZDEP

1 21,167

Sex 2 19,074

Male 56,557 (56.5%) 3 17,141

Female 43,539 (43.5%) 4 18,903

Age (at index date) 5 23,811

Mean (SD) 61.82 (11.29)

18–24 48 Ethnicity

25–34 691 European 56,641

35–44 5,690 Māori 9,977

45–54 20,380 Pacific 14,878

55–64 32,885 Chinese/Other Asian 8,971

65–74 28,261 Indian 9,629

75–84 10,379 DIED (%) 6,634 (6.6%)

85þ 1,762

Appendix Table 5 Descriptive statistics: cholesterols. TEST and TESTED are binary features and the statistics are the number of
quarters in the entire dataset where the features contained a 1 and its relative percentage

Test (%) 885,936 (31.6%)

HDL mean (SD) 1.28 (0.37)

LDL mean (SD) 2.26 (0.96)

TRI mean (SD) 1.74 (1.04)

TCL mean (SD) 4.69 (1.13)

TC/HDL mean (SD) 3.85 (1.15)

Tested (%) 2,698,599 (96.3%)
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Appendix Table 6 Descriptive statistics: hospitalization. Number of patients who had acute hospital admission within their time-
series and number of patients who had hospitalizations with clinical code mapping to the specified category in their time-series

NUMBER_OF_DAYS> 0
mean (SD)

6.37 (11.87) MORTALITY_BROAD_CVD
_WITH_OTHER

17,463

ACUTE_ADM 54,448 MORTALITY_OTHER
_RELATED_CVD_DEATHS

2,416

HX_BROAD_CVD 32,542

HX_ATHERO_CVD 30,259 OUT_BROAD_CVD 16,421

HX_CHD_DIAGS 23,207 OUT_ATHERO_CVD 14,308

HX_ACS 16,777 OUT_CHD 9,689

HX_MI 13,799 OUT_MI 5,944

HX_UNST_ANGINA 6,596 OUT_ACS 7,445

HX_ANGINA 8,489 OUT_UNST_ANGINA 2,104

HX_OTHER_CHD 20,416 OUT_ANGINA 3,300

HX_CHD_PROCS 12,771 OUT_OTHER_CHD 3,539

HX_PCI 8,646 OUT_PVD_DIAGS 1,537

HX_CABG 5,659 OUT_PVD_PROCS 1,922

HX_OTHER_CHD_PROCS 335 OUT_PCI_CABG 5,758

HX_PVD_DIAGS 5,301 OUT_HAEMORRHAGIC
_STROKE

521

HX_PVD_PROCS 3,551

HX_HAEMORRHAGIC_STROKE 1,204 OUT_CEVD 4,364

HX_CEVD 8,403 OUT_ISCHAEMIC_STROKE 3,011

HX_ISCHAEMIC_STROKE 5,878 OUT_TIA 1,598

HX_TIA 3,159 OUT_OTHER_CEVD 50

HX_OTHER_CEVD 772 OUT_HEART_FAILURE 3,096

HX_HEART_FAILURE 8,079 OUT_ATRIAL_FIBRILLATION 3,288

HX_ATRIAL_FIBRILLATION 10,902

Appendix Table 7 Descriptive statistics: HbA1c and eGFR.
TEST_HBA1C, TESTED_HBA1C, TESTED_EGFR and
TESTED_EGFR are binary features and the statistics are the
number of quarters in the entire dataset where the feature
contained a 1 and its relative percentage

HBA1C mean (SD) 47.98 (15.20)

TEST_HBA1C 819,747 (28.9%)

TESTED_HBA1C 2,268,295 (80.9%)

EGFR mean (SD) 77.85 (20.11)

TEST_EGFR 1,041,487 (37.2%)

TESTED_EGFR 2,694,767 (96.1%)
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Appendix Table 8 Descriptive statistics: PREDICT. PT_SMOKING, PT_DIABETES, PT_FAMILY_HISTORY, PT_GEN_LIPID, PT_RENAL,
PT_ATRIAL_FIBRILLATION and PT_IMP_FATAL_CVD show number of patients in each category

PT_SBP mean (SD) 132.25 (16.99) PT_GEN_LIPID

0 (None) 92,492

1 (Familial hypercholesterolemia) 5,569

PT_SBP2 mean (SD) 132.57 (17.24) 2 (Familial defective apoB) 20

3 (Familial combined dyslipidemia) 499

PT_DBP mean (SD) 78.70 (10.25) 4 (Other genetic lipid disorder) 1,516

PT_DBP2 mean (SD) 79.07 (10.30)

PT_SMOKING

0 (Never) 66,896

1 (Quit >12 mo) 20,162

2 (Quit �12 mo) 1,901

3 (Up to 10/d) 6,249

4 (11–19/d) 3,046 PT_RENAL

5 (20þ/d) 1,842 0 (Missing value) 64,131

PT_EN_TCHDL mean (SD) 3.90 (1.22) 1 (No nephropathy) 27,585

2 (Confirmed microalbuminuria) 5,996

PT_DIABETES 3 (Over diabetic Nephropathy) 1,975

0 (No diabetes) 64,125 4 (Non-diabetic nephropathy) 409

1 (Type 1) 1,267

2 (Type 2) 32,754

3 (Type unknown) 1,950

PT_FAMILY_HISTORY 20,162

PT_DIABETES_YR mean (SD) 8.19 (7.30)

PT_ATRIAL_FIBRILLATION

0 (Missing value) 21

1 (None) 95,292

2 (Confirmed atrial Fibrillation) 4,783

PT_IMP_FATAL_CVD 2,998
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Appendix Table 9 Removed features for the Cox regression analysis

Removed features

Cox (aggregated) ETHN_5

DIED

CVD_METOLAZONE

OTHER_PREDNISOLONE

OTHER_CLARITHROMYCIN

OTHER_VILDAGLIPTIN

PT_IMP_FATAL_CVD

Cox (last quarter) ETHN_5

TESTED

DIED

CVD_METOLAZONE

CVD_HYDRALAZINE_HYDROCHLORIDE

OTHER_INSULIN_ZINC_SUSPENSION

OTHER_PREDNISOLONE

OTHER_CLARITHROMYCIN

OTHER_VILDAGLIPTIN

PT_IMP_FATAL_CVD
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