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A B S T R A C T   

Background: Pancreatic cancer (PC), characterized by its aggressive nature and low patient sur-
vival rate, remains a challenging malignancy. Anoikis, a process inhibiting the spread of meta-
static cancer cells, is closely linked to cancer progression and metastasis through anoikis-related 
genes. Nonetheless, the precise mechanism of action of these genes in PC remains unclear. 
Methods: Study data were acquired from the Cancer Genome Atlas (TCGA) database, with vali-
dation data accessed at the Gene Expression Omnibus (GEO) database. Differential expression 
analysis and univariate Cox analysis were performed to determine prognostically relevant 
differentially expressed genes (DEGs) associated with anoikis. Unsupervised cluster analysis was 
then employed to categorize cancer samples. Subsequently, a least absolute shrinkage and se-
lection operator (LASSO) Cox regression analysis was conducted on the identified DEGs to 
establish a clinical prognostic gene signature. Using risk scores derived from this signature, pa-
tients with cancer were stratified into high-risk and low-risk groups, with further assessment 
conducted via survival analysis, immune infiltration analysis, and mutation analysis. External 
validation data were employed to confirm the findings, and Western blot and immunohisto-
chemistry were utilized to validate risk genes for the clinical prognostic gene signature. 
Results: A total of 20 prognostic-related DEGs associated with anoikis were obtained. The TCGA 
dataset revealed two distinct subgroups: cluster 1 and cluster 2. Utilizing the 20 DEGs, a clinical 
prognostic gene signature comprising two risk genes (CDKN3 and LAMA3) was constructed. 
Patients with pancreatic adenocarcinoma (PAAD) were classified into high-risk and low-risk 
groups per their risk scores, with the latter exhibiting a superior survival rate. Statistically sig-
nificant variation was noted across immune infiltration and mutation levels between the two 
groups. Validation cohort results were consistent with the initial findings. Additionally, experi-
mental verification confirmed the high expression of CDKN3 and LAMA3 in tumor samples. 
Conclusion: Our study addresses the gap in understanding the involvement of genes linked to 
anoikis in PAAD. The clinical prognostic gene signature developed herein accurately stratifies 
patients with PAAD, contributing to the advancement of precision medicine for these patients.  
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1. Introduction 

Pancreatic cancer (PC) manifests as an invasive tumor with aggressive malignant potential, and its 5-year survival rate is notably 
low. The global incidence rate and mortality associated with PC are increasing significantly, with current trends indicating its rise to 
the second position as a contributor to cancer-linked deaths by 2030 [1,2]. As a malignancy within digestive tract cancers, PC exhibits 
characteristics such as rapid progression and a high mortality rate [3,4]. Potential risk factors for PC include the consumption of 
alcohol, a high-fat and protein diet, smoking, high coffee intake, genetic elements, and environmental pollution. Pancreatic ductal 
adenocarcinoma (PDAC) constitutes ~90 % of PC cases and is one of its common pathological types. Due to the unclear early symptoms 
of pancreatic adenocarcinoma (PAAD), many patients often experience delayed diagnosis, resulting in a significant number of 
late-stage diagnoses accompanied by distant metastasis. This situation leads to missing the optimal treatment window for radical 
surgery [5–7]. Currently, an integrated approach involving surgery, adjuvant therapy, neoadjuvant therapy, and immunotherapy is 
commonly utilized for PAAD patients but only exhibits effectiveness in 20 % of patients [8–11]. Challenges such as postoperative 
recurrence, widespread tolerance to radiotherapy and chemotherapy, insensitivity to immunotherapy, and sustained low treatment 
response persist in the management of PAAD. Consequently, this contributes to poor treatment efficacy and a bleak prognosis for 
patients with PAAD, with its 5-year survival rate of merely 10 % [12–15]. The etiology and pathogenesis of PAAD remain incompletely 
understood, underscoring the pressing need to identify biomarkers and therapeutic targets for PAAD. Such advancements are 
necessary to enhance the quality of life and overall survival (OS) of the afflicted patients. 

Anoikis, a programmed cell death mechanism, serves as a crucial defense for microorganisms and is induced by the loss of the 
interaction between cells and the extracellular matrix (ECM) [16,17]. Under normal circumstances, the disruption of the interaction 
between cells and the ECM, caused by the loss of adhesion promoters and glycosylated ECM proteins on the cell surface, leads to 
normal cell apoptosis and death. However, tumor cells are shielded by a protective “barrier” that is responsible for preventing the loss 
of adhesion promoters, generating cell death resistance, and promoting tumor cell survival [18,19]. Among various human tumors, 
anoikis acts as a protective physiological barrier, inhibiting the spread of metastatic cancer cells. Consequently, inhibiting anoikis 
becomes a critical mechanism for the development of cancer metastasis [20–22]. Recent research suggests a strong association of 
anoikis-related genes with cancer progression and metastasis. For instance, FAIM2 is significantly linked to tumor staging and adverse 
outcomes in non-small cell lung cancer, and reduced FAIM2 expression may hinder resistance to loss-of-nest (adhesion) apoptosis [23]. 
A study by Wang et al. demonstrated that CPT1A-mediated fatty acid oxidation can inhibit anoikis, promoting the metastasis of 
colorectal cancer cells [24]. Prior research has investigated the involvement of anoikis-related genes in diverse human malignancies 
like renal clear cell carcinoma, lung cancer, bladder cancer, hepatocellular carcinoma, etc. [25–28] However, there is a limited body of 
research systematically exploring the involvement of anoikis-related genes in PAAD. 

Therefore, the primary aim of this research is to develop a prognostic scoring model utilizing anoikis-related genes. Additionally, it 
seeks to explore the relationship between this prognostic scoring model, the immune microenvironment, and chemotherapy sensitivity 
under the generated risk score. The objective is to analyze the clinical significance of this prognostic model in assessing the prognosis of 
patients with PAAD and characterize the immune landscape. Ultimately, these efforts seek to enhance the personalized treatment 
approach for patients with PAAD. 

2. Methods 

2.1. Data acquisition and processing 

The genetic information of PAAD patients and their clinical details were accessed at TCGA and GEO. The TCGA-PAAD dataset 
comprised 179 tumor and 4 normal samples, while the GEO dataset (GSE78229) included 50 PAAD samples. Somatic mutation and 
copy number variation (CNV) data of patients with PAAD were accessed at the TCGA database. GeneCard database was searched to 
acquire the anoikis-related genes. To create a unified PAAD dataset, the TCGA-PAAD and GEO datasets were merged. To address batch 
processing effects across different datasets, the ComBat function from the R “SVA” package was employed. Subsequently, the “caret” 
package was utilized for random division of the PAAD dataset into a training group and a validation group. 

2.2. Unsupervised cluster analysis based on anoikis-related genes 

The expression of genes linked to anoikis was retrieved from the TCGA-PAAD dataset. Differential expression analysis was con-
ducted for the identification of differentially expressed genes (DEGs) linked to anoikis. Subsequently, the identified DEGs were utilized 
for conducting unsupervised clustering analysis employing R “ConsensusClusterPlus”. Additionally, DEGs between various subtypes 
were assessed via the “limma” R package.” 

2.3. Genomic variation analysis (GSVA) and functional enrichment analysis 

Following the download of “c2. Cp. Kegg. V6.2. symbols” from the MsigDB database, GSVA enrichment analysis was executed using 
the R “GSVA” to investigate the biological pathways among different anoikis subtypes [29]. Utilizing the “limma” package, P < 0.05 
was deemed as indicative of statistical significance between various subgroups. Subsequently, the “clusterProfiler” R package was 
employed to characterize potential biological processes, cellular components, molecular functions, and KEGG pathways of DEGs 
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between different subgroups. Significantly enriched biological pathways were determined per the threshold of P < 0.05. 
Moreover, GSEA software was utilized to conduct GSEA analysis across high- and low-risk groups, aiming to identify the distinct 

KEGG pathways. Normalized enrichment scores (NES) and nominal P-values were calculated to assess the level of enrichment and 
statistical significance of the identified pathways. 

2.4. Single sample gene set enrichment analysis algorithm (ssGSEA) 

Utilizing ssGSEA, the correlation between the infiltration abundance of 23 immune cells and the subtypes associated with the loss- 
of-nest apoptosis was assessed through NES analysis. 

2.5. Establishment and validation of gene signature for clinical prognosis utilizing DEGs 

Univariate Cox analysis was employed to identify prognostically significant genes from DEGs between different subtypes, utilizing 
a threshold P-value lower than 0.05. The least absolute shrinkage and selection operator (LASSO) Cox regression model was then 
utilized to refine the pool of candidate genes and develop prognostic gene signatures. The formula for the clinical prognosis gene 
signature is as mentioned:  

Risk score = (Expression of gene1 × β1) + (Expression of gene2 × β2) + (Expression of gene3 × β3) + … + (Expression of geneN × βN). 
Here, β denotes the regression coefficient.                                                                                                                                       

As per the median risk score, patients in the training and validation groups underwent stratification into high-risk and low-risk 
groups. The variation in survival rates between the risk groups was examined via Kaplan-Meier curves. Heat maps were utilized to 
visually represent the expression of genes involved in constructing gene signatures in both groups. The model was assessed concerning 
its predictive performance through the area under the receiver operating characteristic (ROC) curve (AUC). 

2.6. Development of predictive column charts 

Furthermore, a column chart model was established using the risk score in conjunction with various clinical features. Furthermore, 
the survival rates of the patients with PAAD were predicted across 1, 3, and 5 years using the “rms” and “survival” packages. To 
examine the discrimination and accuracy of the column chart, calibration curves were employed. 

2.7. Analysis of tumor microenvironment (TME) infiltration, somatic mutation, and immune checkpoint in various risk groups 

CIBERSORT was utilized to examine the association of the risk score with the infiltration level of immune cells. The analysis of 
somatic cell variation data was conducted via R “maftools” [30]. To visually depict the mutation landscape in PAAD patients within the 
two risk groups, a waterfall plot was employed. 

2.8. Exploring the drug sensitivity analysis of gene signature in clinical prognosis 

Furthermore, leveraging the Cancer Drug Sensitivity Genomics (GDSC) database, drug response predictions were conducted using 
the “pRRophetic” R-package. Ridge regression was then applied for the estimation of the median maximum inhibitory concentration 
(IC50) for every patient, with the accuracy of the prediction analyzed through 10-fold cross-validation [31]. 

2.9. Analysis and identification of single cell RNA sequencing data 

A single-cell dataset (GSE214295) was acquired from GEO, comprising three PAAD samples. To guarantee result quality, R “Seurat” 
was employed for preprocessing the data. This involved measuring the total number of molecules in cells (nCount RNA) and the genes 
identified in each cell (nFeature RNA). Furthermore, the gene number was comparatively assessed with the sequencing reads acquired 
from each cell. To assess widespread mitochondrial genome contamination in dead or low-quality cells, the percentage feature set 
function was employed to calculate the number of reads associated with the mitochondrial genome. Afterward, cell clustering was 
conducted utilizing filtered principal components, and unified manifold approximation and projection (UMAP) dimensionality 
reduction techniques were applied for visual classification. Marker genes for immune cells were filtered out with a corrected P-value 
<0.05. The marker genes acquired via the PanglaoDB database were intersected with the corresponding genes of each cell subtype to 
determine the specific immune cells. The resulting data provided insights into the correlation between the genes involved in con-
structing the gene signature and the single-cell subpopulation. 

2.10. Western blotting assay 

Phostphate-buffered saline (PBS) solution was used to rinse the cell culture flasks, followed by the addition of ice-cold lysis buffer 
(Servicebio, Wuhan, China). Cell lysates collected at 12,500 rpm and 4 ◦C were subjected to a 10-min boiling process in a super-sampling 
buffer. The proteins were then separated on a 12.5 % SDS-PAGE gel, along with a subsequent transfer to a PVDF membrane with a 0.2 μm 
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pore size. To minimize non-specific binding, 5 % skim milk was used for blocking. 
The primary antibodies utilized were: CDKN3 (1:1000; ab175393, abcam, US), LAMA3 (1:1000; ab242197, abcam, US) and ACTIN 

(1:5000; Servicebio, Wuhan, China). Following the dilution of primary antibodies for CDKN3 and LAMA3 as per the provided protocol, 
overnight incubation was performed on a shaker at 4 ◦C. Subsequently, a 2 h incubation of the secondary antibody was carried out at 
25 ◦C with slow shaking. The PVDF membrane underwent three washes with PBS, and immunoreactivity was visualized using the ECL 
Plus kit. To normalize the relative protein levels, calibration was performed based on the concentration of ACTIN. 

2.11. Clinical specimens and immunohistochemistry (IHC) 

A total of 13 cases of PAAD tumor tissues and their corresponding adjacent non-cancerous lung tissues were procured from the 
Affiliated Hospital of Nantong University (China). The study was subjected to approval by the Ethics Committee of Nantong University 
Hospital, with the provision of written informed consent deemed necessary for inclusion in the research and for the utilization of the 

Fig. 1. Expression and genetic changes of anoikis-related genes in PAAD. (A) Heat maps displaying the differentially expressed genes (DEGs) 
between tumor samples and normal samples in the TCGA-PAAD cohort. (B) Identification of anoikis-related genes associated with prognosis in the 
PAAD cohort. (C) Chromosomal locations of CNV changes in anoikis-related regulatory factors. (D) Frequency of CNV variations in anoikis-related 
regulatory factors, with column height representing the change in frequency. Green dots indicate missing frequency, while the red dot indicates 
amplification frequency. 
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patient material. 
The tissue sections underwent dewaxing, and antigens were extracted. After blocking with bovine serum albumin, sections were 

incubated with the PDXK primary antibody (1:200) at 4 ◦C overnight and rinsed thrice with PBS. Following 30 min incubation with the 
secondary antibody at 37 ◦C, DAP staining of the sections was performed for 5–10 min and hematoxylin for 10 s. Immunohistochemical 
staining was evaluated by assessing the intensity and extent of staining. The percentage of positive cells was scored as mentioned: ≤25 
% (1 point), 26%–50 % (2 points), 51%–75 % (3 points), and >75 % (4 points). The intensity of the staining was categorized as follows: 
no positive staining (negative; 0 points), pale yellow (weakly positive; 1 point), tan (positive; 2 points), and sepia (strongly positive; 3 
points). The two scores were multiplied to derive the final immunoreactivity score (IRS), assessing the level of protein staining. A score 
of 4 was utilized as the cutoff point to categorize the patients into high- and low-expression groups. 

2.12. Statistical analysis 

To conduct the statistical analyses, R v4.01 was utilized. The comparative assessment of two groups was conducted via the Wil-
coxon test, while two or more groups were comparatively assessed via the Kruskal-Wallis test. Kaplan-Meier analysis and the loga-
rithmic rank test were employed to assess survival differences among patients in different groups. Pearson correlation analysis was 
applied to evaluate the correlations. Principal component analysis (PCA) of different subtypes and risk groups was constructed through 
the “limma” package. To conduct the ROC curve analysis, R “survival” and “timeROC” were employed. A significance level of P < 0.05 
indicated the statistical significance. 

3. Result 

3.1. Expression and genetic changes of anoikis-related genes in PAAD 

In the TCGA-PAAD cohort, data concerning the expression of 490 genes related to anoikis was extracted. Further assessment of the 
179 tumor samples and 4 normal samples resulted in the identification of 72 anoikis-related DEGs (Fig. 1A). In the PAAD cohort, which 
combined the TCGA-PAAD and GEO datasets, univariate Cox analysis based on the 72 anoikis-related DEGs was utilized to identify 20 
relevant genes (Fig. 1B). These genes were then employed in subsequent analyses. Fig. 1C illustrates the positions of regulatory factors 

Fig. 2. Identification of anoikis-related subgroups in PAAD. (A) Interaction relationships among anoikis-related genes. (B–D) Application of the 
consistency clustering algorithm to partition PAAD samples into two distinct subgroups, namely cluster A and cluster B. (B) Consistency matrix; (C) 
Cumulative distribution function (CDF) diagram; (D) Change in the area under the CDF curve relative to K = 2–9. (E) Overall survival rates across 
the four subgroups. (F) Variations in the expression of anoikis-related genes between the two subgroups. 
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related to anoikis in CNV changes. Among the 20 regulatory factors, 9 genes (ITGB4, CENPF, PBK, EPHA2, MET, SERPINB5, SFN, 
MSLN, and UBE2C) exhibited copy number deletion, while the remaining genes showed copy number amplification (Fig. 1D). 

3.2. Identification of anoikis-related subtypes in PAAD 

A network was established to depict the interaction relationships among 20 genes related to anoikis (Fig. 2A). Subsequently, 
unsupervised cluster analysis was carried out using these 20 anoikis-related genes, resulting in the identification of two distinct 
subtypes: cluster A and cluster B (Fig. 2B–D). Survival analysis results indicate that patients in cluster B exhibit better OS compared to 
those in cluster A (Fig. 2E). The heatmap illustrates the correlation and clinical pathological characteristics between clusters A and B 
(Fig. 2F). 

3.3. Association of different anoikis-related subtypes with immune cell infiltration, and the biological pathways related to the subtypes 

This research further explored the relationship between subtypes linked to anoikis and the infiltration of immune cells in tumors. It 

Fig. 3. Immune landscape characteristics and biological pathways between different subtypes in PAAD. (A) Variations in the abundance of immune 
infiltrating cells within the tumor microenvironment across different subgroups in PAAD. (B) GSVA enrichment analysis reveals the activation status 
of biological pathways between cluster A and cluster B. Heat maps illustrate these biological processes, where red and blue signify activated and 
inhibited pathways, respectively. 
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was noted that cluster B displays elevated levels of activated B cells, CD8T cells, eosinophils, immature B cells, mast cells, monocytes, 
and regulatory T cells. Conversely, cluster A exhibits an enrichment of CD56dim natural killer cells, CD56bright natural killer cells, 
type 2 T helper cells, and type 17 T helper cells (Fig. 3A). 

Further investigation of the biological pathways linked to two diverse anoikis subtypes was carried out. Cluster A demonstrates a 
significant correlation with pathways, including the P53 pathway, cell cycle, and NOTCH pathway. On the other hand, cluster B is 
notably correlated with pathways such as glycine serine, neuroactive ligand-receptor interactions, and threonine metabolism (Fig. 3B). 

Fig. 4. Construction and validation of a clinical prognosis model. (A) Distribution of coefficients for prognostic genes in LASSO analysis. (B) A 10- 
fold cross-validation for optimizing the selection of parameters in LASSO analysis. (C) Comparison of overall survival time between patients with 
high- and low-risk PAAD. (D) Disparities in the expression of risk genes across the risk groups. (E) Survival rate prediction across 1, 3, and 5 years in 
the training group via ROC curve analysis. (F) Survival disparities between patients with high-risk and low-risk PAAD in the validation group. (G) 
Distribution of risk scores and survival status among different risk groups in the validation group, along with the expression of risk-associated genes 
in the two groups. (H) Survival rate prediction across 1, 3, and 5 years in the training group via ROC curve analysis. 
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3.4. Construction and validation of a gene signature for clinical prognosis based on anoikis-related genes 

A gene signature for facilitating clinical prognosis was developed based on 20 genes associated with anoikis and prognosis. Uti-
lizing LASSO-Cox regression analysis, two genes, CDKN3 and LAMA3, were identified as pertinent for constructing the signatures 
(Fig. 4A and B). The formula for the clinical prognosis gene signature is expressed as mentioned: risk score = (expression of CDKN3) * 
(0.5782) + (expression of LAMA3) * (0.3477). 

In the training group, PAAD patients were classified, per the median risk value of the gene signature, into two risk groups (high and 
low). Kaplan-Meier analysis suggested that the low-risk patients displayed improved OS in comparison to those at higher risk (P =
0.001) (Fig. 4C). The heatmap illustrates the expression of the two risk genes utilized in constructing the gene signatures in patients 
from the two groups (Fig. 4D). Furthermore, the results of ROC analysis demonstrated that the gene signature effectively evaluates and 
predicts patient survival across 1, 3, and 5 years, with values of 0.712, 0.724, and 0.765, respectively (Fig. 4E). 

Moreover, in the validation group, the efficacy of the gene signature in predicting clinical prognosis was examined. Stratification of 
patients with PAAD in the validation group into a high-risk and a low-risk group was executed per the median risk value of the gene 
signature. Kaplan-Meier analysis unveiled that patients in the low-risk group exhibited better OS relative to those in the high-risk group 
(P = 0.028) (Fig. 4F). The heatmap visually represents the expression of the two risk genes utilized in constructing the gene signatures 
in patients from the high-risk and low-risk groups (Fig. 4G). 

Moreover, the results of ROC analysis confirm that the gene signature reliably evaluates and predicts patient survival across 1, 3, 
and 5 years in the validation group, with corresponding values of 0.696, 0.735, and 0.658, respectively (Fig. 4H). 

3.5. Establishment of PAAD prognostic nomogram 

Subsequently, a novel column chart was developed that integrates risk scores with other clinicopathological parameters to enhance 
the prediction of OS rates of patients across 1, 3, and 5 years. This results in optimizing the accuracy of the clinical prognosis of the 
gene signature (Fig. 5A). The calibration curves for the above-mentioned OS predictions of the column chart model we developed are 
illustrated in Fig. 5B. As time progresses, the accumulation of risk in patients categorized as low-risk is observed to be less than that in 
the patients at higher risk (Fig. 5C). 

3.6. Association of the gene signature with immune cell and somatic mutations in clinical prognosis 

Furthermore, the analysis explored whether any association existed between the gene signature and immune cells in terms of 
clinical prognosis. The study examined the relationship between the risk score and the degree of immune cell infiltration. The findings 
revealed a negative correlation between the risk score and the levels of B cells naive, Monocytes, and CD8 T cells, and a positive 
correlation with the levels of Dendritic cells activated. Interestingly, there was no significant correlation observed with the infiltration 
levels of immune cells like phagocytes (Supplementary Fig. 1). 

The “maftools” package was employed to assess the risk groups concerning the disparity in the distribution of somatic mutations 
within the TCGA-PAAD cohort. As depicted in Fig. 6A and B, the high-risk group displayed a broader burden of tumor mutations in 
comparison to the low-risk group, with mutation frequencies of 77 % and 46 % for KRAS, respectively. High-risk patients were more 
correlated with high tumor mutational burden (TMB) values (P = 0.00083) (Fig. 6C). It was noted that patients with low TMB 
exhibited superior OS in comparison to those with high TMB (P = 0.008) (Fig. 6D). This trend persisted across both high- and low-risk 
populations, wherein the OS of patients with low TMB consistently outperformed that of patients with high TMB (P = 0.002) (Fig. 6E). 

Fig. 5. Construction and evaluation of prognostic column charts in PAAD. (A) Column chart assessing 1-year, 3-year, and 5-year survival rates. (B) 
Calibration curve for the column chart. (C) Cumulative incidence rate based on risk stratification. 
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3.7. Drug sensitivity analysis 

The IC50 of each patient with PAAD was assessed using the pRRophetic algorithm. in comparison to the low-risk group, oxaliplatin 
in the high-risk group yielded a higher estimated IC50 value (Fig. 7A). Conversely, lapatinib, paclitaxel, and trametinib in the low-risk 
group displayed higher estimated IC50 values, indicating that high-risk patients are more likely to gain benefit from immunotherapy 
(Fig. 7B–D). We also investigated the relationship between checkpoint inhibitors and risk scores. Our findings suggest a positive 
correlation between the risk score and the expression of PDL1 and SIGLEC15 (Fig. 7E–H). This outcome suggests a higher likelihood of 
low-risk patients benefitting from immunotherapy. 

3.8. Single-cell analysis 

The GSE214295 data set containing three PAAD tissue samples was used for single-cell analysis. Fig. 8A and B illustrate the quality 
control and screening process for single-cell sequencing in PAAD samples. In PAAD tissue, a robust positive correlation exists between 
the measured gene expression and the gene count identified in cells. Conversely, gene expression observed in cells remains unaffected 
by the percentage of mitochondria. To maintain the quality of analyzed cells, cells with genes >2500 and <200 were filtered out, along 
with cells depicting mitochondrial percentages >5 %. PCA analysis of single-cell data is presented in Fig. 8C. A resolution of 1.5 was 
selected based on clustering tree results (Fig. 8D). The heatmap in Fig. 8E depicts the various types of each gene, while UMAP data 
reveal 33 cell clusters with diverse cell types labeled with distinct colors (Fig. 8F). CDKN3 is expressed in clusters 11, 23, and 32, while 
LAMA3 is expressed in clusters 0, 1, 2, 11, 16, 23, 27, 28, 31, and 33 (Fig. 8G). Utilizing the Cellmaker database, relevant genes were 
retrieved and intersected with genes associated with each UMAP cluster to annotate subgroups of different cell clusters (Fig. 8H). 
Fig. 8I demonstrates that the expression of CDKN3 and LAMA3 is associated with epithelial cells. 

3.9. Validation of risk genes 

Furthermore, thirteen PAAD tumor tissues and their corresponding adjacent non-cancerous lung tissues were analyzed for 

Fig. 6. Association between gene signature and somatic mutations in clinical prognosis. (A–B) Waterfall plot of tumor somatic mutations identified 
in patients from the risk groups. Each upper bar chart depicts TMB, with the number on the right indicating the mutation frequency of each gene. 
These columns represent individual patients. (A) High-risk group; (B) Low-risk group. (C) Association between risk score and TMB. (D) Variation in 
overall survival (OS) between patients with high and low TMB. (E) Within high and low-risk patient groups, OS in patients with low TMB 
consistently surpasses that of patients with high TMB. 
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expression differences of CDKN3 and LAMA3 using IHC technology and Western blotting. IHC results demonstrated that the CDKN3 
and LAMA3 levels were elevated in PAAD samples in comparison to paracancerous samples (Fig. 9A and B). Western blotting also 
revealed an elevated level of CDKN3 and LAMA3 proteins in PAAD samples (Fig. 9C and D). 

4. Discussion 

PAAD, characterized as an aggressive tumor, exhibits an extremely poor prognosis among patients. The high degree of hetero-
geneity in PAAD complicates efforts to improve patient outcomes, posing a significant challenge for researchers. The advancement of 
bioinformatics technology has facilitated disease research through the utilization of various public databases. This has resulted in 
advancing tumor research and propelling the exploration of novel therapeutic strategies. Previous evidence underscores the signifi-
cance of constructing scoring models based on risk genes, aiding in the quantification of prognostic evaluation criteria and the 
development of personalized treatments [32–35]. 

In the present study, two PAAD-linked subtypes (cluster A and cluster B) were identified based on 20 prognostically relevant 
anoikis-related genes. Simultaneously, a PAAD-associated clinical prognostic gene signature was developed utilizing these 20 anoikis- 
related genes, featuring two risk genes (CDKN3 and LAMA3). This clinical prognostic gene signature demonstrated precision in 
stratifying patients with PAAD. Furthermore, the correlation between the clinical prognostic gene signature and immune cell and 
somatic cell mutations was assessed in-depth. 

In this study, among the identified PAAD subtypes, cluster B displayed a remarkable survival advantage. Analysis of TME cell 
infiltration revealed a marked heterogeneity between these two subtypes. In the analysis of TME cell infiltration using the ssGSEA 
algorithm, an intriguing finding was observed. Both tumor-inhibiting CD8+ T cells and tumor-promoting immunosuppressive cells 
exhibited high levels of infiltration within the same group simultaneously. This phenomenon is likely attributed to the intricate in-
teractions occurring within the tumor microenvironment. CD8+ T cells play a crucial role in immune responses by targeting and 
eliminating tumor cells. However, tumor cells often evade detection by the immune system through various mechanisms, such as 
recruiting immunosuppressive cells like regulatory T cells and tumor-associated macrophages (TAMs). TAMs are a subset of macro-
phages originating from monocytes, capable of producing immunosuppressive molecules within the tumor microenvironment to 
dampen immune cell activity, thereby facilitating tumor progression. The composition of immune cells in the tumor microenvironment 
undergoes dynamic changes influenced by factors such as tumor advancement, therapeutic interventions, and the host’s immune status 
[36]. Additionally, GSVA analysis indicated that cluster A was notably associated with various pathways, including the P53 pathway, 
cell cycle, and NOTCH pathway. On the other hand, cluster B displayed remarkable associations with pathways like neuroactive 
ligand-receptor interactions, as well as glycine-serine and threonine metabolism. 

The NOTCH signaling pathway, known to regulate various biological processes, including oncogenicity, was a key focus of this 
research [37–39]. Previous research has established that upon ligand binding, Notch receptor Notch intracellular structural domains 
(NICDs) are released, translocating to the nucleus. There, they bind to the transcriptional complex CSL/RBPJκ, activating the tran-
scription of downstream target genes. This activation can further accelerate the progression of cancers, including PAAD [39–41]. 

Fig. 7. Drug sensitivity analysis. Oxaliplatin, lapatinib, paclitaxel, and trametinib exhibit distinct IC50 values across the risk groups. (A) Oxaliplatin; 
(B) Lapatinib; (C) Paclitaxel; (D) Trametinib. (E) PDL1 is differentially expressed between high and low expression groups. (F) The risk score is 
positively correlated with the expression of PDL1. (G) SIGLEC15 is differentially expressed between high and low expression groups. (H) The risk 
score is positively correlated with the expression of SIGLEC15. 
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Notably, a study by Chen found that the Notch signaling pathway can be activated by RHBDL2, a highly active protein in PC tissues. 
The elevated level of RHBDL2 in PC tissues promotes the proliferative, migratory, and invasive capacities of PC cells both in vitro and 
in vivo, ultimately contributing to the development of PAAD [42]. Moreover, Wang et al. reported the existence of a positive asso-
ciation between Notch and IL-17. Their findings suggested that Notch activity can be upregulated by the IL-17 axis in vitro through the 
classic NF-κB pathway, synergistically promoting the development of PAAD [43]. Based on these observations, it is conjectured that 
the NOTCH signaling pathway may function as a crucial factor contributing to the poor prognosis of cluster A. Targeting the NOTCH 
signaling pathway could potentially aid in improving the survival status of patients within this cluster. 

The clinical prognostic gene signature established herein effectively stratifies patients with PAAD, per their risk scores, into high- 
and low-risk groups, with the latter exhibiting a more favorable prognosis. The consistency in ROC results between the training and 
validation groups underscores the robust clinical predictive capability of the risk score. With the limited data available, we observed 
that patients in the low-risk group with pancreatic cancer had stable survival outcomes during a follow-up period of more than 7 years. 
This indicates the strong predictive capability of the model we developed and highlights significant differences in the prognosis of 
pancreatic cancer patients. While it is possible that the observed outcomes are influenced by the small sample size of our included 
studies, these findings do not undermine our conclusions. Furthermore, IHC validation confirmed the significant upregulation of the 
genes used to construct the model, namely CDKN3 and LAMA3, in PAAD tumor samples. CDKN3, belonging to the protein phosphatase 
family, has a pivotal function in cell cycle regulation [44,45]. Its involvement has been documented across various cancers, such as 
breast, prostate, ovarian, glioblastoma, hepatocellular, and renal cancers [46–49]. Ma et al. suggest that PSMD12, in collaboration 
with CDKN3, may influence cell cycle regulation through ubiquitination. Specifically, PSMD12 could modulate CDKN3 levels by 
interacting with it and reducing the ubiquitination level, thereby contributing to the development of PAAD [50]. LAMA3 encodes the 
α3 chain of laminin-5, a significant cell membrane component regulating cell adhesion and migration [51,52]. P Previous research 
indicates that LAMA3 accelerates tumor cell growth and invasion, positioning it as a promising target for cancer therapy [53]. A study 
by Yang reported a positive correlation between LAMA3 and blood flow in PDAC, suggesting LAMA3 as a possible therapeutic target 
and prognostic marker for this type of cancer [54]. While some studies have explored the mechanism of action of LAMA3 in various 
human tumors, there is a scarcity of research reports on its role in PAAD. Consequently, further investigations are warranted to unravel 
the molecular mechanisms that underlie LAMA3 in the context of PAAD. 

In our current investigation, we observed a higher frequency of KRAS mutations in patients within the high-risk group relative to 
the low-risk group (77 %). Oncogenic KRAS mutations represent a pivotal event in the development of PC. The KRAS protein functions 
as a crucial signaling molecule, acting as a switch to regulate the activity of multiple intracellular signaling pathways. Mutations in the 
KRAS gene can lead to the sustained activation of the KRAS protein, preventing it from terminating signaling at the appropriate time. 
This sustained activation of KRAS continuously stimulates various intracellular signaling pathways and transcription factors, including 
MAPK, PI3K/AKT, and Raf. This, in turn, contributes to processes such as cell proliferation, migration, transformation, and survival. 
Through these mechanisms, KRAS mutations can foster uncontrolled proliferation and survival of PC cells, ultimately promoting the 
development and progression of PC [55–59]. We posit that this heightened frequency of KRAS mutations may be a contributing factor 
to the survival disadvantage observed in the high-risk group. Among anoikis-related genes, several have been identified to have 
connections to RAS. For instance, RAS mutations drive proliferative chronic myelomonocytic leukemia through PLK1 [60]. Moreover, 
heightened MET Translation and Signaling support K-Ras-driven proliferation in conditions of anchorage-independent growth [61]. 
Furthermore, EPHA2 has been linked to erlotinib resistance in K-RAS mutant pancreatic cancer [62]. As KRAS stands as the key 

Fig. 8. Single-cell data analysis of characteristic genes for constructing gene signatures. (A) Quality control of single-cell data. (B) Correlation 
analysis between sequencing depth and mitochondrial genes. (C) Principal component analysis (PCA) of single-cell expression profile. (D) Selection 
of appropriate resolution based on the clustering tree. (E) Heat map displaying the marker genes for each subgroup. (F) UMAP algorithm illustrating 
33 cell subpopulations. (G) Expression of characteristic genes for constructing gene signatures in various cell subpopulations. (H) Annotation of 33 
cell subpopulations into 8 subpopulations. (I) Correlation between characteristic genes and cell subpopulations in constructing gene signatures. 

Fig. 9. Validation of risk genes for modeling. (A,B) IHC demonstrates the protein levels of CDKN3 (A) and LAMA3 (B) in tumor and normal samples. 
(B–D) Protein blot analysis depicting the expression of CDKN3 (C) and LAMA3 (D). 
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oncogene in over 80–90 % of PAAD cases, it represents a primary target for these oncogene-addicted tumors. However, the complex 
and diverse nature of KRAS mutations poses a significant challenge in identifying effective targeted therapeutic strategies for PC. 

This investigation possesses certain limitations. First, our analysis relied solely on public data sourced from the TCGA database and 
the GEO database. Second, our experimental procedures were limited to IHC experiments conducted on genes modeled by PAAD; we 
did not conduct in vivo and in vitro experiments for validation. Consequently, there is a need to broaden the sample size and sub-
stantiate the robustness of PAAD-associated subtypes, as well as assess the clinical significance of the developed gene signature through 
additional prospective studies in the future. 

5. Conclusion 

The study unveiled two apoptosis-associated subtypes of PAAD, each demonstrating distinct clinical outcomes. The clinical gene 
signature developed in this investigation proves its efficacy in accurately predicting patient prognosis and guiding clinical medication 
for patients with PAAD. In summary, this investigation is important for further understanding the loss-of-nest apoptosis mechanism in 
PC and enhancing the current landscape of personalized treatment for patients with PAAD. 
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