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Abstract
In regards to numerical cognition and working memory, it is an open question as to whether

numbers are stored into and retrieved from a central abstract representation or from sepa-

rate notation-specific representations. This study seeks to help answer this by utilizing the

numeral modality effect (NME) in three experiments to explore how numbers are processed

by the human brain. The participants were presented with numbers (1–9) as either Arabic

digits or written number words (Arabic digits and dot matrices in Experiment 2) at the first

(S1) and second (S2) stimuli. The participant’s task was to add the first two stimuli together

and verify whether the answer (S3), presented simultaneously with S2, was correct. We

hypothesized that if reaction time (RT) at S2/S3 depends on the modality of S1 then num-

bers are retrieved from modality specific memory stores. Indeed, RT depended on the

modality of S1 whenever S2 was an Arabic digit which argues against the concept of num-

bers being stored and retrieved from a central, abstract representation.

Introduction

“What are numbers?What is the nature of arithmetical truth?” ~ Friedrich Ludwig Gottlob
Frege

When a number is perceived, how does the human brain process it? Does it store it in the same
modality in which it was presented, as in a digit or a number word? Or does the brain translate
the number from diverse surface forms into a central, abstract representation of magnitude?
Several number cognition models have emerged over the past two decades which differ on this
point.

1.1. Abstract modular model
Michael McCloskey has led the way in advancing the idea that numbers are stored as a central,
abstract representation. Based upon the analysis of studies with acalculic patients, McCloskey
and his colleagues reported several dissociable attributes in regards to how the brain processes
numbers and performs calculations. From these dissociations, they developed a framework for
mathematical cognition [1, 2, 3]. One of the observations McCloskey and colleagues made was
that some brain-damaged patients, when performing calculations, could recognize the correct
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answer from several possible choices but were unable to produce the correct answer (i.e. say or
write it) when no potential answers were shown. Other patients were able to do the converse,
calculate and produce their own correct answers but were unable to recognize a correct answer
from several shown. Since both types of patients were able to arrive at a correct answer in one of
the conditions, it seemed that the ability to calculate was present in both. From this, they con-
cluded that calculation procedures are dissociable from number recognition and production. A
second observation made was that since number recognition could be impaired while not affect-
ing number production, and vice versa, that number recognition and number production were
dissociable from each other and were associated with two distinct systems in the brain. Taking
the analyses a step further, they made the assumption that the number recognition tasks accu-
rately measured number comprehension and in so doing they also concluded that number com-
prehension is dissociable from number production [1]. Another condition which was
manipulated in some studies was that when subjects were asked to recognize and produce
answers to math problems, the numbers were also presented in different surface forms—or
modalities. The numbers varied between Arabic digits, such as “5”, and number words, such as
“five”. From this data a third observation was made that some patients demonstrated a dissocia-
tion between number modalities. For example, one patient was able to perform well on a magni-
tude comparison task with Arabic digits but not with number words. Another patient
demonstrated the converse [1]. Based upon the conclusion above that the number comprehen-
sion system is distinct and dissociable from the rest of the math system in the brain, and since
some patients were able to answer correctly with at least one modality even when they couldn’t
answer in the other, they concluded that number comprehension is not only a separate system
but that it is amodal, in other words that it is abstract in its representation of numbers.

Using these conclusions as a foundation, McCloskey and colleagues proposed the abstract
modularmodel as shown below in Fig 1. It is comprised of three distinct systems: number com-
prehension, calculation and number production. Central to the model is the abstract represen-
tation module which interconnects all of the systems. In the input stage of this model, the
number comprehension system translates numbers from whichever modality may be encoun-
tered and encodes them into an abstract representation. From there, the abstract representa-
tions can be used to calculate or to produce numbers. The final output can be translated into
whatever modality is called for.

1.2. Encoding-complex model
In contrast to the above framework, [4] proposed the encoding-complexmodel in which there
is no assumption of a central abstract representation of number, but rather that there is a net-
work of specific, notation-dependent number representations which can activate each other.
Each representation is capable of assisting with number comprehension, number production
and calculation. They proposed this model after analyzing the Arabic-number-reading-error
data fromMcCloskey and colleagues which showed that even when a patient was not able to
read a number correctly, their incorrect answers still followed a pattern. For example, if the
answer was supposed to be in the “teens”, the incorrect answer which was produced or recog-
nized would likely not be in the 0–10 range or in the 20–90 range but would also be in the
“teens” [1]. Campbell and Clark conducted a regression analysis which looked at multiple fac-
tors which had a possible effect on number processing, such as odd/even agreement, numerical
nearness, and visual similarity. They found that the convergence of difficulty with two or more
of these factors produced a higher probability of an incorrect answer being chosen. Since two
of these factors, visual and numerical similarity, were based on visual stimuli, and since these
factors had an effect on the patient’s ability to produce numbers, and since in McCloskey and
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colleague’s model the visual stimuli should go no further than the input stage (before numbers
are translated into an abstract code and well before number production), Campbell and Clark
reasoned that these findings were inconsistent with the abstract modularmodel. They also
found the effect caused by odd/even agreement, which in the abstract modularmodel should
be isolated in the calculation system, to be inconsistent [4]. They proposed that the multiple
numerical and visual stimuli, which appeared to be present when the incorrect answers were
chosen, could be explained more accurately by stating that it was the convergence of the multi-
ple stimuli that made the response difficult. In other words, due to a damaged brain area, the
patient would be receiving multiple visual and numerical cues at the same time that would
impair their ability to choose a response. They noted that this explanation fit well with other
studies which have demonstrated similar models for other aphasic conditions [4], and they
contended that the encoding-complexmodel fit the observations of their experiments more
accurately than the abstract modularmodel.

1.3. Triple code model
Another model that is popular currently is the triple codemodel proposed by Stanislas Dehaene
[5] shown in Fig 2 below. Aspects of Dehaene’s model can be seen as a combination of the
above two models. It consists of three separate yet integrated neural codes. One code, located
in the left and right inferior ventral occipito-temporal areas, is responsible for processing Ara-
bic digits. Another code, located in the left perisylvian area, is responsible for processing num-
ber words as well as the algorithms used for calculating and the math facts that are stored in
memory. Both of these codes are modality and notation-dependent, similarly to Campbell and
Clark’s encoding-complexmodel. The third code in Dehaene’s model, located in the left and

Fig 1. McCloskey’s Abstract Modular Model—Numbers are inputted from a specific modality such as digits or number words and are translated
into an abstract representation fromwhich they can then be outputted into a specific modality via either calculation or number production (The
figure is based on Dehaene, 1992; page 28).

doi:10.1371/journal.pone.0145614.g001
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right intraparietal sulci, especially in the horizontal intraparietal sulci (hIPS), is responsible for
abstract, analogue representations of number. This is the code which allows for making com-
parisons and for comprehending magnitude. Also similarly to the encoding-complexmodel,
Dehaene’s three codes are interconnected and can be called upon depending on the task. In
regards to the semantic representation of number, Dehaene has proposed that the magnitude
representation area, hIPS, is the module where abstract representations of numbers are
encoded. His model provides for a direct path between the Arabic and verbal codes which
bypasses the magnitude code; however, this is only in instances where the conscious meaning
of number is not required. For all number processing and calculations in which the meaning of
number must be comprehended, the numbers must be encoded into the same abstract repre-
sentation area (i.e. magnitude area) irrespective of the modality in which the number was first
presented [6, 7, 8]. In this sense, the triple codemodel is very similar to McCloskey’s abstract
modularmodel in that there is a central abstract area for the representation of number which
acts as a bottleneck for number cognition.

It is to note that Campbell and Epp [9] proposed a numerical cognition model which com-
bined aspects of the encoding-complex and triple codemodels. Their revised model assumed
modular numerical representation, so concerning the question of whether numbers are stored
as notation-dependent or as amodal abstract representations, this encoding complex version of

Fig 2. Dehaene’s Triple Code Model—Numbers are stored in three individual yet integrated codes. The Analog Magnitude code is an abstract
representation that provides the basic sense that gives meaning to numbers (The figure is based on Dehaene, 1992; page 31).

doi:10.1371/journal.pone.0145614.g002
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the triple codemodel would hold the same prediction as the encoding-complexmodel: that is a
prediction for notation-dependent numerical representations.

1.4. Evidence for central abstract representation being the default
representation
Many in the math cognition field lean toward the idea of a central abstract representation of
number being the default representation with which numbers are processed in the human
brain. In addition to the lesion studies described above by McCloskey and colleagues, further
evidence in support of this view is summarized below.

One stream of evidence which supports the central abstract representation of number stems
from observing effects which are independent of the presented modality of numbers. In their 2009
paper [10], Cohen Kadosh andWalsh summarized several of these studies. One example of this is
the numerical distance effect (i.e. subjects have a faster RT as the numerical distance between two
numbers decreases). Several studies have shown that the numerical distance effect is demonstrated
in the same way irrespective of the modality in which the numbers were presented. Another exam-
ple is the SNARC effect (i.e. subjects have a faster RT when responding with their right hand for
numbers on the right side of the mental number line, and a faster RT with their left hand for num-
bers on the left side of the mental number line), which has also been shown to be independent of
the modality of the presented numbers. Also, in a study with children, Thevenot and Barrouillet
[11] reported that, in line with predictions of the triple code model, encoding times were longer
for numbers to be used in addition and subtraction than for numbers to be used for comparison.

Another stream of evidence for the central abstract representation of number comes from
functional magnetic resonance imaging (fMRI) studies. First, the hIPS area of the brain has
been shown to be more activated by tasks in which calculations were done with numbers or
when comparing numbers than when numbers were simply viewed and recognized [12, 13].
From this it has been concluded that, since calculation and comparison utilize a quantitative
representation of numbers more so than does the recognition of numbers, a greater activation
in the hIPS which correlates with those tasks may suggest that the hIPS is responsible for
abstract, quantity representations [14]. Second, the hIPS area has also been shown to have
greater fMRI activation for tasks that require approximation rather than tasks that require pre-
cise calculation even when the difficulty of the task is controlled for [12, 14, 15, 16]. This also
leads to the conclusion that the hIPS processes abstract quantity. Third, the hIPS is activated
regardless of the modality in which numbers are presented [13, 17]. In their 2003 paper [14],
Dehaene and colleagues reviewed several fMRI studies in order to examine a three-dimensional
intersection of the brain which was activated during various numerical tasks. They found that
the hIPS was the one area that was activated during all of the numerical tasks (i.e. during digits,
number words and non-symbolic dot patterns). If the hIPS is responsible for processing
abstract quantity, and if the presented modality of numbers does not affect its activation, an
argument can be made that the hIPS is acting as an area for abstract numerical representation
that is both separate and amodal. Considered together, the observed effects which are indepen-
dent of number modality, as well as the evidence for the activation of one brain area which is
activated in both symbolic and non-symbolic number tasks, seems to lead to the conclusion
that number representation is abstract and may be centrally located in the hIPS.

1.5. Evidence against a central abstract representation being the default
representation
Although the idea of a central abstract representation area remains popular, there are also crit-
ics of it. Some of the arguments against abstract representation being the default representation
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for numbers stem from perceived confounds in the studies which support it. As an example,
McCloskey and colleagues [1], based the logic which led to their abstract modularmodel on
the conclusion that number comprehension is dissociable from number production and calcu-
lation. However, a close inspection reveals that the actual task used by McCloskey and col-
leagues to measure number comprehension was a number recognition task. The assumption
that number recognition tasks measure number comprehension may be an overreach. Factors
which are further upstream than number comprehension could be causing this number recog-
nition impairment. It seems more likely that poor performance in the recognition task could
simply signify an impaired ability to encode visually presented numbers.

In regards to the evidence from effects which are independent of the presented modality of
numbers, several difficulties with the conclusions are noted. First, as Cohen Kadosh and Walsh
[10] pointed out, the majority of evidence in favor of abstract coding is based upon null results
(i.e. the absence of a difference between number modality and the behavioral output or blood
oxygenated level dependent [BOLD] response). The observations of the null results may simply
be due to not having enough statistical power or not having sensitive enough paradigms. Sec-
ond, the fMRI evidence summarized above assumes that because the same area is being acti-
vated, the same representation of number is active. However, such data may also be the
consequence of activating a comparison process common to several representations rather
than activating a core representation [18]. Third, several adaptation designs relied on the cru-
cial assumption that participants were not paying conscious attention to the numerical content
of stimuli. However, this assumption was probably violated in several studies [18]. Fourth,
fMRI resolution in several studies may not have been precise enough to ascertain whether it
was one brain process or several which were occurring in a given activated area [10, 18, 19, 20].
Fifth, several studies attempting to measure an abstract number representation may have had
serious visual stimulus property confounds [21, 22, 23].

Another stream of evidence against a central abstract representation being the default repre-
sentation for numbers in the human brain is derived from studies which have observed signifi-
cant differences which are dependent on number modality. Cohen Kadosh andWalsh [10]
summarize several such studies in which participants are presented with differing surface
forms of numbers. One study utilized the size congruity paradigm in which subjects compared
numbers according to physical size and attempted to ignore numerical magnitude. When
incongruent trials have slower RTs than congruent trials, it signifies that automatic processing
of numbers is occurring. In this study, participants did not demonstrate automaticity of num-
ber processing with Kana script (Japanese number words), but they did with Kanji (Japanese
digits) [24]. Another study had participants compare digits and number words by comparing
the effects of numbers in the previous trial to the current one. When there was a short
response-to-stimulus-interval they observed an interaction between different number modali-
ties and the numerical distance in reaction time, between modalities and modality repetition
and error rates, and between modality and the magnitude distance between the number in the
previous trial to the number in the current trial. They noted that these observations argue for a
non-abstract representation of number [25]. In yet another study, the participants decided
whether two simultaneously presented numbers were the same or different. In one condition
digits as well as number words were used in a mixed, random manner. When the participants
based their decision on physical differences as opposed to numerical magnitude, a distance
effect was observed which was independent of number modality [26].

Another interesting surface form study was conducted in 2004 by Campbell, Parker, and
Doetzel [27]. In experiment 1 of their study, participants were presented with simple addition,
multiplication, and parity tasks (the numbers were either Arabic digits or written number
words). As well as generally finding that written number words are correlated with slower RTs
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and worse accuracy (which is consistent with studies utilizing surface form), they also found a
parity effect in which participant’s performance decreased (RT and accuracy) when adding odd
numbers more so than with even and which decreased further when written number words
were shown as contrasted with Arabic digits. As this parity effect was only observed for the sim-
ple addition tasks, not with multiplication, it was concluded that the performance costs were not
caused in the encoding stage but rather that surface form affected calculation processes. This
argues against a central abstract representation model as in such a model the original surface
form of numbers should not affect processes after the encoding stage. In experiment 2 as well as
in a previous study [28], participants reported the strategy they utilized after each trial of a sim-
ple addition/parity task (2004) or simple addition task (2001). In both, procedural strategies
were reported much more often with written number words while recall strategies were used
more so with Arabic digits. The results of these experiments show that surface form affects cen-
tral processing of cognitive arithmetic and would not be expected if numbers were converted
from their original surface form into a central, abstract, amodal representation.

Although not a surface form study, Thevenot and Barrouillet [29] observed an effect cogent
to this discussion. They conducted experiments in which participants were asked to either add,
subtract or compare two successively presented numbers. After viewing the first number the
participants would press a key in order to be presented with the second number. They found
that participants were faster to process numbers when they were going to compare it to the sec-
ond number as opposed to when they were going to add or subtract. Since this seemed to dem-
onstrate that the participants were using difference encoding processes for comparing and
calculating numbers, they concluded that this argued against a central abstract model and
agreed more with an encoding complex version of the triple-code model—in other words, a
version of the triple code model that does not require the magnitude representation area to be
the default area for numbers to be stored.

Finally, a surface form study which provides both behavioral and neuroscience evidence for
modality specificity was conducted in 2004 by Szűcs and Csépe [30]. They reported the
numeral modality effect (NME) which showed interactions with the presentation of different
number modalities. The paradigm used in this study compelled participants to retrieve a num-
ber from memory that had previously been presented as one of three different modalities (Ara-
bic digit, written number word, or aurally heard number word). After retrieving the number
from memory, the participants added it to a second number which was always an Arabic digit
and then confirmed whether a third number (also always a digit) was the correct sum or not.
Since the second presented number was always an Arabic digit, and since the number that was
presented previously was retrieved from memory, if the first number was translated into an
abstract representation then the task of adding the two numbers and verifying the answer
should have produced RTs and event-related potential waveforms which were not dependent
on the modality of S1. However, the behavioral and event-related potential (ERP) analysis
showed an effect that was dependent of the modality of S1, between the conditions in which S1
was a written number word or an aurally heard number word, which argues for notation-
dependent representations. It is to note that the RTs and ERP amplitudes of the condition in
which S1 was an Arabic digit was in between the other two conditions and no significant effect
was observed between them.

1.6. Summary of study
Our study sought to provide additional evidence concerning whether number storage and
retrieval relies on notation specific processes. We utilized the NME paradigm introduced by
Szűcs and Csépe [30] in three experiments. As shown in Fig 3, in all experiments participants

Arithmetic Memory Modality

PLOS ONE | DOI:10.1371/journal.pone.0145614 December 30, 2015 7 / 20



were presented with a single-digit number (1–9) at the first (S1) and second (S2) stimuli. S1
was presented briefly and after disappearing was followed by S2 and a third (S3) stimulus
shown simultaneously. Participants were instructed to add S1 and S2 and then verify whether
the number at S3 was the correct sum or not. In the present series of studies we used 2x2x1 and
2x2x2 factorial designs instead of the 3x1x1 design employed by Szűcs and Csépe [30]. The par-
adigm was changed in this way in order to control for the possibility that direct encoding into
the Arabic digit modality was being facilitated, either explicitly or implicitly, by S2 always
being an Arabic digit. In order to further generalize findings we also fully randomized the trial
order (S1xS2 modality) while the original study used a blocked design of S1 modality.

In Experiment 1 (2x2x1 design) the numbers at both S1 and S2 varied randomly in regards
to their presentation modality. We utilized the Arabic digit (e.g. “8”) and written number word
(e.g. “eight”) modalities in order to observe whether the NME could be replicated with them. In
the previous experiment [30], the effect was only observed between the written number word
and aurally heard number word conditions. We expected that the modality (Arabic digit or
written number word) of S1 would affect the processing time of S2/S3. That is, the main depen-
dent variable was the RT measured at S2/S3. We argued that when S2 and S3 appeared, partici-
pants had to evaluate S2 (i.e. perceptually process it and access its meaning), add S1 to S2, and
then decide whether S3 matched the solution. These steps obviously required that participants
keep S1 in their working memory and retrieve it when necessary. Hence, we reasoned that the
RT difference measured at S2/S3 would be related to the differential retrieval speed of S1 from
modality specific memory stores [30]. (It is to note that a mere speed difference in function of
the modality of S2/S3 is uninteresting as it probably simply reflects encoding differences in
function of stimulus modality).

Fig 3. Design of experiments. Trials started with a fixation cross. In experiment 1 the participants were presented with numbers 1–9 as either an Arabic digit
or a written number word at S1 and S2 and then as an Arabic digit at S3. S2 and S3 were shown simultaneously with the later being shown to the right of the
screen. The participants were to remember S1, add it to S2 and then verify whether S3 was the correct sum. In experiment 2, the same paradigm was
employed as in experiment 1 using Arabic digits and dot matrices. In experiment 3, S3 was also presented as either an Arabic digit or a written number word.

doi:10.1371/journal.pone.0145614.g003
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Experiment 2 repeated the same design using dot matrices instead of written number words
to replicate the NME and to observe how dot matrices, considered to be more abstract, are pro-
cessed relative to written number words and Arabic digits. Experiment 3 extended Experiment
1 by investigating what happened when S3 was also randomly presented as either a digit or a
number word (2x2x2 design). This allowed for observing whether the modality of S3 (always
an Arabic digit in Experiment 1) led to preferential processing of Arabic digits.

Experiment 1

2.1. Hypothesis of Experiment 1
Experiment 1 replicated and extended the design of the Szűcs and Csépe [30] study. The
dependent variables were RT and verification accuracy measured for solutions, that is at S2/S3.
We hypothesized that if RT, measured at S2/S3, depends on the modality of S1, then numbers
are being retrieved from modality specific memory stores as opposed to being retrieved from a
central abstract representation area. The reasoning for this is that if numbers are stored as
notation-dependent representations, then the modality of S1 is indicative of the modality of
the representation that is being retrieved in order to add to the number at S2. If, on the other
hand, the number from S1 is translated into a central abstract representation, then the partici-
pant would retrieve numbers from that abstract representation in order to add to the number
at S2, making the original modality of S1 inconsequential in regards to RTs.

2.2. Methods of Experiment 1
2.2.1. Ethical Approval. This study as well as the consent procedure was approved by the

Ethical Committee of the Department of Psychology at the University of Cambridge. Partici-
pants provided written consent to participate after reading the information sheet and being
given the opportunity to ask questions.

2.2.2. Subjects. Twenty adults (ages 18–35; median age: 23) from the Cambridge, UK area
participated in this study. All were students, nine of which were engaged in graduate studies
and the rest were undergraduates. Twelve participants were female and all reported themselves
as being unimpaired in regards to math ability.

2.2.3. Stimuli and procedure. Participants sat in front of a laptop at a table in a comfort-
able chair. They were given instructions concerning the task and were given the opportunity to
ask questions and seek clarification. After a practice trial to familiarize them with the paradigm,
they participated in 4 blocks consisting of 150 trials each. They were permitted to rest for as
long as needed between each block. The stimulus presentation was written in the Python lan-
guage using the program PsychoPy [31]. During each trial, participants would be presented
with a blank screen for 1000 ms after which a fixation cross would appear in the center of the
screen for 200 ms. After a 500 ms pause, they would then be presented with the first stimulus
(S1) for 500 ms. S1 was a randomly chosen number (1–9) that would be randomly presented as
either an Arabic digit (A) or a written number word (W). After a 100 ms pause following the
disappearance of S1, they would then be presented simultaneously with the second (S2) and
third (S3) stimuli. S2 was also a randomly selected number (1–9) that would be randomly pre-
sented as either the A or the W condition. Just as with S1, it would be presented in the center of
the screen. S3 was presented on the right side of the screen. It was always an Arabic digit and
was either the correct sum of S1 and S2 or it was not, which was decided at random. It was cor-
rect about half of the time. If it was not the correct sum, it was incorrect by either +1, -1, +4, or
-4 each about ¼ of the time chosen randomly. S2 and S3 would stay on the screen for 2500 ms
or until the participants chose a response. If S3 was the correct sum, participants were
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instructed to press the “L” key. If not, they were instructed to press the “A” key. We chose to
vary the Arabic digits and number words within the trial blocks.

2.2.4. Analysis. The data were analyzed with a Correctness x S1 Modality x S2 Modality
ANOVA. The effect size will be communicated by partial eta squared (Partial η2).

2.3. Results of Experiment 1
2.3.1. Effect of the modality of S1 and S2 on the RTs. RTs are shown in Fig 4. Data were

assessed by a Correctness x S1 modality x S2 modality repeated-measures ANOVA. The .95
confidence intervals were computed for repeated-measures ANOVA (see Hollands and Jar-
masz [32]). There was an S1 modality x S2 modality interaction (AA = 992 ms, WA = 1085 ms,
WW = 1134 ms, AW = 1159 ms; S1 Modality x S2 Modality: F(1,19) = 34.067, p<0.0001; Par-
tial η2 = 0.32) which shows that there was no impact on the retrieval speed of S1 when S2 was a
written number word; however, when S2 was an Arabic digit it was processed quicker when it
was preceded by a digit rather than a written number word. According to S1 modality x S2
modality Tukey post hoc contrasts, there were significant differences between all conditions
except between AW andWW (AW vs WW: p<0.3109; AA vs. AW: p<0.0002; AA vs. WA:
p<0.0002; AA vs. WW: p<0.0002; AW vs. WA: p<0.0005; WA vs. WW: p<0.0162). In addi-
tion to this, the RTs were 33 ms faster in all conditions of S2 when S1 was an Arabic digit as
contrasted to when it was a number word (1109 ms vs. 1076 ms; main effect of S1 Modality: F
(1,19) = 12.833; p<0.001; Partial η2 = 0.31). The RTs were also 108 ms faster in all conditions
of S1 whenever S2 was an Arabic digit (1147 ms vs. 1039 ms; Main effect of S2 Modality: F
(1,19) = 76.484; p<0.0001; Partial η2 = 0.56). In regards to the effect of correctness of the pre-
sented sum at S3, The Arabic digit at S3 was responded to 65 ms faster when it was the correct
sum as opposed to when it was incorrect (1060 ms vs. 1125 ms; Correctness: F(1,19) = 39.998,
p<0.0001). There was no interaction between the correctness of S3 and the modalities at S1
and S2 (Correctness x S1 Modality x S2 Modality: F(1,19) = 2.641, p<0.1206).

Fig 4. S1 Modality x S2 Modality. Vertical bars denote 0.95 confidence intervals for repeated measures ANOVA (Hollands & Jarmasz, 2009). S1 and S2
modality is signified by ‘A’ and ‘W’; i.e. Arabic Digit (A) vs. Written Number Word (W). As an example, AW signifies an Arabic digit at S1 and a written number
word at S2.

doi:10.1371/journal.pone.0145614.g004
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2.3.2. Effects on accuracy. Accuracy was also assessed by a Correctness x S1 modality x S2
modality ANOVA. There were no significant effects in regards to accuracy, including specifi-
cally no effects for the S1 Modality (p = 0.22), the S1 Modality x S2 Modality (p = 0.3), or the
Correctness x S1 Modality x S2 Modality (p = 0.26) (See Table 1 for accuracy rate).

2.4. Discussion of Experiment 1
Results confirmed and extended the effect observed from Szűcs and Csépe [30]: in the trials in
which S2 was an Arabic digit, when S1 was also an Arabic digit the RTs at S2/S3 were signifi-
cantly faster than when S1 was a written number word. Importantly, this means that RT
depended on the modality of S1. S1 had a maximum potential encoding time of 600 ms, hence
there was ample time for encoding S1 and for it to be available to be retrieved from memory at
the time of measuring RT. Since there should be no RT difference if S1 is always stored into
and retrieved from a central representation to always be added to an Arabic digit at S2, our
finding seems to indicate that the numbers from S1 were being retrieved from modality depen-
dent representations. The results, in this condition, similarly to the results of Szűcs and Csépe
[30], lead us away from the idea that numbers are stored in a central abstract representation
and toward the conclusion that numbers are stored in a modality-dependent manner. It is to
note that these results extend the findings from Szűcs and Csépe [30] as in that study a signifi-
cant effect was only observed between the aurally heard and written number word conditions
and not between Arabic digits and written number words as is shown here.

We also included a condition, varied randomly, in which S2 was a written number word.
This was to control for the possibility that direct encoding into the Arabic digit modality was
being facilitated in previous experiments, either explicitly or implicitly, by S2 always being an
Arabic digit. Irrespective of the modality of S2, the RTs (measured at S2/S3) were faster when-
ever S1 was an Arabic digit. This leads us to the conclusion that presenting S2 as an Arabic
digit in all trials in previous experiments did not preferentially bias the participants to process
digits. However, as well as confirming the validity of previous experiments, introducing this
new condition also resulted in an unexpected phenomenon. In the trials in which S2 was a writ-
ten number word, there was not a significant difference in RTs based on the modality of S1.
This lack of significance could be interpreted as the RTs being independent of the modality of
S1, which would point towards the central abstract representation hypothesis as being correct.
Indeed, if this had occurred in both conditions, this would be the most reasonable conclusion.
However, this did not occur in both conditions, so what can be drawn from these results which
at first glance appear to contradict? First, it can be safely assumed that the two primary condi-
tions in this experiment (S2 = Arabic digit & S2 = written number word) are not causing nor
are correlated with different encoding processes at S1. In other words, participants are likely
not encoding S1 into a domain specific representation when S2 will be a Arabic digit and into a
central abstract representation when S2 will be a written number word. Simply put, this is
because the participants could have had no reasonable idea as to which modality S2 would be

Table 1. Overall accuracy rate (percent correct) for all three experiments. S1, S2, and S3 (where shown) modality is signified by ‘A’ and ‘W’; i.e. Arabic
Digit (A) vs. Written Number Word (W). As an example, AWW signifies an Arabic digit at S1, a written number word at S2, and a written number word at S3.

Conditions for Exp. 3 AAA AAW AWA AWW WAA WAW WWA WWW

Conditions for Exps. 1,2 AA AW WA WW

Exp. 1 96% 95% 95% 95%

Exp. 2 97% 88% 88% 87%

Exp. 3 94% 84% 93% 83% 95% 89% 95% 89%

doi:10.1371/journal.pone.0145614.t001

Arithmetic Memory Modality

PLOS ONE | DOI:10.1371/journal.pone.0145614 December 30, 2015 11 / 20



presented as in any given trial as the modalities were varied randomly within blocks. Second,
when interpreting results, its more reasonable to accept a condition which produces an effect,
all else being relatively equal, over a condition which does not produce an effect. When an
effect is not observed it does not mean that an effect does not exist; however, the converse can-
not be as strongly stated for an effect that is observed. Third, in the condition in which S2 was
an Arabic digit, no other explanation apart from notation-dependent encoding appears to be
able to reasonably explain why the RTs at S2/S3 would be dependent on the modality of S1,
assuming that 600 ms was enough time to initially encode S1. Fourth, there is a reasonable
explanation as to why there was no effect observed in the condition in which S2 was a written
number word. Taking into account that RT’s were significantly longer when S2 was a number
word as compared to when it was a digit, it seems likely that the longer encoding time that it
takes to interpret S2 when it is a written number word may mask significant time differences in
retrieving S1 (see Fig 5). This would also suggest that the retrieval of S1 and the encoding of S2
happen in parallel rather than sequentially (see for example the perceptual flow model of Erik-
sen and Schultz [33]). This seems biologically most feasible given that the human brain is a
heavily parallelized, rather than sequential, processing system. Hence, participants likely start
to retrieve S1 whenever it becomes necessary and economical to have it in working memory
(for example, at the presentation of S2). In parallel with this retrieval process, they also start to
encode S2. When both S1 and S2 become available (S1 retrieved and S2 encoded) they carry
out the required operation. When encoding S2 takes a short amount of time (S2 is an Arabic
digit), it is possible for S1 retrieval differences to manifest in RT outcomes. In contrast, when
S2 encoding takes more time (S2 is a written number word), by the time S2 is encoded, S1 had
already been retrieved from both Arabic andWritten modalities. Hence, retrieval speed differ-
ences in function of S1 modality only manifest when S2 encoding is relatively fast.

Fig 5. A = Arabic digit & W = written number word. This figure demonstrates how the longer encoding time of W at S2 would mask RT differences if S1
retrieval and S2 encoding occurred in parallel. In the AW condition, even though A may be retrieved more quickly, the participant would not be able to answer
until W had been encoded which would make the RT observed indistinguishable from the WW condition.

doi:10.1371/journal.pone.0145614.g005
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Another point to consider is that Arabic digits and written number word surface forms have
been shown to elicit different arithmetical strategies (retrieval or calculation) from participants
[27, 28]. These different strategies which are used (and not just numerical processing) can
affect RTs. There are a few things to note from this. First, as Campbell et al. point out, this phe-
nomenon actually confirms the predictions of the encoding-complex model (i.e. that numbers
are stored as notation-dependent representations) as it shows that number modality affects
central processing. Second, in our experiment it does not affect our hypothesis as even if differ-
ent strategies are used, they can only be applied if the participants retrieve a number from dif-
ferent modalities. If numbers were being retrieved from a central abstract representation each
trial, then presumably similar strategy choices would be elicited for each trial.

Experiment 2

3.1. Hypothesis of Experiment 2
Experiment 2 operated with the same hypothesis as experiment 1, that if numbers are being
retrieved from notation-dependent memory stores then RTs at S2/S3 should be dependent on
S1 modality. We utilized canonical dot matrices with the Arabic digits instead of written num-
ber words. Since the triple-code and abstract modular models propose a central abstract repre-
sentation area for number, we were interested in observing the participant’s RTs with dot
matrices as they are considered to be more abstract than Arabic digits.

3.2. Methods of Experiment 2
3.2.1. Subjects. Twenty participants, twelve of which were female, participated in this

study. They were between the ages of 18 and 35 (median age: 23) and were from the Cam-
bridge, UK area. Six of these also had participated in Experiment 1. Seventeen of the partici-
pants were students or former students from the University of Cambridge with the others
being residents from the Cambridge area. Eleven of the students were engaged in or had com-
pleted graduate studies and the rest were undergraduates. All reported themselves as being
unimpaired in regards to math ability.

3.2.2. Stimuli and procedures. The paradigm and stimuli as well as the timing of the pre-
sentation of the stimuli were the same as in Experiment 1 except that dot matrices were used
instead of written number words in a 2x2x1 design. We chose to employ canonical dot matrices
to aid in ease of recognition. The patterns used can be found in Fig 6.

It is important to note that the 600 ms (500 ms presentation + 100 ms gap) between the
time S1 disappeared until S2 was presented in our experiments was most probably sufficient to
encode S1. In their review of papers using dot matrices, Szűcs et al. [22] note that some investi-
gators have used presentation times as short as 150 ms while others used long presentation
times (e.g. 2000 ms or until response is given). Since comparison performance was the same
with presentation times between 150 and 2000 ms using numbers larger than those in our
experiments, it is reasonable to conclude that 600 ms was enough time for the numbers to
translate into a central abstract representation, if indeed that is what were to occur.

3.3. Results of Experiment 2
3.3.1. Effect of S1 on the RTs at S2/S3. RTs are shown in Fig 7. Data were assessed by a

Correctness x S1 modality x S2 modality ANOVA. The .95 confidence intervals were computed
for repeated-measures ANOVA (see Hollands and Jarmasz [32]). RTs were 42 ms faster when
S1 was an Arabic digit than when it was a Dot Matrix (903 ms vs. 945 ms; S1 Modality: F(1,19)
= 7.2177; p<0.0146; Effect size = 0.28; Partial η2 = 0.71). RTs were 350 ms faster when S2 was
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Fig 6. Dot matrix patterns used in Experiment 2.

doi:10.1371/journal.pone.0145614.g006

Fig 7. S1 Modality x S2 Modality. Vertical bars denote 0.95 confidence intervals for repeated measures ANOVA (Hollands & Jarmasz, 2009). S1 and S2
modality is signified by ‘A’ and ‘D’; ie. Arabic Digit (A) vs. Dot Matrix (D). As an example, AD signifies an Arabic digit at S1 and a dot matrix at S2.

doi:10.1371/journal.pone.0145614.g007
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an Arabic digit (749 ms vs. 1099; S2 Modality: F(1,19) = 485.34; p<0.00001; Effect size = 0.28;
Partial η2 = 0.71). Also, as in previous experiments, there was an S1 modality x S2 modality
interaction (AA = 696 ms, DA = 802 ms, DD = 1087 ms, AD = 1110 ms; S1 Modality x S2
Modality: F(1,19) = 23.672, p<0.0001; Effect size = 0.55; Partial η2 = 0.99) which showed that,
when S2 was an Arabic digit, participants were quicker to verify the sum at S2/S3 when S1 was
also a digit. There was no such effect when S2 was a dot matrix. According to S1 modality x S2
modality Tukey post hoc contrasts, there were significant differences between all conditions
except between AD and DD (AD vs DD: p<0.2970; AA vs. AD: p<0.0002; AA vs. DA:
p<0.0015; AA vs. DD: p<0.0002; AD vs. DA: p<0.0002; DA vs. DD: p<0.0002). There was no
interaction between RTs and the correctness of the sum presented at S3 (925 ms vs. 922 ms;
Correctness: F(1,19) = 0.0841, p = 0.7; Correctness x S1 Modality x S2 Modality: F(1,19) =
0.8875, p = 0.3).

3.3.2. Effects on Accuracy. An assessment of accuracy based on the percentage of
responses answered correctly was performed. A Correctness x S1 modality x S2 modality
ANOVA showed no significant effects, including specifically no effects for the S1 modality
(p = 0.11), S1 modality x S2 modality (p = 0.07), or the Correctness x S1 modality x S2 modality
(p = 0.05). (See Table 1 for accuracy rate).

3.4. Discussion of Experiment 2
In experiment 2 the NME was replicated as S1 modality again affected RT when S2 was an Ara-
bic digit. Similarly to when S2 was a written number word in previous experiments, there was
no significant RT difference when S2 was a dot matrix. As explained more fully in the discus-
sion for experiment 1, this makes sense if S1 retrieval and S2 encoding occur in parallel as the
longer encoding time of dot matrices relative to Arabic digits would mask the effect.

Since dot matrices are purported as being a more abstract numerical surface form and since
the triple-code and abstract modular models propose an abstract representation for number by
default in memory, we adjusted the paradigm to show dot matrices instead of written number
words in order to observe how this would affect the NME. In general, the results from the dot
matrices were very similar to that of the written number words. There was no special RT
advantage observed from presenting numbers as canonical dot matrices.

Similarly to the potential confound, due to the fixed modality of S2, in the Szűcs and Csépe
[30] experiment which we controlled for in experiments 1 and 2, another potential confound
to be examined concerns the fixed modality of S3 (the proposed result). In the condition in
which S2 was a digit, in experiments 1 and 2, it is possible that S1 was processed more quickly
when it was also a digit because S3 was always presented as an Arabic digit. Having S3 always
appear as a digit could have prompted participants to process Arabic digits preferably, biasing
the results and resulting in faster processing of Arabic digits due to strategic expectations. We
addressed this issue in experiment 3.

Experiment 3

4.1. Hypothesis of Experiment 3
Experiment 3 utilized the same paradigm as experiment 1, except that the number at S3 also
was presented randomly as either an Arabic digit or a written number word rather than always
being presented as a digit. If S3 always being presented as an Arabic digit was a major factor in
preferential processing of Arabic digits in previous experiments, then a more balanced presen-
tation of S3 varying both digits and written number words should result in the disappearance
of the NME (Arabic digit retrieval advantage in Experiment 1).
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4.2. Methods of Experiment 3
4.2.1. Subjects. Seventeen subjects from experiment 2 participated in this experiment, ten

of which were female. They were between the ages of 18 and 35 (median age: 23) and were
from the Cambridge, UK area. Six of these also had participated in Experiment 1. Fourteen of
the participants were students or former students from the University of Cambridge with the
others being residents from the Cambridge area. Ten of the students were engaged in or had
completed graduate studies and the rest were undergraduates. All reported themselves as being
unimpaired in regards to math ability.

4.2.2. Procedures. The paradigm and stimuli as well as the timing of the presentation of
the stimuli were the same as in Experiment 1 except that, instead of a 2x2x1 design we used a
2x2x2 with S3 also being randomly presented as either an Arabic digit or a written number
word.

4.3. Results of Experiment 3
4.3.1. Effect of the modality of S1 and S2 on the RTs. RTs are shown in Figs 8 and 9.

Data were assessed by a Correctness x S3 modality x S1 modality x S2 modality ANOVA. The
.95 confidence intervals were computed for repeated-measures ANOVA (see Hollands and Jar-
masz [32]). RTs at S2/S3 were 37 ms faster when S1 was an Arabic digit than when it was a
number word (967 ms vs. 1004 ms; S1 Modality: F(1,16) = 19.229; p<0.0005; Partial η2 = 0.65).
Crucially, as in Experiment 1, there was an expected S1 modality x S2 modality interaction (S1
Modality x S2 Modality: F(1,16) = 29.183, p<0.0001; Partial η2 = 0.65). The interaction
resulted in shorter solution times when S2 was presented as an Arabic digit. This effect was
modulated by S1 modality: RTs were the fastest when S1 was an Arabic digit (AA = 928 ms,
WW = 1002 ms, WA = 1005 ms, AW = 1005 ms). A Tukey post hoc analysis showed

Fig 8. S1 Modality x S2 Modality. Vertical bars denote 0.95 confidence intervals for repeated measures ANOVA (Hollands & Jarmasz, 2009). S1 and S2
modality is signified by ‘A’ and ‘W’; ie. Arabic Digit (A) vs. Written Number Word (W). As an example, AW signifies an Arabic digit at S1 and a written number
word at S2.

doi:10.1371/journal.pone.0145614.g008
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congruency effects only between AA-WA, AA-AW, and AA-WW (AW vs WW: p = 0.9999;
AW vs. WA: p = 0.9454; WA vs. WW: p = 0.9912; AA vs. AW: p<0.0002; AA vs. WA:
p<0.0005; AA vs. WW: p<0.0002). Also, as in our previous experiments, the presentation of
the answer at S3 as being either correct or incorrect did not show an interaction with how the
modalities at S3, S1 or S2 correlated with the speed of the responses (Correctness x S3 modality
x S1 modality x S2 modality: F(1,16) = 0.9772, p = 0.3).

4.3.2. Effect of the modality of S3 on the RTs. Fig 9 shows RTs by S1 x S2 x S3. In all con-
ditions, the answer at S3 was verified 108 ms faster when S3 was an Arabic digit (1039 ms vs.
1147 ms; S3 Modality: F(1,16) = 76.484; p<0.0001; Partial η2 = 0.65). In trials in which S3 was
an Arabic digit, RTs were 26 ms faster when S2 was an Arabic digit; and in trials in which S3
was a number word, RTs were 49 ms faster when S2 was an Arabic digit showing seemingly an
additive effect of the time it takes to read/process an Arabic digit vs a written number word
(AA = 951 ms, WA = 977 ms, AW = 982 ms, WW = 1031 ms; S3 Modality x S2 Modality: F
(1,16) = 6.9276; p<0.0181; Partial η2 = 0.24). Another observation from this experiment was
that, in contrast to Experiment 1, there was no longer any RT difference between WA and
AW/WW (see Fig 5 above).

4.3.3. Effect of the previous trial’s S3 on the RTs at S2/S3. We considered the modality
of the S3s that occurred immediately before the trial of the RT in question (previous S3s).
There was no interaction. The RTs when the previous trial’s S3 was an Arabic digit was only 10
ms faster than when the previous trial’s S3 was a Number Word (989 ms vs. 979 ms; S3 Modal-
ity: F(1,16) = 2.7468; p = 0.11). An ANOVA of the modality of the previous S3 by the RTs at S2
also showed no significant effect (AA = 961ms, WA = 971ms, AW = 997ms, WW = 1007ms;
Previous S3 x S2 Modality: F(1,16) = 0.00267; p>0.9).

4.3.4. Effects on accuracy. As in Experiment 1, accuracy was assessed. A Correctness x
Previous S3 modality x S1 modality x S2 modality ANOVA showed no significant effects,
including specifically no effects for the Previous S3 modality (p = 0.314), the Previous S3
modality x S2 modality (F(p = 0.343), or the Correctness x Previous S3 modality x S2 modality
(p = 0.1). A Correctness x Same S3 modality x S1 modality x S2 modality also showed no signif-
icant effects, including specifically no effects for the Same S3 modality (p = 0.0560), the Same

Fig 9. S3 Modality x S1 Modality x S1 Modality. Vertical bars denote 0.95 confidence intervals for repeated measures ANOVA (Hollands & Jarmasz,
2009). S1, S2 & S3 modality is signified by ‘A’ and ‘W’; ie. Arabic Digit (A) vs. Written Number Word (W). As an example, WAW signifies a written number
word at S1 and S3 and an Arabic digit at S2.

doi:10.1371/journal.pone.0145614.g009
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S3 modality x S2 modality (p = 0.6), or the Correctness x Same S3 modality x S2 modality
(p = 0.8) (See Table 1 for accuracy rate).

4.4. Discussion of Experiment 3
The NME was again replicated in Experiment 3: When S2 was an Arabic digit, RTs at S2/S3
were the fastest when S1 was also an Arabic digit. Also, as in Experiment 1, this effect was not
shown when S2 was a written number word. However, unlike in Experiment 1 there was no
longer any RT difference between the WA condition and the AW/WW conditions. This differ-
ence is independent of the NME and is likely due to the randomization of S3 which was imple-
mented in order to control for the possibility that Arabic digits were preferred because they
occurred more often throughout the experiment. The fact that the slight advantage of the WA
condition relative to the AW andWW conditions disappeared in Experiment 3 suggests that
there was indeed some preferential processing for Arabic digits in Experiment 1. However, this
preferential processing only had a major impact on the encoding speed of S2, not on the
retrieval speed of S1. The NME (AA vs. AW difference) was 93 ms in experiment 1 and 77 ms
in experiment 3. The advantage of the WA condition relative to conditions AW andWWwas
49 and 74 ms in experiment 1. This later advantage practically became zero in experiment 3.
However, any potential reduction of the NME in experiment 2 definitely did not reach this
magnitude relative to the earlier effect size of 93 ms (the reduction was at most 93–77 = 16 ms).
Hence, it seems reasonable to assume that manipulating S3 did not have an effect or did not
have a major effect on the NME at all.

General Discussion
In this study, we set out to explore whether numbers are retrieved from a central amodal source
in working memory or from separate notation-dependent representations. In our experiments,
participants first saw an addend (S1) which disappeared and was followed by another addend
(S2) and a proposed result (S3) which appeared simultaneously. Due to the design of this para-
digm, participants were compelled to retrieve S1 from memory in order to add it to S2. Predic-
tions in regards to what would occur when the participants retrieved S1 could be drawn from
the three math cognition models which were summarized in the introduction. If the abstract
modularmodel were correct, then when the participants were presented with S1 as either an
Arabic digit or a written number word, for example, numbers would have been stored in work-
ing memory by translating them into a central abstract representation. If this were the case,
then in all the trials in which S2 was an Arabic digit, the participants would have retrieved a
number from the same central representation area in each trial in order to always add it to an
Arabic digit representation. Since the modalities of the numbers in this scenario would always
be the same, there should be no significant difference in RTs which are dependent on the origi-
nal modality of S1. Similarly, in the most common version of the triple codemodel, the magni-
tude coding area of the brain would have acted as a central abstract representation area for
numbers. In others words, the other two notation-dependent codes would have necessarily
been translated through the abstract magnitude code for any task in which the comprehension
of number was required. This being the case, the predictions for the triple codemodel would be
the same as for the above abstract modularmodel. Conversely, if the encoding-complexmodel
(or an encoding-complex version of the triple-codemodel) were correct, the numbers would
have been stored and retrieved from notation-dependent representations without a need for
any central abstract representation area. Therefore, this model predicted differences in RT
which would be dependent on the modality of S1.
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In response to our main question, in three independent experiments we have shown the
numeral modality effect (NME), namely that the RTs at S2/S3 were dependent on the modality
of S1 in the conditions in which S2 was an Arabic digit. This suggests that separate notation-
dependent representations of number (not a central source) may be the correct model. The
NME was not observed when S2 was a written number word or a dot matrix. We reason that
this can best be explained by assuming that the retrieval of S1 and the encoding of S2 occur in
parallel. Since the written number words and dot matrices take longer to encode (as shown in
our data), it is likely that the longer processing time is masking the NME (see discussion of
experiment 1 for a fuller explanation). The possibility that S1, S2, and even perhaps S3, were
retrieved and encoded in parallel rather than sequentially may be important to take into
account in similar experiments. Also of import to note is that the results of this study should
not be construed to mean that there is no area in the brain responsible for the abstract repre-
sentation of number, but rather they argue against any representation being the central
“default” representation for number.

Conclusion
One of the key questions in math cognition concerns whether numbers are necessarily stored
into and retrieved from a central abstract representation of quantity or as notation-dependent
representations. The findings replicated in three experiments seem to indicate that numbers
are retrieved from distinct sources, and thus seem to argue for notation-dependent representa-
tions. Due to its sensitivity to number modality, the NME that is explored here could serve to
be a valuable tool as we strive to understand number cognition.
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