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Abstract: High entropy alloys (HEAs) are the outstanding innovations in materials science and
engineering in the early 21st century. HEAs consist of multiple elements with equiatomic or near
equiatomic compositions, which exhibit superior mechanical properties, such as wear resistance,
fatigue resistance, and corrosion resistance. HEAs are primarily used in structural and functional
applications; hence, appropriate welding processes are essential to enhancing the performances
and service lives of HEA components. Herein, a comprehensive overview of current state-of-art-of
welding techniques for HEAs is elucidated. More specifically, the article discusses the fusion-based
welding techniques, such as gas tungsten arc welding (GTAW) and laser beam welding (LBW), and
solid-state welding techniques, such as friction stir welding (FSW) and explosive welding (EB), for
a broad category of HEAs. In addition, the microstructural features and mechanical properties of
HEAs welded using different techniques were explained for a broad spectrum of HEAs. Finally, this
review discusses potential challenges in the welding of HEAs.

Keywords: welding; fusion welding; solid-state welding; high entropy alloys; microstructure;
mechanical properties

1. Introduction

For decades, scholars working in materials science and engineering have used pure
metals for diverse applications. However, to cater to the needs and demands of applications
that require superior mechanical properties, they have introduced the concept of alloying.
The alloys can provide remarkable improvements in mechanical properties. Alloying is
considered the global cure to many problems associated with strength, ductility, and other
properties of pure metals [1]. The idea of using a single principal element with other
secondary elements was widely adopted to obtain superior mechanical properties based
on needs and demands. This way of alloying techniques has been used for centuries, and
scholars have followed these practices. To enhance the properties of these alloys, scholars
introduced various surface modification techniques based on severe plastic deformation
(SPD) and changes in material manufacturing routes based on property and performance
correlations [2–5]. However, this traditional principal element approach has limitations
based on the quantity and number of alloying elements. In addition, these new manufac-
turing routes and surface modification techniques have limited influences on mechanical
properties, and they are expensive. Therefore, scholars searched for a new alloying concept
that uses more than one principal element led to the development of high entropy alloys
(HEAs) [6–9].

The foundational work of Yeh et al. [10] and Cantor et al. [11] introduced the novel
idea of using five or more principal elements in concentrations ranging from 5 to 35 at.%,

Materials 2022, 15, 2273. https://doi.org/10.3390/ma15062273 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15062273
https://doi.org/10.3390/ma15062273
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-4824-2474
https://orcid.org/0000-0002-0752-3600
https://orcid.org/0000-0001-8030-8504
https://doi.org/10.3390/ma15062273
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15062273?type=check_update&version=1


Materials 2022, 15, 2273 2 of 25

and they have named these alloys as HEAs. These ‘HEAs possess four different core
effects, such as high entropy effect, sluggish diffusion, severe lattice distortion, and cock
tail effect [12–15]. HEA opened a new path for exploring new metallic materials with
remarkable mechanical properties [16–18]. The introduction of more principal elements
can lead to several phases and intermetallic compounds based on the knowledge of phase
diagrams. This concept was highly contradicting to the alloying using a single principal
element. However, their hypothesis was that alloying using multiple principal elements in
equiatomic or equimolar compositions can cause the configurational entropy of mixing to a
value greater than the enthalpy of compound formation. The high entropy effect stabilizes
the solid solution phases, such as body-centered cubic (BCC) and face-centered cubic (FCC)
phases, and hinders the formation of harmful intermetallics or complicated phases [19].
In addition, HEAs possesses superior mechanical properties, such as high strength and
ductility [20,21], superior hardness [22–25], improved wear resistance [26–30], excellent
oxidation and corrosion resistance [31–36], high fracture toughness [37,38], excellent high-
temperature properties [8,39–41], and improved fatigue properties [42–47].

Welding is a complex joining technique that can produce permanent joints. Explor-
ing different welding techniques and understanding the welding metallurgy of HEAs in
each welding process is of utmost importance in different applications. Proper welding
processes with optimized parameters can play a pivotal role in attaining weldability and
joint integrity. Weldability and integrity are two important factors considered during
welding for a particular application. The welding of similar and dissimilar HEAs expands
their applications and makes them a versatile category of materials for structural and
functional applications [48–50]. Each welding technique has its characteristic properties,
and they differ in mechanism, welding parameters, joint preparation, filler wires, inert
gas, and substrate thickness [51,52]. The performance of the weld joint can be analyzed by
conducting mechanical and metallurgical characterization. HEAs is a hot research topic
that sprung up during the past two decades. Understanding the weldability of HEAs is
important, as researchers can prevent the potential issues associated with weldability by
altering the chemical composition of the substrate. Scholars demonstrated that HEAs could
be adopted for diverse applications in industries such as marine, automotive, aerospace,
nuclear, and chemical ones [53–58]. Several welding techniques have been applied to HEAs.
Welding techniques are classified into fusion welding and solid-state welding techniques.
The fusion welding techniques are further classified into gas metal arc welding (GMAW),
gas tungsten arc welding (GTAW), laser beam welding (LBW), resistance spot welding
(RSW), electron beam welding (EBW), and so on. The solid-state welding techniques in-
clude friction stir welding (FSW), explosive welding (EB), diffusion bonding (DB), brazing,
soldering, and so on. However, this manuscript specifically discusses GTAW, LBW, FSW,
and EB of HEAs [48].

This review paper comprehensively discusses the prominently used welding tech-
niques for HEAs. Section 2 describes the historical perspective on HEA development
and the weldability of HEAs. Next, the fusion-based welding techniques are explored in
Section 3. Furthermore, solid-state welding techniques of HEAs are described in Section 4.
Then, Section 5 summarizes the potential challenges related to welding of HEAs. A de-
tailed description of mechanical properties, microstructural changes, and characteristics
are summarized for each welding technique. Finally, potential challenges associated with
the welding of HEAs are explained.

2. HEAs’ Development and Weldability: A Historical Perspective

In traditional physical metallurgy, a pure metal with attractive properties is used as
a foundation. Then, alloying concepts were introduced to improve pure metals’ overall
physical, chemical, and mechanical properties. Alloying has been an incredibly effective
approach in creating stronger and more reliable materials for many years. Still, researchers
reached a natural limit of this type of approach as time passed. Meeting this limit has
pushed for more research into HEAs, a vast and uninvestigated space in materials science
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and engineering. Traditional physical metallurgy principles and new methods have been
applied to HEAs, which have produced new materials with impressive properties. The new
results have shown that traditional materials science concepts do not adequately explain
the newly observed behaviors of HEAs fueling new models for complex and concentrated
alloys. As a result, the whole field has advanced dynamically and promptly in materials
science and engineering [59].

The first relevant results on HEAs were published in 2004. The new concepts of HEAs
opened a pathway for research in alloy composition and the potential applications of
these materials [7]. The concept of HEAs was first demonstrated by Yeh et al. [10] and
Cantor et al. [11] in 2004. They defined HEAs as combinations of five or more elements
with atomic percentages higher than 5% and less than 35% [60]. This definition inherently
includes all alloys with small atomic percentages of elemental additives because it only
requires the primary elements in the alloy to be within that 5–35 at.%.

Even though the original definition of HEAs was five or more elements with atomic
percentages between 5% and 35%, the field now includes materials with as few as three
principal elements. Therefore, the maximum element concentration may be higher than
35 percent. HEAs can also be called compositionally complex alloys, multi-component al-
loys, or multi-principal element alloys, and these names are interchangeably used [12,61–63].
However, the most widely used name is HEAs. The first HEA developed with good tensile
properties was CrMnFeCoNi, which has become the main benchmark for HEAs. It has
formed the basis for most of the current scientific understanding of HEAs’ mechanical
behavior. These alloys have been observed to have superior properties compared to nor-
mal non-HEA-type alloys. The superior properties include good thermal stability, high
hardness and strength, excellent wear resistance, electrical properties, magnetic properties,
and high corrosion resistance [14]. The need for more advanced alloys to better satisfy the
needs of newer technologies is forcing materials science and engineering professionals in
the direction of HEAs and multi-principal element alloys (MPEAs). Finding a HEA that
will produce superior properties compared to traditional alloys is essential to advancing
the capabilities of material scientists and engineers.

The weldability of HEAs is a predominant factor in diverse industries. Researchers
faced many issues in the early stages using different welding techniques for HEAs. The
welding of HEA-type materials is an area with low levels of research and development.
The first research article related to using an HEA as a filler material for welding was
published in 2016 [64]. In this work, the authors designed a combination of FeCoNiCrCu
HEA and Ti foil as potential filler wire for joining a ceramic and a superalloy using brazing.
Following that initial publication on welding techniques for HEAs, an article was published
that described the weldability of CrMnFeCoNi for the first time using an EBW [65]. The
research and innovations related to the welding of HEAs have continued to increase with
the rapid development of HEAs. Figure 1 shows the number of published scientific articles
on welding for HEAs from 2016 to 2021, demonstrating the exponential growth of research
related to welding of HEAs.

Brazing, laser welding, and FSW make up a large portion of the total number of
reviewed and published research papers [66]. The research related to welding of HEA-
related materials has continued to increase with the rapid development of HEAs.

Over time, three main welding groups have been explored and are shown in Figure 2,
where the sub-welding techniques are specified. The welding techniques were elucidated
for a broad spectrum of HEAs. Each method has been observed to have positive and
negative effects on the properties of the HEAs once the welding was completed. That is
why the exploration of multiple techniques of welding is required. Over time, the methods
have become the solutions to many problems and have increased the value of HEAs in
industrial manufacturing, materials science, and engineering fields.
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The major portion of the HEA studies have been focused on understanding the
compositions, and the microstructure characteristics and their impacts on actual versus
expected properties [67–69]. Over time, research on HEAs has become more application-
orientated, which requires delivering the predicted properties on a more consistent basis.
HEAs have much positive potential to alter the industrial applications of alloys with
their superior properties. The need for HEAs has gradually driven many discoveries and
advances in many fields of interest.
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3. Fusion Welding Techniques for HEAs

In the fusion welding method, the materials to be joined are melted with the energy
from a high-intensity arc, laser, or electron beam, and then the melt pool is allowed to
solidify [70]. Many studies have been conducted on increasing and improving current
fusion welding techniques for HEAs. The common techniques studied and reviewed for
fusion welding are GTAW and LBW. Each of these welding techniques has its characteristics
and applications. These days, more attention is given to the LBW of HEAs than the EBW
and GTAW of HEAs [71–73]. Parameter optimization in metal arc welding can develop
defect-free joints with superior performance at a lower cost than LBW and EBW [74–77].

The mechanical and microstructural properties are significantly different in various
HEAs, because they contain multiple principal elements and are manufactured differently.
When fusion welding is performed on HEAs, different phase transformations occur in
the weld based on the weld thermal cycle, especially in the fusion zone. Fusion-welded
joints can be divided into three regions: fusion zone (FZ), heat-affected zone (HAZ), and
unaffected base material (BM) surrounding the HAZ. The HAZ region can be classified into
coarse grain heat-affected zones (CGHAZ) and fine grain heat-affected zones (FGHAZ).
The fusion zone is generally characterized by columnar grains. In the HAZ region, pre-
cipitation of new phases is observed, along with solid-state phase transformations and
grain coarsening.

3.1. Gas Tungsten Arc Welding

GTAW is a conventional welding process that can produce sound joints with su-
perior weld properties. During GTAW, the base metals to be joined are melted by a
non-consumable tungsten electrode. Helium or argon shielding gas protects the weld joints
from any atmospheric contamination. GTAW is a welding technique for diverse industrial
applications. Scholars have produced various studies revealing similar and dissimilar
welding of HEA. Some aspects of those studies are explained briefly.

Wu et al. [65] welded equiatomic CoCrFeMnNi HEA for structural applications. For
this purpose, the authors used GTAW with CoCrFeMnNi and studied the microstructure
and mechanical properties of the weld metal and HAZ. They used a voltage of 8.4 V, a
current of 75 A, and a welding velocity of 25.4 mm/min. The authors reported the absence
of solidification cracks and significant microsegregation, and mentioned the superior
weldability of these classes of HEAs. The GTAW joints retained 80% of the ultimate tensile
strength (UTS) and 50% of the ductility of the BM. They recommend that weld properties
be significantly enhanced by properly controlling the oxygen levels. They summarized
that further research is required for identifying the applicability of these classes of HEAs to
large-scale industrial applications. Oliveira et al. [78] conducted GTAW on the most widely
studied HEA “CrMnFeCoNi” system. The authors optimized the welding parameters, and
the following parameters were chosen. A welding current of 60 A, welding voltage of 9.2 V,
and welding velocity of 4.2 mm/s were used. A defect-free joint with superior mechanical
properties was observed. They reported different microstructural features in the weld joint
using electron backscattered diffraction analysis (EBSD). Pancaked-shaped grains with
2 µm thickness were reported for BM. The grain size in the HAZ region was significantly
higher compared to the BM. Higher grain size was observed in the fusion zone and HAZ
interface. The grain size in the FZ and HAZ interface was 30 µm, whereas in the HAZ and
BM interface, it was 5 µm. The grain coarsening in the HAZ was due to the effect of the
weld thermal cycle. During welding, the centerline of the FZ experienced the highest peak
temperature, and it decreased monotonically towards the base material. They also reported
that the peak temperature and permanence time at these peak temperatures both promoted
grain growth and were higher and longer than those in the HAZ and BM interface. In
addition to that, the solid-state phase transformations depended on the temperature and
varied exponentially. The authors also reported the presence of 50 µm grains in the weld
center. The growth of these columnar grains is epitaxial, which begins from HAZ and
progresses towards the weld center. The EBSD analysis of the weld joint is shown in
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Figure 3. The authors also reported the presence of annealing twins in the HAZ. However,
no such features were observed in the FZ. The weld joint indicated the lowest hardness,
about 150 Hv in the FZ. The BM hardness was 350 Hv, which increased to 375 Hv at the
BM and HAZ interface. This was attributed to recrystallization, which reduced the grain
size due to the weld thermal cycle. A reduction in hardness from BM and HAZ interface to
175 Hv was observed in the interface of HAZ and FZ, which was due to the grain growth
in the HAZ.
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Furthermore, tensile test results indicated the ductile nature of the weld joint. Re-
ductions in strength and ductility were observed for the weld joint compared to the BM,
which were attributed to the changes in microstructure in the FZ and the grain growth
phenomenon. Sokkalingam et al. [79] conducted GTAW on Al0.5CoCrFeNi plates using a
welding velocity of 80 mm/min, a voltage of 12 V, and a current of 40 A. The two plates
of HEA material were first heat-treated in a furnace at 1423 K for 24 h and then cooled
down in a cooling furnace; then, welding was carried out. The authors observed refined
equiaxed grains and elongated columnar grains in the FZ with an average grain size of
8–12 µm. This resulted in reductions of 16.5% in ductility and 6.4% in strength. Nam
et al. [80] explored the weldability of CoCrFeMnNi HEA for cryogenic applications. The
authors adopted two filler wires in their experiments, stainless steel STS 308 L and HEA.
Both filler wires produced superior welds without microcracks, pores, or other defects. In
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addition, the authors observed FCC crystal structure and the absence of δ-ferrite in WM.
The observed grain size for BM was 1 ± 0.2 mm. Figure 4 represents the EBSD analysis of
BM, WM, and HAZ regions of HEA welded using STS 308 L and HEA fillers. The columnar
grains grew epitaxially from the fusion line to the weld center when HEA filler wires
were used. This was due to the same composition of the filler compared to BM. However,
incomplete epitaxial growth of columnar grains was reported for STS 308 L filler wires.
This was attributed to the different compositions of the 308 L fillers compared to the BM.
The transformation of columnar grains to equiaxed grains at the weld center was reported.
The dendrite packet size was similar at the weld center irrespective of the filler wire used.

Materials 2022, 15, x FOR PEER REVIEW 7 of 27 
 

 

which were attributed to the changes in microstructure in the FZ and the grain growth 
phenomenon. Sokkalingam et al. [79] conducted GTAW on Al0.5CoCrFeNi plates using a 
welding velocity of 80 mm/min, a voltage of 12 V, and a current of 40 A. The two plates of 
HEA material were first heat-treated in a furnace at 1423 K for 24 h and then cooled down 
in a cooling furnace; then, welding was carried out. The authors observed refined equi-
axed grains and elongated columnar grains in the FZ with an average grain size of 8–12 
µm. This resulted in reductions of 16.5% in ductility and 6.4% in strength. Nam et al. [80] 
explored the weldability of CoCrFeMnNi HEA for cryogenic applications. The authors 
adopted two filler wires in their experiments, stainless steel STS 308 L and HEA. Both 
filler wires produced superior welds without microcracks, pores, or other defects. In ad-
dition, the authors observed FCC crystal structure and the absence of δ-ferrite in WM. The 
observed grain size for BM was 1± 0.2 mm. Figure 4 represents the EBSD analysis of BM, 
WM, and HAZ regions of HEA welded using STS 308 L and HEA fillers. The columnar 
grains grew epitaxially from the fusion line to the weld center when HEA filler wires were 
used. This was due to the same composition of the filler compared to BM. However, in-
complete epitaxial growth of columnar grains was reported for STS 308 L filler wires. This 
was attributed to the different compositions of the 308 L fillers compared to the BM. The 
transformation of columnar grains to equiaxed grains at the weld center was reported. 
The dendrite packet size was similar at the weld center irrespective of the filler wire used. 

 
Figure 4. EBSD of (a) BM, (b) HAZ and WM of HEA fillers, (c) HAZ and WM of STS 308 L, (d) center 
of WM of HEA fillers, (e) center of WM of STS 308 L. Reproduced with permission from [80]. Cop-
yright Elsevier, 2020. 

The reported average microhardness values in the WM in both filler wire cases are 
higher than that of the BM. The BM microhardness was 132 ± 1 Hv. The lower hardness 
of BM was attributed to the larger dendritic size. The WM microhardness corresponding 
to HEA fillers was 165 ± 1 Hv, and for STS 308 L fillers, 150 ± 1 Hv. The inconsistency in 
microhardness was because of the differences in grain size, dendrite packet size, and con-
stituent elements in the WM. Figure 5 represents the microhardness distribution in the 
weld joint. 

Figure 4. EBSD of (a) BM, (b) HAZ and WM of HEA fillers, (c) HAZ and WM of STS 308 L, (d) center
of WM of HEA fillers, (e) center of WM of STS 308 L. Reproduced with permission from [80].
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The reported average microhardness values in the WM in both filler wire cases are
higher than that of the BM. The BM microhardness was 132 ± 1 Hv. The lower hardness
of BM was attributed to the larger dendritic size. The WM microhardness corresponding
to HEA fillers was 165 ± 1 Hv, and for STS 308 L fillers, 150 ± 1 Hv. The inconsistency
in microhardness was because of the differences in grain size, dendrite packet size, and
constituent elements in the WM. Figure 5 represents the microhardness distribution in the
weld joint.

Sokkalingam et al. [81] demonstrated the requirement of dissimilar welding for
aerospace and structural applications. For this purpose, the authors welded HEA with
304 SS using GTAW. The HEA used in this case was Al0.1CoCrFeNi. This HEA is most
commonly used for power generation applications in chemical and nuclear industries.
The welding was carried out with five different welding velocities: 50, 75, 100, 125, and
150 mm/min. The voltage and current chosen for the experiments were 10–11 V and 50 A.
The authors reported a weld joint without any macrocracks and pores. The HEA side
weldment showed epitaxial growth of grains, beginning from the fusion line and directed
towards the weld center, and non-epitaxial growth on the SS 304 side. The dissimilar weld
joint showed a yield strength (YS) of 265 MPa and UTS of 590 MPa, significantly higher than
those of the BM. The reported YS and UTS of BM are 148 and 327 MPa. Martin et al. [82]
studied the weldability of Al0.5CrCoCu0.1FeNi HEAs using the GTAW technique. The
authors reported an absence of solidification cracking and HAZ liquation cracking, demon-
strating good weldability. Table 1 shows the mechanical properties and microstructural
features of HEA weldments using different fusion welding techniques.
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Table 1. Mechanical properties and microstructural features of fusion welded HEA.

Material Welding
Technique Welding Parameter Observation

CoCrFeMnNi (0.2)
[71] LBW

Nd:YAG laser;
Laser power—3.5 kW; Welding

velocity—6–10 m/min
No shielding gas

• Cast HEA weld has similar tensile strength as of BM,
whereas rolled HEA has a lesser tensile strength

• In cast HEAs, tensile fracture occurred near HAZ
and BM. In rolled HEA, tensile failure occurred in
the WM.

• In cast HEA side sharp hardness variation is
observed of

• Dendritic arm spacing (DAS) and dendrite packet size
were higher for cast HEA compared to rolled HEA

CoCrFeNiMn
[72] LBW

Ytterbium fiber
continuous laser;

Butt joint configuration;
Laser power—2.5 kW; Welding

velocity—5 m/min

• Improvement in hardness due to the presence of
M7C3 type carbides

• Tensile properties of the welded HEA were identical
to BM

• Tensile failure of the weld joints occurred far from
the weld zone

• Fracture happened near aside of fusion zone

CrMnFeCoNi
[78] GTAW

Current—60 A;
Voltage—9.2 V;

Welding velocity—4.2 mm/s;
Heat input—131.4 J/mm.

Direct current straight polarity

• Good weldability
• In the HAZ, due to weld thermal cycle, recovery,

recrystallization, and grain growth were observed
• High tensile strength and reduced fracture strain
• The strength and ductility of weld joints is less than BM

CrMnFeCoNi
[65] EBW

Current—5 mA;
Voltage—125 kV;

Welding velocity—9.53 mm/s

• Solidification cracks were absent
• Weld has the same strength level and ductility in

comparison with base material at RT and at CT
• Large number of deformation twins was observed in

the fusion zone
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Table 1. Cont.

Material Welding
Technique Welding Parameter Observation

CrMnFeCoNi
[83] LBW

Yb:YAG disk laser, Laser
power = 3 kW, 3.5 kW, focal

length—450 mm, beam
diameter—200 µm, welding

velocity—9–10 m/min

• Compared to BM, laser welded specimens have
lower ductility and tensile strength.

• The microstructure in the FZ is dendritic.
Intermetallics were not observed in FZ.

• High hardness observed for LBWed specimen due to
small dendritic arm spacing

Co0.2Cr0.2Fe0.2
Mn0.2Ni0.2 [84] LBW

Nd:YAG laser, Laser
power = 3.5 kW, beam

diameter—300 µm, focal
length—304 mm, welding

velocity—5–10 m/min

• No macro defects were observed
• Hardness and other tensile properties were inferior

compared to BM
• Post welding heat treatment (PWHT) improved the

hardness and reduced the size of oxide inclusions
• PWHT retained FCC structure in the weld and FZ

3.2. Laser Beam Welding

LBW is an important category of welding among fusion welding techniques. A
concentrated laser beam from a laser source interacts with the materials in this process.
Due to the high laser intensity, the materials are melted; subsequently, a weld is formed.
LBW has advantages, such as high energy density, small HAZ, fast cooling, and high
flexibility. The most influential parameters for LBW are frequency, pulse width, and
laser intensity [85,86]. In addition, the appropriate selection of process parameters can
enhance the weld joint quality. LBW is appropriate for high volume applications and is
fundamentally a penetration or keyhole-based welding technique.

Nam et al. [71] explored the possibility of using LBW for cast and rolled HEA for
cryogenic applications. The LBW was conducted with an Nd:YAG laser, 3.5 kW, having a
beam diameter of 300 µm and a focal length of 304 mm. The authors varied the welding
velocity from 6 to 10 m/min. They also optimized the welding parameters to obtain full
penetration. The authors observed good weldability and sound joints without macrocracks
for all the welding conditions. However, some shrinkage voids were found in the weldment,
whose volume fraction was decreased with an increase in welding velocity. The cast HEA
welds had full penetration at 6 m/min. However, with an increase in welding velocity, the
widths of beads in the top and bottom portions of the welds were decreased, and there was
no shrinkage. A similar weld bead and shrinkage voids were observed for rolled HEA,
even at 10 m/min.

The cast HEA possessed coarse equiaxed grains with a grain size of 1.1 ± 0.2 µm. The
HAZ grain size of the cast HEA welds was that of the cast BM. The microstructure near
the fusion line was cellular/columnar dendrites, which grew from the fusion line to the
weld center, indicating epitaxial growth. The rolled HEA had fine equiaxed grains, and
the grain size was approximately 3.3 ± 0.3 µm. The weldment microstructure showed
a cellular/columnar dendritic shape similar to the cast HEA weld, which grew from the
fusion line, demonstrating epitaxial growth. Improved mechanical properties with a rise
in welding velocity were attributed to the reduction in shrinkage voids, reduction in
primary arm spacing, and dendrite packet size. There was less hardness in the cast HEA
weld compared to the BM. This was attributed to the size of the columnar dendrite in
the WM. However, the hardness difference between the WM and BM for rolled HEA was
insignificant because of the similar dendritic spacing. Both cast and rolled HEA showed
similar tensile properties. Figure 6 represents the macrographs of weld joints of cast and
rolled HEAs.
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Figure 6. Macrogrpahs of the weld beads for various welding velocities: (a) 6 m/min, (b) 8 m/min,
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A study conducted by Kashaev et al. [73] performed LBW of CoCrFeNiMn manufac-
tured using a high-temperature synthesis process. The authors adopted a laser power of
2 kW with 300 mm focal length, welding velocity varied between 3 and 6 mm/min, and
the HEA plates were kept in butt-joint configuration. The BM had a dendritic structure.
TEM studies indicated the presence of rectangular-shaped second phase particles, and they
were confirmed to be M23C6 carbides with selected area diffraction patterns (SAED). A
micrograph of the butt joints corresponding to a welding velocity of 5 mm/min is shown
in Figure 7a. The fusion line along with the fusion zone width at three different locations in
the weld joint corresponding to different welding velocities are represented in Figure 7b. At
all welding velocities, no cracks or porosity were reported. The observed weld seam width
was ∼570 µm. The authors reported that welding velocities more than 6 mm/min caused
partial penetration, and welding velocities lower than 3 mm/min led to a wider weld seam.
Welding velocities between 4 and 5 mm/min can provide a cylindrical-shaped weld with
superior tensile properties. The authors recommend a weld joint with 5 mm/min welding
velocity as optimal based on the weld shape.
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Furthermore, after welding, the fusion zone microhardness increased to 208 ± 6 Hv
from 153 ± 3 Hv. The higher microhardness in the fusion zone was attributed to the
formation of nanoscale precipitates of B2 particles in the weld.
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Jo et al. [83] studied LBW on CrMnFeCoNi HEA and reported the microstructural
variations and mechanical properties in the WM and HAZ. The reported UTS and ductility
of as-weld CrMnFeCoNi were comparable to those of the BM. The fusion zone has a
dendritic microstructure, and energy dispersive spectroscopy (EDS) analysis showed higher
Fe and Mn content in the interdendritic region. However, they did not observe any
intermetallics or other phases in the fusion zone. The hardness of LBW specimens was
higher than that of the BM due to the fine dendritic arm spacing. Kashaev et al. [72] studied
the fatigue behavior of LBWed CoCrFeNiMn HEA. In their experiments, the authors used
a laser power of 2.5 kW and a 5 mm/min welding speed, and the plates were kept in
butt-joint configuration. The base material microstructure consists of coarse, elongated,
and irregular-shaped grains with a grain size of 250–500 µm. The crystal structure of this
HEA was FCC. They also identified manganese sulfide inclusions whose size ranged from
3 to 5 µm both in the fusion zone and in the BM. LBW led to the precipitation of M7C3-type
carbides in the matrix. The reported grain size after LBW was 100–300 µm. Figure 8
represents the fatigue behavior of the BM and LBW specimens. The authors observed no
significant difference in the fatigue behavior of BM and LBW specimens. The endurance
limit reported for both BM and LBWed specimens was 200 MPa. This demonstrates the
superior quality of weld joints compared to the BM. Normally weld joints are weak and are
easily susceptible to fatigue failure. Here, the presence of hard fusion zone and intrinsic
hardening due to carbide precipitation accounted for similar fatigue properties in LBWed
HEA compared to BM.
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The authors also reported similar YS and UTS for welded HEAs and BM. However, the
ductility of the weld joints was 2% less than that of the BM. Tensile tested weld joint failure
occurred far from the weld. Sokkalingam et al. [87] conducted LBW of Al0.5CoCrFeNi
HEA and studied the corrosion behavior. Potentiodynamic polarization (PDP) tests were
conducted to study the corrosion resistance. The corrosion current density, corrosion
potential, was identified from PDP. A laser power of 1.5 kW and a 600 mm/min welding
velocity were used. The BM microstructure contained equiaxed grains. The width of WM
on the top was 2.1 mm, and at the bottom was 1.2 mm. The microstructure of the weld
center was columnar dendrites. The authors observed higher corrosion current density in
the WM compared to BM. Additionally, the WM corrosion potential was higher (nobler)
than that of the BM. Due to this reason, the WM acted as a cathode, and BM acted as an
anode. Thus, the weldment (WM + BM) showed lower corrosion current density (less
electron flow), indicating enhanced corrosion resistance.
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Post weld heat treatment (PWHT) is always performed to enhance the efficiency of
the weld joint. By adopting PWHT, the residual tensile stress (RTS) on the weld joint that
arises during welding can be eliminated to a great extent. However, the presence of RTS
can lead to inferior corrosion, wear, and fatigue properties. This limits the service lives of
weld joints for structural applications. Hence, scholars always recommend using PWHT
for enhanced joint efficiency, joint integrity, and longevity of the weld joint. Nam et al. [84]
conducted PWHT on LBWed cold-rolled CoCrFeMnNi. They used a welding velocity
of 5 to 10 mm/min with a laser power of 3.5 kW. A rise in welding velocity increased
the widths of the upper and lower weld beads, and subsequently, partial penetration
was observed at 10 mm/min. PWHT was conducted at 800, 900, and 1000 ◦C. After
PWHT, the weld showed comparable tensile properties and hardness to those of the base
material. However, they reported that tensile specimens after PWHT failed at the weld
center due to the larger grain size. Adomako et al. [88] revealed requirements for dissimilar
metal welding for different structural applications in nuclear and aerospace industries.
To demonstrate this, the authors performed LBW of CoCrFeMnNi with duplex stainless
steel (DSS). After welding, the joints underwent PWHT at 800 and 1000 ◦C. The authors
observed good weldability, and there were no cracks or porosity in the welds. This reveals
that HEA can be welded to DSS. The EDS analysis of the weld and PWHTed weld joints
corresponding to 800 and 1000 ◦C is shown in Figure 9.
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EDS analysis of the weld revealed good mixing of elements across the WM and HAZ.
There was no intermetallics formation or microsegregation in the fusion zone, which
is expected in dissimilar metal welding. This was attributed to the high solubility at
high temperatures in dissimilar metals combinations. PWHT did not influence elemental
distribution in the WM and HAZ. Similarly, no precipitates or intermetallics were observed
after PWHT. Figure 10 represents the hardness of HEA and HAZ after PWHT. The HEA
had a hardness of 320 Hv, which was reduced to 230 Hv in the HAZ. This reduction
was due to annealing occurring due to the weld thermal cycle, which eventually caused
recrystallization and grain growth. The hardness dropped to 180 Hv in the FZ. The hardness
corresponding to DSS in the FZ side was 168 Hv. This mismatch was attributed to the
alignment of smaller coarse grains near the HEA side than larger coarse grains on the DSS
side. With the rise in PWHT temperature further, decreased WM hardness in both HEA
and DSS was observed. This reduction in hardness was more pronounced on the HEA side
in both the WM and the HAZ. This was due to the larger grain size on the HEA side than
the DSS side after PWHT.
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4. Solid-State Welding

The fusion-based welding techniques, such as GTAW, LBW, and EBW, work by melting
and solidification of WM. There are some potential issues associated with fusion-based
welding techniques, such as HAZ softening and a high width for HAZ. This can lead to
failure during a dynamic working environment. However, these issues can be minimized
significantly by carefully selecting process parameters. On the other hand, some of these
issues can be potentially eliminated with solid-state joining techniques.

4.1. Friction Stir Welding

FSW is a newly developed solid-state joining technique that possesses superior prop-
erties because of the lower heat input during the process compared to fusion welding. The
FSW processes have advantages over the traditional welding methods. The process does
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not involve the melting of metal, which reduces the chances of defects forming during the
solidification stage and results in a highly repeatable and pure process. Scholars revealed
that FSW could successfully join a wide variety of similar and dissimilar materials [89–93].
In this process, a rotating non-consumable tool with a shoulder containing a threaded pin
(probe) at the bottom is used to join the substrate. The shoulder is in proper contact with the
top surface of the substrate. During welding, the material is transferred from the advancing
side of the tool to the trailing side and becomes forged into a joint. The rotary speed of the
tool is such that it will generate heat on the substrate to be joined, and it fills the cavities
because of the plastic deformation [94]. The schematic of FSW is shown in Figure 11.
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Figure 11. Schematic of FSW process. Reproduced with permission from [95]. Copyright Elsevier, 2005.

Generally, the weld zone can be categorized into four zones during the FSW process:
stir zone (SZ), thermomechanically affected zone (TMAZ), HAZ, and BM. The TMAZ is
in between the SZ and the HAZ. The microstructure in the weld joint and HAZ is entirely
different from the fusion welding microstructure. In the TMAZ, the original microstructure
is retained; however, it is in a deformed state. Severe deformation is experienced in the
SZ [95–97]. The highest peak temperature occurs in the SZ, and it has a basin-like shape
that is not symmetric about the weld centerline. Figure 12 represents the various zones
FSW process.
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Zhu et al. [98] conducted FSW on CoCrFeNiAl0.3, and they observed a sound weld
without any defects. The authors used two welding speeds of 30 and 50 mm/min in
their experiments. The tool was rotating at 400 rpm, which had a shoulder diameter of
12 mm, a probe diameter of 4 mm, and a probe length of 1.8 mm. Throughout the process,
a constant load of 1500 kg was applied. The authors attributed grain refinement due to
recrystallization during FSW as the primary reason for improved microhardness in the
SZ. They also observed that welding speed does not influence hardness. In TMAZ, a
mixed microstructure comprised of coarse and fine grains was reported because of the
partial recrystallization. The authors summarized that the FSW of HEAs could be used for
potential future applications.

Park et al. [99] conducted FSW on a cast, rolled Co0.2Cr0.2Fe0.2Mn0.2Ni0.2 HEAs, and
demonstrated the effect of initial grain size on weldability during FSW. The cast HEA had
an average grain size of 308 µm, and the rolled HEA had an average grain size of 2.8 µm.
The shoulder and probe dimensions were 4.5 and 2.5 mm, and the probe length was 1.3 mm.
The rotary speed of the tool was 80 rpm, and welding was carried out at 100 mm/min.
The tool used in this experiment was WC-Co. The authors observed good weldability in
rolled HEA compared to cast HEA. There were no macro defects in the rolled HEA weld.
However, the cast HEA weld contained tunnel defects because of the insufficient stirring
during FSW. The primary reasons for tunnel defects were low plastic flow and lower heat
input. The authors also calculated the unbounded ratio, defined as the ratio of the total
difference in the area in the SZ to the unbounded region due to tunnel defects. After FSW,
the grain size of the cast HEA weld was 1.8 µm, whereas that of the rolled HEA was 1.4 µm.

Zhu et al. [100] conducted FSW on a highly ductile HEA, with ductility of 70%. The
authors used 30 and 50 mm/min welding velocities. The rotary speed of the tool was
400 rpm. A load of 1500 kg with a shoulder diameter of 12 mm, probe diameter of 4 mm,
and probe length of 1.8 mm was employed. The authors revealed that the weld penetration
decreased with increased welding velocity. This was due to the reduction in weld heat
input, which can be seen from the macrographs presented in Figure 13. Figure 13a,b shows
the macrostructures for 30 and 50 mm/min welds, respectively. The authors observed
superior weld joint integrity without defects, and the FCC phase was retained in the SZ
even after welding. Refined microstructures were reported in the SZ compared to the
microstructure in the BM. The authors revealed that strengthening in SZ was due to grain
refinement during FSW.
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Park et al. [101] conducted FSW on Co0.2Cr0.2Fe0.2Mn0.2Ni0.2 and studied the effect
of rotational tool speed on the weld joint quality. In addition to that, they studied the
effects of a tungsten carbide and chromium carbide tool on mechanical properties and
correlated these with grain refinement in the SZ. The authors adopted four rotational tool
travel speeds, 400, 600, 800, and 1000 rpm, and they maintained a welding velocity of
30 mm/min. The tool was a WC-Co with a shoulder diameter of 4.6 mm, a probe diameter
of 2.4 mm, and a probe length of 1.4 mm. The authors reported sound joints without
cracks and voids corresponding to rotational tool speeds. High rotational speeds resulted
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in thinning along the weld line compared to the BM. However, the authors reported an
abnormally shaped tornado in SZ after 600 rpm and higher rotation speeds, which appeared
from an abundance of carbides entering the material due to tool wear. The carbides in
the tornado region were smaller than 0.5 µm, so grain refinement was promoted with the
lower rotational speed of the tool. The authors reported that 800 rpm produces superior
mechanical properties, despite tool wear. The smallest grain size was achieved at this
speed, resulting in the strongest joint. However, when the rotational speed of the tool
exceeded 1000 rpm, entrapment of coarse tungsten carbide and chromium carbide particles
was observed, and it reduced the grain refinement in the SZ and led to inferior mechanical
properties. Figure 14 shows the effects of the rotational speeds of the tool on YS and UTS.
From the figure, it is evident that with an increase in rotational speed of the tool, the UTS
and YS were increased up to 800 rpm. An increase in travel speed beyond 800 rpm caused
a reduction in YS and UTS. The joint efficiency corresponding to 400 rpm was 88%, which
increased to 95% for 800 rpm.
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Shaysultanov et al. [91] conducted FSW experiments on carbon-doped CoCrFeNiMn
HEA. The authors reported that the weld joint possessed properties similar to the BM,
attributed to the precipitation of the M23C6 carbides and grain refinement. Gupta et al. [102]
did FSW experiments on the FCC-dominant metastable HEA and revealed superior me-
chanical properties in the weld region and HAZ. The highest tensile strength was observed
in the SZ region, attributed to the refined equiaxed microstructure. Qin et al. [103] studied
the influences of FSW welding parameters on mechanical properties and microstructural
features of CoCrFeNi HEA. The authors optimized the welding parameters, and they
observed a UTS of 627 MPa and ductility of 42% in the optimized condition, which are
comparable to those same qualities of the BM. Defects are, of course, still possible with
this technique. Contamination, tunneling, and incomplete penetration of the joined metals
are examples of such possible defects [50]. However, all these defects can be mitigated by
optimizing the welding parameters. Therefore, the potential defects can be overlooked in
most applications, as studies show that this affected area of the joined metals experiences
a noticeable decrease in grain size and an increase in hardness, predominantly in the stir
zone, even with the presence of defects. The improved properties of the weld joint suggest
FSW is a very promising welding technique for the future of HEA. As more studies are
being published, it is becoming apparent that this welding method is an easily controllable
process that produces excellent joints with minimal chances of defects. Table 2 shows the
mechanical properties and microstructural features of HEA weldments using different
solid-state welding techniques.



Materials 2022, 15, 2273 17 of 25

Table 2. Mechanical properties and microstructural features of solid-state welded HEA.

Material Welding
Technique Welding Parameter Observation

CoCrFeNiMn
[91] FSW

Shoulder diameter—12.5 mm;
Pin length—1.5 m;

Tool rotation speed 1000 rpm;
Tool travel speed 30 mm/min;

Force—11.1 kN

• Sound weld without any macro defects
were observed

• BM has a grain size of 9.2 µm, whereas the stir
zone (SZ) has a grain size of 4.6 µm

• The higher volume fraction of M23C6 carbides
were observed in SZ

• Ultimate tensile strength (UTS) increased by 80 MPa,
and yield strength (YS) increased by 200 MPa

CoCrFeNiAl0.3
[98] FSW

Shoulder diameter—12 mm;
Pin length—1.8 mm;

Probe diameter—4 mm;
Tool rotation speed 400 rpm;

Tool travel speed 30 mm/min and
50 mm/min; Load—1500 kg

• Sound weldwithout any macro defects
were observed

• SZ zone has refined microstructure
• Themromechancially affected zone showed a mixed

microstructure due to partial recrystallization
• Recommend FSW as a superior joining technique

for various engineering applications

CrMnFeCoAl
[83] FSW

Shoulder diameter—12 mm;
Pin length—1.85 mm;

Probe diameter—4–5.76 mm;
Tool rotation speed 600 rpm and

700 rpm;
Tool travel speed 150 mm/min

• Tensile properties of weld joint are compared
to BM

• Grain size reduced by 114 times compared to the
grain size of BM, which is attributed to the high
recrystallization tmeperature and short
welding duration

• The hardness of the weld joint was higher than BM

Co16Fe28Ni28Cr28
[100] FSW

Shoulder diameter—12 mm;
Pin length—1.8 mm;

Probe diameter—4 mm;
Tool rotation speed 400 rpm; Tool

travel speed 30 mm/min and
50 mm/min; Load—1500 kg

• Sound weld without any macro defects
was observed

• SZ has the FCC phase the same as BM
• Grain refinement was observed in the SZ zone
• The deformation during FSW is characterized as

simple shear

Al0.3CoCrCu0.3FeNi
[104] FSW Tool rotation speed 150 rpm; Tool

travel speed 60 mm/min

• Ductility and strength enhanced after FSW
• Fine grains were observed in SZ due to

partial recrystallization
• The enhanced properties in HEA is used to low

stacking fault energy and high grain growth
activation energy

• Recommended FSW as a special process for
enhancing mechanical properties of HEAs

CoCrFeMnNi
[99] FSW

Shoulder diameter—4.5 mm;
Pin length—1.3 mm;

Probe diameter—2.5 mm;
Tool rotation speed 80 rpm; Tool

travel speed 100 mm/min

• Sound weld without any macro defects
was observed

• After FSW cast side grain size was 1.8 µm and
rolled HEA has a grain size of 1.4 µm

• Rolled HEA has better weldability than cast HEA
• Cast HEA weld contains high-density high angle

grain boundaries and twins

4.2. Explosive Welding

Explosive welding (EW) helps join metals that generally cannot be joined by traditional
means. Examples include aluminum and copper, aluminum and steel, aluminum and
titanium, titanium alloys, etc. Scholars demonstrated that EW could successfully make
dissimilar and similar joints between metals and alloys [105–109]. It is done by forcing
two pieces of metal together, similar or dissimilar, at very high velocity and pressure levels
using controlled explosives [110]. The impact velocity is high enough that the first atomic
layers of each material are joined by diffusion. The deformation zone is subjected to high
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pressure, leading to a plastic metal jet. The collision essentially eliminates contaminants
and defects between the two materials, resulting in a single piece of metal with excellent
bonding [48]. A significant amount of heat is generated at the interface; however, the heat
transfer to the substrate is minimal because of the short time associated with EW. The
strength obtained during EW strongly depends on the microstructure at the interface. The
schematic of the EW is represented in Figure 15.
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Figure 15. Schematic of the EW technique.

Tian et al. [111] developed a bimetallic composite using EW on FeCoNiCrAl0.1 with
pure copper used as the flyer plate and studied the interfacial microstructure. The authors
observed excellent bonding at the interface, no visible defects, intermetallics in the vortex
zone, grain refinement, and phase transformation near the vortex zone due to jetting. They
reported lower hardness when the distance from the interface was larger. However, a
significant enhancement in hardness was observed near the interface, which was attributed
to grain refinement and plastic deformation. The microstructures were elongated at the
interface, and due to the excellent thermal conductivity of the copper, the cooling rate at
the interface was higher, leading to refined columnar grains. Figure 16 shows the hardness
profile corresponding to different stand-off distances of the flyer plate. As the stand-off
distance increased, the flyer plate could impact the substrate at higher velocities; thus, the
interface had a wavy structure. This situation also consumed more energy, which ultimately
enhanced the hardness at the interface.
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Arab et al. [112] welded HEA and Al-6061 using three different stand-off distances,
1, 2, and 3 mm, so that the flyers struck the substrate with three different velocities. The
authors revealed that the aluminum alloy and HEA were properly welded together in all
cases. They observed a straight interface without any cracks after using 1 mm stand-off
distance. However, they observed cracks after using 2 and 3 mm stand-off distances. The
observed crack initiation site was the interface, and from there, it propagated throughout
the HEA, and the cracks were due to the formation of intermetallic compounds during the
welding process. The authors also reported an improvement in hardness in the aluminum
flyer, which was attributed to grain refinement and plastic deformation. Figure 17 shows
the SEM of the EW of HEA and aluminum alloy. In the figure, the cracks can be easily seen.
As mentioned previously, transverse cracks were observed after using 3 and 2 mm stand-off
distances only, as represented in Figure 17a,b. This was attributed to the high impact
energy associated with 3 and 2 mm stand-off distances. A shock wave was generated
in the interface during EW with the aluminum flyer, causing it to propagate throughout
the HEA and reach the free surface of HEA, leading to transverse cracking due to high
impact energy.
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The observations and findings of these experiments further indicate that EW is a viable
technique for use between HEAs and pure metals, which is precisely the advantage of
using EW methods for regular alloys and pure alloy metals. However, experiments did
not address the actual strength of the resultant joints using this method. Beyond these two
experiments, there has not been very much research surrounding the use of EW techniques
on HEAs. So far, research has shown that it is a practical way of joining HEAs to pure
metals—at least with the HEAs used in the two experiments conducted by Tian et al. [111]
and Arab et al. [112]. However, further research must address different HEA compositions
and their abilities to join with pure metals and each other through EW.

Although very practical and useful for large-surface-area welds, this method is gener-
ally not yet as promising as FSW for HEAs. The primary issue with explosive welding is
the creation of cracks in the material that is being welded. The face of the welded materials
will be a solid joint; however, the back sides of the two pieces will have cracking due
to the impact of the process. However, changes in speed and force can alter this result,
suggesting that this method has many potential uses if undesirable results can be mitigated.
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Even though the discussion on solid solid-state welding of HEA revealed improvements in
mechanical properties, more research still needs to be done to advance the emerging field
of solid-state welding HEAs and how their excellent properties can be used to make a large
impact on the industry.

5. Challenges of Welding HEA

This review summarized many experimental papers on HEA welding using fusion-
based and solid-state welding techniques. The results showed good weldability and no
significant macro defects, pores, or porosity in the weld joints. All the papers discussed in
this review considered only butt-joint configuration, the simplest of all joints. However,
in the real world, other than the butt joint, there are many other joints, such as lap joints,
corner joints, edge joints, and tee joints. Therefore, welding in this configuration may be
challenging. Thus, significant research has to be done to identify the influential process
parameters for welding in this configuration. It is essential to know the influences of weld
heat input on the phase formation, grain size, dendritic pack size, and dendritic arm space
to better understand the weld joints’ mechanical properties.

In many cases, a significant drop in hardness from the weld center to the fusion line
was observed during dissimilar welding of HEA [113]. This effect is more pronounced
during cast HEA welding than rolled HEA. For certain applications, the toughness of the
weld joint is more important than the hardness. Under such conditions, the appropriate
selection of welding techniques and process parameters is essential. Based on applica-
tions and demands, more HEAs are designed every year. Optimizing welding process
parameters and appropriate welding techniques is critical to joining these HEAs for various
applications [51,66]. Currently, much research related to welding is focused on the most
widely used system: CoCrFeNiMn. More in-depth research is required to make various
welding techniques for similar and dissimilar welding of other HEAs applicable. Another
important challenge during HEAs welding is the appropriate filler wire selection. Based
on HEAs’ ultimate tensile strength (UTS) levels, filler wires can be classified into three
categories: undermatching filler wire, matching filler wire, and overmatching filler wire.
Choosing overmatching filler wire during welding is always recommended to avoid joint
failure. Overmatching filler wire has higher alloying content and can provide superior
properties in the weldment. However, they are costly because of their higher alloy content.
From an economical point of view, it is recommended to choose undermatching filler wire
and matching filler wire during welding of HEAs. The field of application intended for the
fabricated weld joint needs to be considered during the filler wire selection.

6. Conclusions

This review paper provided a comprehensive overview of the welding of HEA. HEA is
an outstanding finding in the materials science and engineering domain. The evolution of
HEA has helped scholars and scientists to use advanced materials with superior mechanical
properties for diverse industrial applications. This review explained the needs for advanced
materials and demands for the development of HEAs to meet these requirements. The his-
torical development of HEAs was elaborated to explain HEAs better. Fusion-based welding
techniques, such as gas tungsten arc welding (GTAW) and laser beam welding (LBW), were
explained for different HEA systems. In addition to that, solid-state welding techniques,
such as friction stir welding (FSW) and explosive welding (EB), were summarized for a
broad category of HEAs. The microstructural evolution, WM properties, HAZ properties,
grain size variation, epitaxial growth, weldability, and weld’s mechanical properties were
discussed. Finally, this review explained the potential challenges in the welding of HEAs.
This review article can provide deeper insights for the selection of welding techniques for a
particular HEA system.
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