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Abstract

This paper explores how information flow properties of a network affect the formation of cat-

egories shared between individuals, who are communicating through that network. Our

work is based on the established multi-agent model of the emergence of linguistic catego-

ries grounded in external environment. We study how network information propagation effi-

ciency and the direction of information flow affect categorization by performing simulations

with idealized network topologies optimizing certain network centrality measures. We mea-

sure dynamic social adaptation when either network topology or environment is subject to

change during the experiment, and the system has to adapt to new conditions. We find that

both decentralized network topology efficient in information propagation and the presence

of central authority (information flow from the center to peripheries) are beneficial for the for-

mation of global agreement between agents. Systems with central authority cope well with

network topology change, but are less robust in the case of environment change. These

findings help to understand which network properties affect processes of social adaptation.

They are important to inform the debate on the advantages and disadvantages of central-

ized systems.

Introduction

To study phenomena such as convention sharing, cultural transmission and language evolu-

tion researchers are employing multi-agent modeling [1–5]. Such methods allow simulating

processes which naturally unfold on very slow time-scales. With computational models it is

possible to formulate hypotheses as to how the observed properties of language—such as cate-

gories and vocabulary structure—have evolved over time. Realistic models of this kind have to

include social factors and limitations, which influence the language structure [6, 7]. But which

specific factors are important in this context and when is their influence visible? In our work

we contribute to answering this question by studying the effects of social network topology in

a multi-agent model of categorization. Through simulations, we investigate the impact of
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information flow in the network on the quality of the evolved language categories and the sta-

bility of the shared communication system in the face of socio-environmental change.

Our starting point is a multi-agent model of categorization developed by Steels and Bel-

paeme [2]. It strength lies in grounding the evolved categories in external stimuli, providing a

link between language and environment. It was originally used to explore the cultural evolu-

tion of color categories and vocabulary. The building blocks of this model are simple interac-

tion protocols called language games [8]. Language games are designed to represent

ecologically important tasks involving language usage. In such game agents interact with each

other according to their roles, and afterwards an outcome in the form of communicative suc-

cess or failure is determined. Each agent adjusts its categories while playing language games in

order to maximize its own communicative success. This gradually leads to the emergence of

global system of categories shared on the population level. Similarly to the original Steels and

Belpaeme’s work, in our simulations agents learn to discriminate and name objects based on

their colors. Random color samples from Munsell color chips encoded numerically in CIE

LAB space constitute an environment. A system of categories describing the environment is

evolved during each simulation.

Network topology determines which agents can interact with each other directly. In the

original model a fully connected network was used imposing no restrictions on agents’ com-

munication. This is not a realistic assumption: communication in both artificial and social sys-

tems has its costs. It is restricted by geographical, technological, and social factors. We model

such restrictions by introducing specific network topologies. Then we ask what properties of

such restricted network topologies are desirable for constructing a system of categories useful

for communication, which would be robust under perturbations but also flexible, i.e., able to

dynamically adapt to varying environmental conditions [7]. In our experiments both the struc-

ture of the stimuli (environmental constraints) and the network topology (communication

constraints) are prone to change. We address three different questions:

1. How fast, given a certain network topology, the system of categories and vocabulary can

achieve global agreement within the whole population?

2. Can a system of categories evolved using a particular communication network topology be

adapted when the topology changes so that unrestricted communication between all agents

is made possible (fully connected network)?

3. Can an already evolved system of categories be adapted and retrained when the distribution

of stimuli occurring in the environment changes? Does the effectiveness of re-training

depend on the topology of the network?

The first question is connected to the static situation when the circumstances do not

change. The second question is related to change in internal circumstances of the system oper-

ation. The third question concerns change in external circumstances. Together they provide a

comprehensive account of the issues of social adaptation.

There are existing studies analyzing the impact of network properties, such as size or aver-

age node degree, on vocabulary transmission [3, 9, 10]. We are interested in studying the prop-

erties related to the concept of network centrality. It can be intuitively understood as the

existence of nodes with large influence on the rest of the network (e.g. influential individuals

in a social group). Network centrality is an established concept in social studies and has been

applied to explain a wide variety of phenomena, such as functioning of an organization [11],

decision-making [12, 13], or spread of innovation [14]. Centrality is closely related to network

flow [15]. We study two aspects of centrality: topological centrality, connected with number of

steps needed to propagate information through the network, and centralization of authority,
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connected with the direction of information flow. According to our hypothesis, decentralized

network topologies in which information propagation requires smaller number of steps should

allow to evolve a consistent set of linguistic categories faster. On the other hand, introducing

central authority (forcing information flow from the center toward peripheries) should impose

the consistency of categories through the network structure.

To verify our hypotheses we perform experiments with 8 network topologies originally

used in social computing experiments by Mason and Watts [16]. All of these networks

have uniform node degree 3, but they differ in centrality: each network either maximizes or

minimizes certain centrality measure. This results in 4 decentralized networks topologies and

4 centralized topologies. These networks have well-defined theoretical properties and were

already studied in social context. To study the effect of the centralization of authority we

include star network topology as a special case of centralized network. In this context we ana-

lyze different directions of information flow in a network by considering different roles of the

central agent in interactions. It can be mostly active (star speaker), when it authoritatively

forces its own categories on other agents, mostly passive (star hearer), when it learns the cate-

gories of others, or its role can be balanced (star balanced). Using such operationalization we

demonstrate that the two aspects of network centrality—topological centrality and centraliza-

tion of authority—affects the dynamics of categorization system differently. We stress that

both aspects of centrality are important factors to be recognized and distinguished.

Experiment design

The foundation of our research was an agent-based model of categorization utilizing language

games developed by Steels and Belpaeme [2] (see Section “Language games model”). During

the simulations randomly selected pairs of agents engaged in guessing game, in which one of

the agents had an active role (speaker) and the other a passive role (hearer). A simplified ver-

sion of guessing game in which there was no categorization of stimuli, only naming, was nam-
ing game. We used this variant as an alternative model to test the universality of our results.

Each game could result either in success or a failure (see Section “Language games”). The base

measure of agent performance was the fraction of successful guessing games for a given agent

over the last 50 games of that agent. Mean value over a population of agents represented their

agreement in categorizing stimuli, and was called communication success (CS). By analyzing

CS it was possible to say how fast the population reaches an agreement.

To answer questions formulated in the introduction we used three experimental designs:

1. To answer question 1) we let the agents learn categories while engaging in interactions

according to a specific network topology (optimizing network specific communicative suc-

cess—CSS), but at the same time we measured their communicative success in a fully con-

nected network (global communicative success—CSG). Network topologies in which both

high CSS and high CSG are achieved were deemed effective in category transmission.

2. Answering question 2) required changing the network topology during the experiment. In

the first phase (625 iterations per network node) agents interacted according to a specific

network topology, then in the second phase (another 625 iterations per node) they were

allowed to retrain their categories with no restrictions on interaction (fully connected net-

work). During both phases CSS on the restricted topology and CSG on the fully connected

network were measured. Achieving high CSG after the second phase of the experiment

without compromising CSS was a sign that the system of categories developed in the first

phase was easily adaptable to unrestricted communication scenario.
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3. Question 3) is connected with changing the environment structure while holding the net-

work topology constant. In the first phase (625 iterations per network node) agents learn to

categorize stimuli drawn from distribution A, then in the second phase (another 625 itera-

tions per node) they retrain their categories using stimuli drawn from distribution B. Distri-

butions A and B differed significantly (see Section “Environments”). Communicative

success is measured using specific network topology and the stimuli from distributions A

(CSA) and B (CSB) separately. Achieving high CSB after the second phase of the experiment

without compromising CSA is a sign that the system of categories developed in the first

phase was able to adapt to a new environment (adaptiveness) while retaining previous

knowledge (retention).

Design 1) is the standard procedure which was applied in the previous simulational studies

regarding convention sharing and forming of categories [2, 4, 9]. Designs 2) and 3) allow

studying more dynamic properties of the system when the conditions of its operation change.

Change of topology may be looked upon as a representation of an internal organizational

change, for example when the institution is reorganized and a new hierarchy is introduced.

Question whether such transition is easier when the starting point is some specific topology

remains an interesting topic in organization science [13].

As for the external environment change a vivid metaphor is a tribe of nomads, which is

moving from one climate zone to another. Suddenly they encounter different fauna and flora

species and have to coordinate their activity in different set of circumstances than before. To

cope with that they have to adapt their language, which involves modifying the vocabulary and

the set of categories. The open question is whether network topology affects this process.

Network properties

In all our experiments a system trained from the beginning using fully connected network

topology, as in the original Steels and Belpaeme [2] experiment, was used as a baseline. Since

fully connected network provides a direct link between any two nodes, we expected it to pro-

duce the best consensus. Our research hypotheses concerned properties of the more specific

network topologies.

The first hypothesis was that the efficiency of information propagation in a network is ben-

eficial for building consensus in the three above described scenarios. Possibility to propagate

local solutions in a decentralized network should lead to faster convergence. We tested 8 net-

works either centralized or decentralized according to different centrality measures: between-

ness [17], closeness [18], clustering [19], constraint [20].

The second hypothesis concerned the direction of information flow. Basing on the predic-

tions from organizational science [13], we expected that networks in which information is

propagated from the center to peripheries (centralized authority) will be more homogeneous

and achieve better consensus, but at the expense of some robustness and flexibility. To study

these effects we used simple star topology in three different variants:

• star speaker—central node has a chance of becoming the speaker in any guessing game it

plays proportional to its node degree. For the degree d probability of becoming the speaker

is d� 1
d . Here information flows from the center to the peripheries. Central node acts as an

authoritative figure enforcing its point of view on the rest of the population.

• star hearer—central node has a chance of becoming the hearer in any guessing game it plays

proportional to its node degree. For the degree d probability of becoming the hearer is d� 1
d .

Here information flows from the peripheries to the center. Central node is a translator medi-

ating between other agents.

Social adaptation in multi-agent model of linguistic categorization
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• star balanced—central node has equal chances of becoming either speaker or hearer. The

information flow is balanced.

Regarding the environment, it is known from the previous research that the distribution of

stimuli influences the evolved set of categories [21]. We constructed environments A and B in

such a way to assure their diversity while not keeping them completely disjoint (see Section

“Environments”). It was expected that systems trained on environment A would perform

worse on stimuli drawn from environment B, but than can be retrained and adapted to the

new environment.

Materials and methods

Language games model

As a stimulus we understand a vector of numeric values, functioning as a real-world reference

for agents’ communication (in our case a point in the CIE LAB color space). Stimuli are drawn

from a certain distribution called environment. Each agent maps any stimuli it receives onto its

own internal set of categories which initially are arbitrary labels devoid of any intrinsic mean-

ing. Agent adds new categories to its set during the simulation. The particular categories

used by different agents are completely independent. An agent maps its categories to a set of

words—tokens that are shared between agents during a linguistic game.

The simulation consists of a number of iterations. In each iteration two agents interact by

playing a guessing game. The interaction uses four stimuli sampled from the environment, one

of which is arbitrarily marked as the topic. One of the agents takes the role of a speaker, who

has to communicate to the other—the hearer—which of the stimuli is the topic. It accom-

plishes this by telling a word it associates with the topic. The hearer then picks the stimulus it

thinks is best described by that word (in the given set of stimuli), and if it is the topic, the lan-

guage game is considered successful. Vocabularies and internal categories of both participating

agents are updated depending on the outcome of the game.

Allowing specific network topologies and dynamic changes in topology and environment

structure are modifications with respect to the original model [2].

Agent architecture

Architecture of an agent is depicted schematically by Fig 1. Each agent consists of a stimuli cat-

egorization system and a lexicon, which maps words to categories. Categorization is imple-

mented using adaptive networks model similar to SUSTAIN categorization model [22]. Each

category recognized by an agent is represented by one adaptive network. An adaptive network

is composed of multiple reactive units—specialized in detection of a single stimulus and sti-

muli similar to it. Activation function of each unit is determined by Gaussian function and has

the following form:

zuðxÞ ¼ e�
1

2s2

Xn

i¼1
ðxi � miÞ

2

where x is an input stimuli, m is a vector of unit’s weights, and σ2 is the scaling parameter of

the kernel (in our experiment σ = 1). Reactive units have weights representing their impor-

tance for the category. The output of the whole adaptive network for a category C has the

form:

fCðxÞ ¼
X

u2C

wuzuðxÞ
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where wu is the weight of a particular reactive unit. An agent performs classification by assign-

ing a stimulus to the category with the largest reaction scores. In the case of misclassification,

agent adds a new reactive unit to the network.

An agent uses associative memory network (lexicon) to relate its internal categories to

known words. Each category can be associated with multiple words and vice versa, each associ-

ation having certain strength. When agent is looking for a category associated with a given

word, it chooses a category which has the strongest association with that word. Analogously,

while choosing a word for a given category, the one with the strongest association with the cat-

egory is chosen.

Language games

In each iteration of the simulation a selected pair of agents plays guessing game. One agent is

the speaker and the other is the hearer, they act according to their roles. Agents’ adaptive net-

works and lexicons are modified during the game depending on their interaction with each

other and with the environment. A distinguished component of guessing game is a special solo

game called discrimination game. A simplified variant of the game played by two agents which

does not contain discrimination game is called naming game (also: ungrounded naming game).

This game uses only the lexical layer without the categorization layer. All specific parameters

of language games, such as the number of stimuli etc., followed the original experiment of

Steels and Belpaeme [2].

Discrimination game

1. Agent is presented a set of four stimuli with one distinguished stimuli—a topic. Euclidean

distance between all possible pairs of stimuli is guaranteed to exceed the value 50.

2. If agent assigns the topic to a different category than the rest of the stimuli game result is

SUCCESS.

3. Otherwise game result is FAILURE (see below for consequences of the success and failure

of the discrimination game).

Fig 1. Architecture of an agent.

https://doi.org/10.1371/journal.pone.0182490.g001
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Guessing game

1. Stimuli are drawn and speaker plays discrimination game. Cs is the category to which the

topic was classified. v is the word with the strongest association with Cs. If there is no word

associated with Cs, a new word is created.

2. Hearer chooses category Ch with the strongest association with v and points to the stimulus

which matches Ch the best.

3. If speaker is able to name the topic (using the word v) and hearer points to it correctly:

• Game result is SUCCESS.

• Speaker increases association strength between Cs and v by 0.1.

• Speaker decreases association strengths between v and categories other than Cs by 0.1.

• Hearer increases association strength between Ch and v by 0.1.

• Hearer decreases association strength between Ch and words other than v by 0.1.

• Adaptive networks of both agents are modified: weights of all reactive units in topic’s cate-

gory are increased by βzu(xt). xt is topic, β is learning rate (in our experiments β = 1).

4. Else:

• Game result is FAILURE.

• If speaker cannot discriminate between the topic and other stimuli then:

� Speaker modifies his adaptive network. If its communicative success is larger than 0.95,

the topic is added as a new reactive unit to the category to which it was classified. Other-

wise, a new category with a single reactive unit centered at the topic is created.

� Weights wu of all reactive units in speaker’s adaptive networks are decreased

(forgetting).

• If hearer does not know the word v then:

� Hearer plays discrimination game, and in case of failure modifies its adaptive network.

If its communicative success is larger than 0.95, the topic is added as a new reactive unit

to the category to which it was classified. Otherwise, a new category with a single reactive

unit centered at the topic is created.

� Topic’s category from the discrimination game is associated with word v with the initial

strength 0.5.

� Weights wu of all reactive units in hearer’s adaptive networks are decreased (forgetting).

• If hearer does not point out the topic correctly then:

� Speaker decreases strength of association between v and Cs by 0.1.

� Hearer decreases strength of association between v and Ch by 0.1.

� Hearer modifies its adaptive network. If its communicative success is larger than 0.95,

the topic is added as a new reactive unit to the category to which it was classified. Other-

wise, a new category with a single reactive unit centered at the topic is created.

� Weights wu of all reactive units in hearer’s adaptive networks are decreased (forgetting).

Social adaptation in multi-agent model of linguistic categorization
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Naming game

1. Stimuli are drawn and speaker chooses a word v which has the strongest association with

topic (if there is no word associated with topic, a new word is created).

2. Hearer points to the stimulus with the strongest association with v.

3. If hearer points to the topic correctly:

• Game result is SUCCESS.

• Speaker increases association strength between the topic and v by 0.1.

• Speaker decreases association strengths between v and stimuli other than the topic 0.1.

• Hearer increases association strength between the topic and v by 0.1.

• Hearer decreases association strength between the topic and words other than v by 0.1.

4. Else:

• Game result is FAILURE.

• If hearer does not know the word v then:

� Hearer associates the topic with word v with the initial strength 0.5.

• If hearer does not point out the topic correctly then:

� Speaker decreases strength of association between v and the topic by 0.1.

� Hearer decreases strength of association between v and the topic by 0.1.

Social network and information flow

To analyze the role of network centrality in the evolution of categories we used 8 network

topologies with 16 nodes of degree 3 embodying different centrality characteristics, as

described by Mason and Watts [16]. Based on their centrality four of them are called “central-

ized” and four “decentralized”. Following the procedure used by the authors we also con-

structed max avg bet and min avg bet networks of other sizes (8, 12, 24, 32, 48) to ensure

generalization of results.

Role of the direction of network flow was analyzed using simplistic star topology (1 central

node connected to n neighbors) in three variants: star speaker (higher chance of central node

acting as speaker), star hearer (higher chance of central node acting as hearer), star balanced
(central node has equal chances of becoming speaker and hearer). We constructed such net-

works for n = 8, 12, 16, 24, 32, 48.

In all experiments a fully connected network was used as a baseline. Various graph proper-

ties of these networks are given by Table 1. Network topologies for n = 16 are presented visu-

ally as Figs A–C in S1 Appendix.

Environments

As in Steels and Belpaeme [2] study, in our experiments stimuli were drawn at random from

the set of 1269 Munsell color chips. In the experimental condition with environment change

we generated two additional sets of 600 chips based on the original one. We modeled the two

environments following family resemblance structure with one focal point and stimuli distrib-

uted around the focal point according to three-dimensional normal distribution. Such

Social adaptation in multi-agent model of linguistic categorization
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structures are argued to underline many naturally occurring categories [23, 24], and are rela-

tively simple and universal. Environment A was drawn from a distribution centered at point

p1 = (L = 66.97, a = 18.65, b = 38.36), environment B was drawn from a distribution centered

at point p2 = (L = 46.24, a = −16.46, b = −1.41). Variables were uncorrelated, scale in each

dimension was 10 times bigger than the difference between p1 and p2. This procedure gener-

ated two environments containing similar stimuli spanning across whole color space but

occurring with different frequencies. Fig 2 presents distributions of L, a, b values in these

environments.

For naming game we used simple environment consisting of 16 discrete stimuli. Here also

two variants of the environment—A and B—were prepared having 5 stimuli in common. Sti-

muli were distinguishable for agents but otherwise identical (there was no internal structure of

the stimuli).

Table 1. Structural properties of network topologies used in experiments. The columns: Closeness, Betweenness and Clustering represent average val-

ues of respective measure across all nodes.

Network size Topology Radius Diameter Closeness Betweenness Clustering

8 Fully connected 1 1 1.00 0.00 1.00

Star 1 2 0.59 0.11 0.00

Max avg betweenness 3 3 0.56 0.13 0.50

Min avg betweenness 2 2 0.64 0.10 0.12

12 Fully connected 1 1 1.00 0.00 1.00

Star 1 2 0.56 0.08 0.00

Max avg betweenness 3 6 0.37 0.18 0.42

Min avg betweenness 3 3 0.52 0.09 0.00

16 Fully connected 1 1 1.00 0.00 1.00

Star 1 2 0.55 0.06 0.00

Max avg betweenness 5 9 0.27 0.20 0.44

Min avg betweenness 3 3 0.45 0.09 0.00

Max max closeness 3 5 0.41 0.10 0.06

Min avg clustering 3 4 0.44 0.09 0.00

Max var constraint 3 6 0.39 0.12 0.25

Max avg clustering 6 6 0.31 0.16 0.50

Min max closeness 5 9 0.27 0.20 0.37

Max max betweenness 3 6 0.31 0.17 0.37

24 Fully connected 1 1 1.00 0.00 1.00

Star 1 2 0.53 0.04 0.00

Max avg betweenness 8 15 0.17 0.23 0.46

Min avg betweenness 4 4 0.39 0.07 0.00

32 Fully connected 1 1 1.00 0.00 1.00

Star 1 2 0.52 0.03 0.00

Max avg betweenness 11 21 0.13 0.23 0.47

Min avg betweenness 4 4 0.34 0.06 0.00

48 Fully connected 1 1 1.00 0.00 1.00

Star 1 2 0.52 0.02 0.00

Max avg betweenness 16 32 0.09 0.24 0.42

Min avg betweenness 5 6 0.29 0.05 0.00

https://doi.org/10.1371/journal.pone.0182490.t001
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Results

Global agreement of categorization system

The first experiment concerned the ability of different topologies to reach global agreement.

We were interested if a categorization system induced by a given topology constituted a good

basis for communication between all agents. Since in a single iteration only two agents interact,

in order to give larger networks equal chance to propagate information, we decided that the

number of iterations should scale with the number of nodes. Hence, all network topologies

were trained for 625 simulation iterations per node (5000 for network size 8, 7500 for size 12,

10000 for size 16, 15000 for size 24, 20000 for size 32, 30000 for size 48) using the same set of

stimuli. We ensured that after this number of iterations performance of fully connected net-

work converged by comparing obtained CSG scores with those measured at the previous occa-

sion, and not finding statistically significant differences (see Table 2). For each topology and

size the simulation was repeated 10 times.

Figs 3 and 4 (first half of each plot, before topology change) present the evolution of CSS

and CSG during the simulation, for different topologies and network sizes. The general trend is

consistent with the expectations: for each topology CSS is higher than CSG, CSG is lower than

the baseline CSG of the fully connected topology.

For network size 16 we used the original network topologies introduced in Mason’s experi-

ment. We found differences in CSG between decentralized and centralized networks. Topolo-

gies max avg bet, max avg clust, max max bet, min max clos perform visibly worse than max var
cons, min avg bet, min avg clust and max max clos. The order of topologies according to CSG is

identical to their order according to betweenness centrality measure. The highest scores were

Fig 2. Histograms of L, a, b values for stimuli in environments A and B.

https://doi.org/10.1371/journal.pone.0182490.g002
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obtained for min avg bet topology and the lowest for max avg bet, both optimizing between-

ness. We chose these topologies as the most representative, and in the experiments with other

network sizes only these two topologies were used. The results were consistent for all network

sizes: the topology with smaller betweenness always outperformed the other one.

To determine statistical significance of these observations, in each simulation we collected

CSG scores of various topologies at the point of topology change (625 iterations per node). The

results are presented as Fig D in S1 Appendix. Separately for each network size (8, 12, 16, 24,

32, 48) we compared the properties of each topology. In the case of star topology, the three

modes of interaction (star balanced, star hearer, star speaker) were treated as different topolo-

gies. For each network size we conducted one-way ANOVA comparing the CSG scores of dif-

ferent topologies. Bartlett’s test was used to check the assumption of equal variances between

groups. Even though for some network sizes there were significant differences in variances, we

decided to proceed normally because of very large differences in means. All ANOVA tests

were highly significant (p< 0.001, see Table 3). Each ANOVA was followed by a post-hoc

analysis, using Tukey’s honest significance test. We used critical values of the test statistic to

visualize significant differences between groups [25]. These visualizations are presented as Fig

E in S1 Appendix. The previously described differences between topologies were indeed

significant.

For network size 16 we also conducted a separate ANOVA, using all 4 centralized and all 4

decentralized networks from Mason’s study. We verified that the variances of scores for differ-

ent topologies are similar with Bartlett’s test (χ2 = 8.52, p = 0.29, null hypothesis that the vari-

ances are equal was not rejected). Then we performed one-way ANOVA test and obtained F(7,

72) = 63.95, p< 0.001, which was sufficient to state significance difference between topologies.

Post-hoc analysis was performed using Tukey’s honest significance test, the results are visual-

ized as Fig F in S1 Appendix.

As can be seen on Figs 3 and 4, there are large differences between the three modes of inter-

action for the star topology. When the central node performs mostly role of the hearer CSG is

very low, while CSS is comparable with the other modes of communication for small networks,

and for larger networks (size 32 and 48) it visibly degenerates after some time. This suggests

that the central agent is flexible enough to successfully communicate with its peers—without

forming global consensus—as long as the number of peers is relatively small. As the number of

peers grow, so does the number of categories the central node is required to learn while per-

forming role of the hearer—it is “pulled” simultaneously in different directions which prevents

it from forming stable categorization system.

When the central node performs mostly role of the speaker, CSG grows very fast and almost

approaches the level of fully connected topology. CSS in smaller networks is similar for all

Table 2. Results of paired t-test for convergence of CSG for fully connected topology: Scores after 625

iterations per node are compared with scores measured at the previous occasion. There were no signif-

icant differences.

Network size t(9) p

8 0.3687 0.7209

12 1.1239 0.2901

16 1.5202 0.1628

24 -0.9338 0.3748

32 -0.7363 0.4803

48 0.1118 0.9134

https://doi.org/10.1371/journal.pone.0182490.t002
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modes of interactions but in larger networks star speaker performs worse than balanced star
which in turn performs worse than max avg bet and min avg bet topologies. This means that

forcing centrally designed categorization on a larger number of agents becomes more difficult,

even though it remains a good strategy to build global consensus.

Fig 3. Network specific communicative success (CSS) and global communicative success (CSG) for different networks,

before and after topology change (the change occurs after 625 iterations per node).

https://doi.org/10.1371/journal.pone.0182490.g003
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Adaptation to new network topology

In the second experiment the categorization systems trained with specific network topologies

for 625 iterations per node were further retrained for another 625 iterations per node, but

using the fully connected topology. Once again, each simulation was repeated 10 times.

A similar analysis as in the previous experiment was conducted—for each network size we

compared the CSG of each topology, this time at the end of the second phase, after retraining

Fig 4. Network specific communicative success (CSS) and global communicative success (CSG) for different networks,

before and after topology change (the change occurs after 625 iterations per node).

https://doi.org/10.1371/journal.pone.0182490.g004
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on the fully connected topology (i.e., after 1250 iterations per node). We used Bartlett’s test to

check equality of variances, and then applied ANOVA followed by a pairwise Tukey HSD test.

Again, star balanced, star hearer, star speaker were treated as distinct topologies. ANOVA

results are provided in Table 4, and the data is visualized as Fig G in S1 Appendix. Results of

Tukey HSD test are visualized as Fig H in S1 Appendix.

Figs 3 and 4 present the evolution of CSG and CSS during the simulation. All the systems

were flexible enough to adapt to the new circumstances and improve their CSG to be on the

same level as the baseline CSG of the fully connected network. This was achieved at the expense

of a drop of CSS to the baseline level. There were no apparent differences between different

Mason’s topologies, which suggests that centrality of the network used in the first phase does

not have an impact on the learning in the second phase.

An interesting effect was observed for star speaker topology and larger networks: the perfor-

mance benefit visible in the first phase propagates to the second phase as well. System which

was initially trained using star speaker topology has larger CSG in the second phase than the

baseline system trained from the beginning using fully connected topology. This comes at the

expense of CSS, which drops below baseline level. Such memory-like effects of increased learn-

ing and increased forgetting means that the initially learned structure of categories influences

further learning trajectory.

Adaptation to new environment

Similar experiments were performed for the environment change condition, where we

observed how robust different network topologies are in their adaptation to new stimuli

distribution. We used two different environments A and B, as described in Materials section.

During the first 625 simulation iterations per node agents were trained on stimuli from

environment A, and during the next 625 iterations—on stimuli from environment B. Local

communicative success was calculated separately during the whole experiment for two envi-

ronments (CSA and CSB). In this simulation, the network topology was held constant (but vari-

ous topologies were tested). For each network topology and size, the simulation was repeated

Table 3. ANOVA results for each network size: CSG after 625 iterations per node.

Network size F(5, 54) ANOVA p Bartlett p

8 30.1 < 0.001 0.024

12 108.1 < 0.001 0.084

16 248.3 < 0.001 0.017

24 526.6 < 0.001 0.068

32 940.2 < 0.001 0.067

48 511.7 < 0.001 < 0.001

https://doi.org/10.1371/journal.pone.0182490.t003

Table 4. ANOVA results for each network size: CSG after topology change (1250 iterations per node).

Network size F(5, 54) ANOVA p Bartlett p

8 1.7 0.143 0.134

12 5.4 < 0.001 0.982

16 8.7 < 0.001 0.934

24 63.2 < 0.001 0.807

32 110.9 < 0.001 0.289

48 103.4 < 0.001 0.748

https://doi.org/10.1371/journal.pone.0182490.t004
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10 times. Results are presented as Figs 5 and 6. For network size 16, performance of all net-

works with node degree 3 was very similar. We decided to use only max avg bet and min avg
bet topologies in other experiments, and for the sake of visibility only these two topologies are

presented on the plots.

Fig 5. Communicative success (CS) calculated on environment A and environment B for different network topologies. First

half of the plot corresponds to a system learning in environment A and the second to the system learning in environment B.

https://doi.org/10.1371/journal.pone.0182490.g005
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Again, we can observe that network specific CS for all topologies is higher than in the case

of fully connected topology. This applies both to CSA and CSB. In the second part of the experi-

ment there is a rapid learning of stimuli from environment B, and the ability to categorize sti-

muli from environment A deteriorates only very slightly. Interestingly, for star topology and

larger network sizes this decrease in CSA is much more prominent: star performance drops

to the baseline level and star speaker drops even lower. Performance of star hearer again

Fig 6. Communicative success (CS) calculated on environment A and environment B for different network topologies. First

half of the plot corresponds to a system learning in environment A and the second to the system learning in environment B.

https://doi.org/10.1371/journal.pone.0182490.g006
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deteriorates for larger networks, in the case of network size 48 even before the shift in environ-

ment structure.

This observation was verified through statistical tests as before. We tested differences

between CSA for different topologies at the end of the simulation (1250 iterations per node),

for each network size separately. The distributions of CSA are shown in Fig I in S1 Appendix.

The results are summarized in Table 5. Only in the case of the smallest network (8 nodes) the

resulting model was not significant. Pairwise differences in terms of Tukey’s plots are pre-

sented as Fig J in S1 Appendix.

The differences between different topology properties are exacerbated for larger networks.

This is to be expected, as the centrality measures exhibit the same behavior, e.g., the between-

ness measure for the min avg bet and max avg bet is 0.13 vs 0.10 for network of size 8, 0.20 vs

0.09 for size 16, and 0.24 vs 0.05 for size 48 (see Table 1). The analysis of those dependencies is

beyond the scope of this paper.

These analyses show that categorizations produced with star balanced and star speaker
topologies are unstable, and when the system is retrained with new data—forgetting occurs.

Categorization layer vs lexical layer

We wanted to verify which of the discovered effects are due to the categorization layer of our

model and which can be observed with the lexical layer alone. In other words: are the networks

topologies which allow to establish common categories also helpful in establishing common

vocabulary in a simplified scenario? Are the obtained results universal or model specific? With

these questions in mind we repeated all the experiments using naming game instead of guess-

ing game as the cornerstone of our simulation. The environment was replaced accordingly

(see section Materials). We stuck to the rule of running 625 simulation iterations for each net-

work node.

Results of the topology shift experiment are presented by Figs 7 and 8. The task is easier

than in the case of guessing game and almost all network topologies reach the maximum possi-

ble performance (1.0). Perfect CSG score naturally leads to perfect CSS score. Relations between

topologies in terms of CSG are preserved: min avg bet performs better than max avg bet, star
speaker is quicker to reach maximum performance than star, star hearer performs the worst.

Here star hearer is unable to reach maximum performance in terms of CSS score. Very slight

forgetting effect is visible for max avg bet and min avg bet topologies in larger networks. For

other topologies this effect is not observed, presumably because of the ceiling effect. Statistical

analysis, analogous to those from previous experiments, were conducted for the CSG measure

after first phase (625 iterations per node); The results are in the Table 6.

Results of the environment shift experiment are presented by Figs 9 and 10. Here the adap-

tation is very similar for all network topologies except star hearer topology, which does not

reach maximum performance. The ANOVA results are presented in Table 7.

Table 5. ANOVA results for each network size: CSA after environment change (1250 iterations per

node).

Network size F(5, 54) ANOVA p Bartlett p

8 2.8 0.025 0.351

12 11.3 < 0.001 0.797

16 15.8 < 0.001 < 0.001

24 46.0 < 0.001 0.017

32 339.2 < 0.001 0.066

48 327.7 < 0.001 < 0.001

https://doi.org/10.1371/journal.pone.0182490.t005
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To sum up, effects concerning speed of information propagation (building global consen-

sus) in relation to network centrality and the direction of information flow were visible in the

limited experimental situation where only the lexical layer was used. Memory-like effects con-

nected with adaptation and forgetting were visible only when the full model with categoriza-

tion layer was used.

Fig 7. Network specific communicative success (CSS) and global communicative success (CSG) for different networks

before and after topology change, for the naming game only scenario.

https://doi.org/10.1371/journal.pone.0182490.g007
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Discussion

The results obtained in the above experiments allow for a discussion of the effects of various

properties of network topologies manifested in different conditions. Regarding the question

concerning transmission of categories through the network we can conclude that it is indeed

related to network centrality. High communication efficiency of network topology, indicated

by centrality measures, leads to a better global agreement. This is visible as a gap between

Fig 8. Network specific success (CSS) and global communicative success (CSG) for different networks before and after

topology change, for the naming game only scenario.

https://doi.org/10.1371/journal.pone.0182490.g008

Social adaptation in multi-agent model of linguistic categorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0182490 August 15, 2017 19 / 25

https://doi.org/10.1371/journal.pone.0182490.g008
https://doi.org/10.1371/journal.pone.0182490


decentralized and centralized networks global communicative success. Among the centrality

measures betweenness was the most informative with regard to global communicative success.

It is a promising measure to include in further studies.

Apart from network centrality we also analyzed the direction of information flow in a net-

work. In star speaker, information flows from the central node towards the peripheries. This

reflects the situation of a central authority imposing words on other nodes, leading to their fast

transmission, which is indicated by large global agreement. Star hearer has lower global agree-

ment, indicating (relative) lack of common vocabulary, while the symmetric case of star bal-
anced topology has intermediate properties. Interestingly however, in terms of network

specific success, all three star topologies are similar to each other for small networks, and for

larger networks star speaker performs worse than star balanced. This shows that global unifica-

tion of symbols (vocabulary) is not necessary for successful communication between local

neighbors to occur.

Our findings are consistent with the results of Fagyal et al. [26] who constructed a multi-

agent model to investigate linguistic change and the role of central nodes in a network. They

confirmed that central nodes were able to influence consensus formation in the network only

if they had enough authority, i.e. the information flows from the center to peripheries. This

reassures us that the direction information flow is an important factor to include in studies on

consensus formation. It may explain some discrepancies in previously published research. In

simulations by Richie et al. [10] star topology was characterized by slower convergence of

vocabulary than fully connected topology, while Gong et al. [9] reported that agents connected

through star topology reached consensus faster than in the case of fully connected topology.

We suggest that the difference may be due to different direction of information flow assumed

by the authors.

A broader perspective on information flow properties was given by the second part of the

experiment, when network topology was changed to a fully connected network. After the

topology change, differences in global communicative success disappeared for all but the star
speaker topology. In this topology, trained agents not only adapted swiftly to fully connected

network in the second phase, but also reached performance superior to agents trained with

fully connected topology from the beginning. It is worth to stress that global consensus pro-

duced by star speaker topology in the first phase was already very high, and it probably helped

to steer the category formation process in the second phase in the right direction.

The general message of both simulational studies of categorization [2, 9] and experiments

with human subjects in social networks [27] is that global consensus can be produced in a dis-

tributed manner without any central authority. Our results show that central authority may be

nevertheless beneficial for improved coordination. Using authority to build initial skeleton of

category system, and then polishing the categories during unrestricted interactions proved to

be a successful strategy.

Table 6. ANOVA results for each network size: CSG after environment change (1250 iterations per

node), for the naming game only scenario.

Network size F(5, 54) ANOVA p Bartlett p

8 124.7 < 0.001 < 0.001

12 606.8 < 0.001 < 0.001

16 2179.0 < 0.001 < 0.001

24 5033.9 < 0.001 < 0.001

32 10403.6 < 0.001 < 0.001

48 35335.4 < 0.001 < 0.001

https://doi.org/10.1371/journal.pone.0182490.t006
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Another properties studied in our experiments were adaptiveness and retention of network

performance in the case of environment change. Star topologies are characterized by lower

retention as compared to uniform-degree topologies—after switching to new environment

their performance on the stimuli from the old one deteriorates.

Our results give some general answers regarding the question of desirable properties of net-

work topology in a constructed system. Lack of centralization in topological sense, which helps

efficient information propagation, is useful for building consensus. Centralization of authority,

Fig 9. Communicative success (CS) calculated on environment A and environment B for different network topologies, for

the naming game only scenario.

https://doi.org/10.1371/journal.pone.0182490.g009
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understood as information flow from the center to peripheries, may also lead to very good

consensus but when the conditions change the dynamics of adaptation of such system will be

different. In our experiments star speaker topology represented the case of strong central

authority, which improved efficiency (high global communicative success) at the cost of

smaller retention in the environmental change experiment. We stress that those two notions of

centralization are fundamentally different and should not be confused.

Fig 10. Communicative success (CS) calculated on environment A and environment B for different network topologies, for

the naming game only scenario.

https://doi.org/10.1371/journal.pone.0182490.g010
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This fits into a broader discussion on the merits of centralized vs decentralized systems. On

the technical level engineers speak about advantages of decentralized software solutions. It is

visible for instance in the context of resource management in distributed computational grids,

where centralized systems are perceived as easier to construct but less robust and less flexible

[28, 29]. On the higher level there is an old debate on decentralizing information systems [30].

Hugoson [31] claims that centralized systems are often introduced as a way to ensure consis-

tency and order, but as the systems grow they are becoming very hard to manage, and adapt to

the changing needs. Decision making processes within an organization can also be subject to

centralization. According to Andrews et al. [12] organizations with highly centralized author-

ity focus more on improving the efficiency of their existing operation, while decentralized

organizations exhibit greater flexibility in their constant search of new opportunities [12].

Those examples come from different domains with their own characteristics but there is a sin-

gle common theme: a trade-off between controlling internal dynamics of the system (ensuring

consistency and consensus) and maintaining flexibility when facing a change in external con-

ditions. Systems with centralized authority, like star speaker topology in our experiments, tend

to cope with the internal changes better than with the external ones. The notion of internal vs

external change may be useful for analyzing dynamical systems of this kind, and could be elab-

orated upon in further works.

Conclusions

We have shown that the language games model can be used with a range of network topolo-

gies, and is flexible enough to deal with environment or topology changes during the simula-

tion. Topological network centrality and the direction of information flow were identified as

two distinct factors with significant impact on the characteristics of the evolved categorization

system.

Fully connected network topology proved to be the most effective in transmission of cate-

gories. On the local level however, more restricted topologies achieved high network specific

communicative success without forming global agreement. Since in real-world situations the

fully connected topology can be prohibitively expensive, this result may be informative for

designing similar systems, under the assumption that communication effectiveness, rather

than the exact category transmission, is required.

Our results reinforce confidence in the usefulness of the language games model in studying

language phenomena, also in more realistic, non-static context. In turn, further research based

on multi-agent modeling and comparative paradigm can help to better understand the rela-

tionship between properties of a system and circumstances that created it (e.g. network topol-

ogy and its evolution). These factors can then be summarized as network centrality measures,

like betweenness, allowing simple evaluation and comparison. Such experiments are a good

Table 7. ANOVA results for each network size: CSA after environment change (1250 iterations per

node), for the naming game only scenario.

Network size F(5, 54) ANOVA p Bartlett p

8 2.8 0.025 0.351

12 11.3 < 0.001 0.797

16 15.8 < 0.001 < 0.001

24 46.0 < 0.001 0.017

32 339.2 < 0.001 0.066

48 327.7 < 0.001 < 0.001

https://doi.org/10.1371/journal.pone.0182490.t007

Social adaptation in multi-agent model of linguistic categorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0182490 August 15, 2017 23 / 25

https://doi.org/10.1371/journal.pone.0182490.t007
https://doi.org/10.1371/journal.pone.0182490


way of preliminary hypotheses testing, which informs research of real communicative systems,

both natural and artificially designed.
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