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Abstract: Fatty acid mimetics (FAM) are bioactive molecules acting through the binding sites of
endogenous fatty acid metabolites on enzymes, transporters, and receptors. Due to the special
characteristics of these binding sites, FAMs share common chemical features. Pharmacological
modulation of fatty acid signaling has therapeutic potential in multiple pathologies, and several
FAMs have been developed as drugs. We aimed to elucidate the promiscuity of FAM drugs on lipid-
activated transcription factors and tested 64 approved compounds for activation of RAR, PPARs, VDR,
LXR, FXR, and RXR. The activity screening revealed nuclear receptor agonism of several FAM drugs
and considerable promiscuity of NSAIDs, while other compound classes evolved as selective. These
screening results were not anticipated by three well-established target prediction tools, suggesting
that FAMs are underrepresented in bioactivity data for model development. The screening dataset
may therefore valuably contribute to such tools. Oxaprozin (RXR), tianeptine (PPARδ), mycophenolic
acid (RAR), and bortezomib (RAR) exhibited selective agonism on one nuclear receptor and emerged
as attractive leads for the selective optimization of side activities. Additionally, their nuclear receptor
agonism may contribute relevant and valuable polypharmacology.

Keywords: transcription factor; polypharmacology; selective optimization of side activities; oxaprozin;
bortezomib; tianeptine; mycophenolate

1. Introduction

Fatty acids (FA) are an important source of energy and are key components of lipid
bilayers, thus contributing essentially to physiological homeostasis [1]. In addition, several
FAs and FA metabolites act as signaling molecules on various types of receptors [1–4]. These
receptors, as well as the enzymes metabolizing FAs to FA-derived signaling molecules,
are attractive macromolecular targets in multiple indications, and many are already ad-
dressed by approved drugs [2]. Complementary to the structural features of FAs (and
their metabolites), FA binding receptors and enzymes comprise binding sites with certain
commonalities. FA binding sites typically are highly hydrophobic apart from a site for a
strong ionic contact of the acid function as an often exclusive directed interaction [2]. Drugs
targeting FA binding sites have to adapt to these natural prerequisites and thus comprise
common features, too. They resemble FAs in terms of structural architecture with a bulky
hydrophobic skeleton carrying a polar acidic head group [2]. Bioactive compounds of this
structural composition that target binding sites of natural FAs and their metabolites are FA
mimetics (FAM) [2].

The binding of FAs and FAMs to their macromolecular binding sites, apart from the
common ionic contact, is mainly driven by hydrophobic interactions, since opportunities
for polar contacts are rare [2]. Selectivity among FA(M) binding sites, therefore, mainly
depends on shape and complementarity with the (intended) interaction site. The lack of
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directed contacts defining the ligand–target interaction in FA binding proteins together
with the conformational dynamics of these proteins may suggest that the selectivity of syn-
thetic FAMs may be limited. They may thus exhibit unanticipated biological activities, the
discovery of which would potentially uncover valuable polypharmacological profiles [5].
Moreover, off-target interactions of FAMs may open opportunities for the selective opti-
mization of side activities (SOSA) [6,7], which refers to the development of a new drug
from an old drug by inverting the main-target/off-target potencies. This concept has the
advantage that the lead (the original “old” drug) is known to have favorable features and
to be safe, thus potentially speeding up drug discovery [6,7]. Aiming to reveal unknown
polypharmacology among FAM drugs on FA-activated transcription factors and to dis-
cover leads for SOSA, we have screened a custom collection of marketed and late-stage
experimental drugs with an FAM structure in vitro. We have focused on the modulation
of the retinoic acid receptor (RAR), peroxisome proliferator-activated receptors (PPARs),
the farnesoid X receptor (FXR), and the retinoid X receptor (RXR) which are endogenously
activated by FA metabolites and related lipids with acidic groups. Additionally, the nuclear
liver X receptor (LXR) and the vitamin D receptor (VDR) binding lipids, rather than FAs,
were included for comparison and to reveal potential general lipophilicity-driven promis-
cuity. We have discovered unanticipated structural features associated with selectivity
and promiscuity. Moreover, the screening has revealed remarkable off-target activities of a
number of approved drugs, rendering them as attractive leads for SOSA.

2. Results

FAMs for screening on FA- and lipid-activated nuclear receptors were selected from
the DrugBank [8] based on a FAM structure [2] composed of a lipophilic scaffold with a
carboxylic acid or an acidic bioisostere. Based on these criteria, a total of 64 drugs (full list
in Table S1) were selected. FAM drugs (montelukast, pranlukast, zafirlukast, and lesinurad)
which have been systematically studied for nuclear receptor agonism previously [9–11]
were not included. Descriptor analysis compared to the ChEMBL [12] library demonstrated
compliance of the screening set with typical features of FAMs [2] (Figure S1). Nevertheless,
despite sharing common descriptors and the presence of closely related compound clusters
(retinoids, phenylpropanoic acid based non-steroidal anti-inflammatory drugs (NSAIDs),
and prostanoid analogues), the collection of FAM drugs exhibited high chemical diversity
(Figure 1a).

The FAM collection was tested for the activation of RAR, PPAR, VDR, LXR, FXR, and
RXR in hybrid reporter gene assays [13], providing a uniform in vitro test system for all
studied receptors. These assays employ a chimeric receptor protein to control the reporter
gene expression, which is composed of the ligand binding domain (LBD) of the respective
human nuclear receptor and the DNA binding domain of the yeast protein Gal4. A firefly
luciferase reporter construct comprising five tandem repeats of the Gal4 response element
was used as the reporter, and constitutively expressed renilla luciferase (SV40 promoter),
served for normalization and toxicity control. The assays were conducted in transiently
transfected HEK293T cells in 96-well format. The 64 drugs with FAM structures (Table S1,
50 µM each) were tested in this setting in two independent experiments in duplicates. Five
compounds exhibited toxic or non-specific promiscuous effects and were excluded.

Generally, the screened FAMs revealed few activities on nuclear receptors even at
the high 50 µM test concentration (Figure 1b). Despite covering only a small subset of
FA binding proteins, the screening thus indicated a rather high selectivity of FAM drugs.
Among the 59 remaining non-toxic FAMs, 22 activated at least 1 of the 8 studied nuclear
receptors (≥5-fold activation). Half of the active hits (11 compounds) acted as agonists on
only one of the studied receptors, while the other half exhibited more promiscuous profiles
and activated up to four receptors.

Among the eight studied receptors, PPARγ was activated by the greatest number of
FAMs, followed by its close relative PPARα (Figure 1c). Of note, the screening collection
contained no drugs specifically approved as PPARγ agonists (two for PPARα: bezafibrate
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and gemfibrozil). These results therefore align with high promiscuity of PPARγ (comprising
the largest binding pocket of the PPARs [14]) regarding the types of accepted ligands for
which it has been included in safety and promiscuity panels [15,16].
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Figure 1. Fatty acid mimetic (FAM) drug library screening. (a) Despite their common fatty acid
mimetic architecture, the screened FAM drugs displayed high chemical diversity. The heatmap shows
the pairwise Tanimoto similarity computed on Morgan fingerprints [17]. (b) Results of the primary
screening of FAM drugs on eight nuclear receptors. Heatmap shows the mean fold nuclear receptor
activation, n = 2. Compounds causing ≥ 5-fold activation were considered active. (c) The screening
results indicated different promiscuity of nuclear receptors in terms of tolerated FAM ligands. PPARγ
was activated by the greatest number of FAMs, while only a few hits were retrieved for PPARδ and
FXR. (d) The screening revealed promiscuity of NSAIDs and retinoids among nuclear receptors, while
ACE inhibitors and prostanoid analogues were highly selective.
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Analysis of the screening results by drug classes (Figure 1d) revealed interesting
differences in terms of promiscuity towards nuclear receptors. Five drug classes were
represented in the screening set with more than two examples: angiotensin converting
enzyme (ACE) inhibitors (6), lipid-lowering agents (6), NSAIDs (18), prostanoid analogues
(9), and retinoids (4). ACE inhibitors and prostanoid analogues turned out to be highly
selective over nuclear receptors. None of these drugs activated the studied receptors. Some
activities of lipid-lowering agents on nuclear receptors were observed, which corresponded
to known PPAR agonism of fibrates, however, and retinoids activated RAR and RXR, which
reflected their known mode of action, too. NSAIDs emerged as the most promiscuous drug
class and revealed multiple activities on PPARs. More than 60% (11 out of 18) of the studied
NSAIDs exhibited PPARγ agonism, and 33% (6) also activated PPARα. PPARδ agonism
with 11% of NSAIDs (2) was less prevalent. The NSAID oxaprozin deviated from the trend
of promiscuous PPAR agonism but robustly activated RXR.

The screening interestingly revealed pronounced differences in the promiscuity of the
FAMs. To extract features driving selectivity or promiscuity among nuclear receptors, we
compared the characteristics of active hits with inactive FAMs in the collection (Figure 2).
Due to the high structural diversity of the FAM screening set (Figure 1a), almost all actives
represented an individual scaffold (Figure 2a), thus preventing a correlation between activi-
ties and scaffolds. Analysis of molecular features (Figure 2b) revealed higher lipophilicity
(logP), lower polar surface area, and less H-bond donors and acceptors for FAMs activating
the NR (≥5-fold activation) compared to the inactive FAMs. Moreover, a lower number
of rotatable bonds and less sp3 carbon atoms favored activity on the NR, thus suggesting
that more rigid FAMs exhibit activity on more targets. As the binding of FAMs to their
targets is often driven by the hydrophobic effect, which comes along with a loss of degrees
of freedom, more rigid FAMs have a thermodynamic advantage in binding [2,18], which
also aligns with a more rigid FAM binding to more targets.

As the screening revealed interesting activities of several drugs on new macromolec-
ular targets, we probed whether well-established target prediction tools (SuperPred [19],
SwissTargetPrediction [20], and SEA [21]) would have suggested these activities. Inter-
estingly, high rates of false-negative and false-positive predictions were retrieved from
all three tools (Figure 2c). Precision, referring to the rate of true actives among predicted
actives, and sensitivity, referring to the fraction of correctly predicted actives among all
actives, of the prediction tools were low for the FAM screening set (SuperPred: sensitivity
0.10 and precision 0.14; SwissTargetPrediction: sensitivity 0.48 and precision 0.16; SEA:
sensitivity 0.43 and precision 0.37). This overall performance suggested the hits from our
screening being outside the chemical space covered by these models. These results highlight
that the FAM activity dataset is a valuable addition to model training for target prediction
on nuclear receptors (full dataset is available as a csv in the Supporting Information).

Four FAMs emerged from the screening by exhibiting selective agonism on one of
the studied nuclear receptors. Bortezomib and mycophenolic acid selectively activated
RAR, oxaprozin acted as an RXR agonist (and a weak PPARγ agonist), and tianeptine
exhibited PPARδ agonism. To estimate the pharmacological relevance of these activities
and probe the potential of these compounds for SOSA, we recorded full dose-response
curves on the respective targets (Table 1). Oxaprozin was confirmed as an RXR agonist [22]
with intermediate potency, and tianeptine exhibited PPARδ agonism with considerable
activation efficacy. Bortezomib and mycophenolic acid activated RAR with low micromolar
EC50 values despite weak activation efficacy. All four drugs, therefore, are attractive leads
for SOSA. For oxaprozin, this concept has already been implemented successfully leading
to the development of highly potent and selective RXR agonists [22].
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Figure 2. Molecular features of the screening hits. (a) The activity screening yielded structurally
novel and chemically diverse hits for six nuclear receptors. (b) FAM drugs active on nuclear receptors
had a higher logP, a lower PSA, less HBA and HBD, less rotatable bonds, and a lower Csp3 fraction
than the inactive compounds. * p < 0.05, ** p < 0.01, *** p < 0.001 (t-test). (c) The target prediction tools
SuperPred [19], SwissTargetPrediction [20], and SEA [21] did not reproduce the screening results,
suggesting that the dataset is a valuable addition for model training.
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Table 1. In vitro activity of FAMs with possibly relevant side-target activity and with potential for
SOSA 1.

Drug
(Structure, INN) Activity
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Structurally, the RAR agonism of bortezomib and PPARδ activation by tianeptine are
particularly interesting due to their untypical molecular features with respect to FAMs.
The boronic acid motif contained in bortezomib is still uncommon among approved drugs
but is continuously gaining attention in medicinal chemistry for its special characteris-
tics [23,24]. For example, boronic acids possess unique H-bonding potential, can reversibly
form covalent adducts with various nucleophiles, and convert between trigonal, planar,
and tetrahedral geometries [23,24]. The RAR agonism of bortezomib with considerable
potency and selectivity therefore suggests the boronic acid group as potential motif to be
considered in future FAM and nuclear receptor ligand development. Additionally, the
PPARδ agonism of tianeptine is remarkable since PPAR agonists typically comprise highly
lipophilic backbones, while tianeptine is favorably polar (logP 1.54) and contains a basic
amine and a polar sulfonamide in its lipophilic tail. It may therefore enable the design
of new PPARδ agonists with preferable physicochemical features. To obtain molecular
insights into RAR modulation by bortezomib and mycophenolic acid as well as the PPARδ
agonism of tianeptine, we evaluated their interactions by molecular docking. Oxaprozin
was omitted as a crystal structure of an analogue with RXRα and has been solved (pdb ID:
7b9o) [22].

The docking (Figure 3) of Tianeptine to the PPARδ LBD (pdb ID: 1GWX [25]) sug-
gested a typical PPAR agonist binding mode with strong contacts of the carboxylic acid
motif to the activation function represented by His323, His449, and Tyr473 and with the
dihydrodibenzo[c,f][1,2]thiazepine system favorably bound in the spacy lipophilic pocket
of PPARδ. For the interaction of mycophenolic acid with RARα, molecular docking also
suggested polar interactions of the carboxylic acid with Arg276 and Ser287, which is com-
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mon among RAR agonists. Apart from these directed contacts, mycophenolic acid binding
appeared to be mainly mediated by hydrophobic interactions with the highly lipophilic
RAR ligand binding site, as expected for a FAM. The docking of bortezomib to the RARα
ligand binding site interestingly revealed two reasonable binding modes, neither of which
indicated an interaction of the boronic acid motif with Arg276 and Ser287. Apart from an
H-bond from the pyrazinecarboxamide’s nitrogen atom to the Ser232 side chain observed in
both poses, the binding of bortezomib was mediated by hydrophobic contacts. Compared
to the respective co-crystalized ligands, tianeptine, mycophenolic acid, and bortezomib
revealed lower docking scores by several orders of magnitude, which is in-line with their
intermediate potencies on PPARδ and RAR. Thus, the predicted binding modes suggest
considerable potential to optimize affinity to the nuclear receptor targets further supporting
the suitability of the drugs for SOSA.
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BMS614) are shown for comparison.
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While the moderate PPARδ agonism of tianeptine likely has no pharmacological
relevance at the recommended low dose (12.5 mg), RAR activation by bortezomib and
mycophenolic acid may contribute to their pharmacological activity. The proteasome in-
hibitor, bortezomib, is approved for multiple myeloma treatment [27]. RAR agonists have
been intensively studied in the same indication with promising results [28–30], suggesting
a beneficial dual mode-of-action for bortezomib. Interestingly, sensitization of myeloma
cells to proteasome inhibitors by concomitant retinoic acid treatment has recently been
reported [31]. Similarly, RAR activation by the immunosuppressant inosine monophos-
phate dehydrogenase (IMPDH) inhibitor, mycophenolic acid [32], is remarkable since
RARs (together with RXRs) are critical regulators of immunity [33]. Importantly, clinical
pharmacokinetics studies in healthy volunteers have reported peak plasma concentrations
of mycophenolic acid between 24.5 mg/L and 32.8 mg/L after oral administration [34]
corresponding to 77 to 103 µM. Bortezomib reached maximum plasma concentrations of
112 mg/L [35] corresponding to 29 µM. Hence, the reported plasma levels of both drugs
markedly exceed their EC50 values for RAR activation. To characterize the RAR agonism
of bortezomib and mycophenolic acid further in a more physiological setting, we tested
their ability to induce transcription via the human RAR response element (RARE). Both
compounds indeed activated RARE at low micromolar concentrations, supporting potential
pharmacological relevance despite low efficacy compared to the full RAR agonist tretinoin
(Figure 4).
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3. Discussion

Due to the special requirements for mimicking FAs and binding to their binding sites,
FAMs share common chemical characteristics and represent an important class of bioactive
molecules. As FAs exhibit critical roles as signaling molecules, FAMs can be employed
for pharmacological interference with multiple regulatory systems and thus have an im-
portance as drugs. The collection of proteins endogenously modulated by FAs includes
several nuclear receptors, which act as ligand-activated transcription factors. These proteins
regulate gene expression and their activation can have a major pharmacological impact.
Accordingly, nuclear receptor modulation is a well-established therapeutic strategy and
mediates the effects of essential medicines, for example, glucocorticoids. The FA-binding
nuclear receptors covered by our screening are particularly involved in the regulation of
nutrient homeostasis, inflammation, and proliferation. While several potent drugs such
as rosiglitazone and bexarotene have been developed to pharmacologically activate these
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receptors, the potential promiscuity of other approved FAM drugs on FA activated tran-
scription factors remained elusive. The knowledge of the side activities of FAMs on nuclear
receptors could, however, improve the understanding of their pharmacological profiles
and open avenues for SOSA.

To obtain systematic insights into the promiscuity or selectivity of FAM drugs among
FA-binding nuclear receptors, we have conducted an activity screening in a uniform
assay panel. In addition to revealing several leads for SOSA, this screening has shown
considerable promiscuity of NSAIDs on PPARγ, while several other types of FAMs were
highly selective over nuclear receptors. Interestingly, the results of the activity screening
were not anticipated by three well-established target prediction tools, potentially suggesting
that the chemical space of FAMs is insufficiently represented in compound/bioactivity data,
which are used for model development. Our screening data may thus provide a valuable
addition to publicly available training data. For the RAR agonism of mycophenolic acid and
bortezomib, the screening revealed new pharmacodynamic effects possibly contributing to
the pharmacological profiles of these drugs, which further evaluation will have to confirm.

Overall, while highlighting the majority of this compound class as selective, screening
FAM drugs for nuclear receptor activation revealed several unprecedented activities that
may valuably contribute to polypharmacological profiles or offer attractive starting points
for SOSA, as exemplified by the development of RXR agonists from oxaprozin.

4. Materials and Methods

Screening compounds. The FAM drugs were obtained from commercial vendors.
Hybrid reporter gene assays. Hybrid reporter gene assays were performed in tran-

siently transfected HEK293T cells (German Collection of Microorganisms and Cell Cul-
ture GmbH, DSMZ), as described previously [36], using the hybrid receptor plasmids
pFA-CMV-hRARα-LBD [37], pFA-CMV-hPPARα-LBD [38], pFA-CMV-hPPARγ-LBD [38],
pFA-CMV-hPPARδ-LBD [38], pFA-CMV-hVDR-LBD [39], pFA-CMV-hLXRα-LBD [40], pFA-
CMV-hFXR-LBD [41], and pFA-CMV-hRXRα-LBD [42]. pFR-Luc (Stratagene, La Jolla, CA,
USA) served as reporter, and pRL-SV40 (Promega, Madison, WI, USA) was used as an
internal control. Transient transfection was performed with Lipofectamine LTX reagent
(Invitrogen, Carlsbad, CA, USA); luciferase activity was measured using the Dual-Glo
Luciferase Assay System (Promega) according to the manufacturer’s protocol and a Tecan
Spark luminometer (Tecan Group AG, Männedorf, Switzerland). Firefly luminescence was
divided by Renilla luminescence and multiplied by 1000, resulting in relative light units
(RLU) to normalize for transfection efficiency and cell growth. Fold activation was obtained
by dividing the mean RLU of the test compound by the mean RLU of the untreated control.
For the initial drug fragment screening, the FAM library was tested in two biologically
independent experiments in duplicates. Follow-up experiments were conducted in at least
three biologically independent experiments in duplicates. For dose–response curve fitting
and calculation of EC50 values, the equation “[Agonist] versus response (variable slope-four
parameters)” was performed in GraphPad Prism (version 7.00, GraphPad Software, La
Jolla, CA, USA) with the mean fold activation values ± S.E.M. Tretinoin, GW7647, pioglita-
zone, L165041, calcitriol, TO901317, GW4064, and bexarotene (each at 1 µM) were used as
reference agonists.

Reporter gene assay for RARE activation. Activation of the human RAR response
element was studied in transiently transfected HEK293T cells using the reporter plasmid
pGL3-RARE-luciferase [43] (Addgene plasmid #13458, Watertown, MA, USA), the receptor
plasmids pcDNA3.1-hRARα [44] (Addgene plasmid #135397), and pSG5-hRXR [45] and
pRL-SV40 (Promega) as internal control. Transient transfection was performed with Lipo-
fectamine LTX reagent (Invitrogen); luciferase activity was measured using the Dual-Glo
Luciferase Assay System (Promega) according to the manufacturer’s protocol and a Tecan
Spark luminometer (Tecan). Firefly luminescence was divided by Renilla luminescence
and multiplied by 1000, resulting in relative light units (RLU) to normalize for transfection
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efficiency and cell growth. Experiments were conducted in three biologically independent
experiments in duplicates. Tretinoin (1 µM) was used as the reference RAR agonist.

Molecular feature analysis and target prediction. Pairwise Tanimoto similarities and
Morgan fingerprints were calculated using RDKit version 2022.03.2 (RDKit: Open-source
cheminformatics; http://www.rdkit.org/ accessed on 21 August 2022) in python v3.7
(Python Software Foundation, https://www.python.org/ accessed on 21 August 2022);
molecular features logP, PSA, HBA, HBD, rotatable bonds, and Csp3 were calculated
with DataWarrior version 5.2.1 [46] The values for pKa acidic/basic were retrieved from
DrugBank version 5.1.9 [8] and ChEMBL [12]. The statistical significance between sets of
active and inactive molecules was calculated using python v3.7 and the module scipy.stats
v1.7.3 [47]. Target predictions were performed with the prediction tools SuperPred [19],
SwissTargetPrediction [20], and SEA [21], and the results were analyzed in KNIME 4.6.1
(KNIME AG, Zurich, Switzerland). Results were visualized in python v3.7 using the
module matplotlib v3.5.1 [48].

Molecular docking. Molecular docking was performed in Molecular Operating Envi-
ronment (MOE, version 2022.02, Chemical Computing Group Inc. Montreal, QC, Canada).
The X-ray structure of the PPARδ LBD in complex with GW2433 (pdb ID: 1GWX) [25] and
the RARα LBD in complex with BMS493 (pdb ID: 3KMZ) [26] served as templates. The
structures were prepared using the MOE QuickPrep tool with default settings, adjusting
the protonation states of the complexes. Compounds were prepared using the MOE Wash
tool with the dominant protonation state at pH 7.0; coordinates were rebuilt in 3D, and
existing chirality was maintained. The following settings were used for all docking cal-
culations: Force Field = Amber10:EHT; Receptor = Receptor and Solvent Atoms; Site =
Ligand Atoms of crystallized ligand; Placement = Triangle Matcher; Refinement = Induced
Fit; first scoring function = London dG with 100 poses; and second scoring function =
GBVI/WSA dG with 10 poses for each compound. Redocking of the crystallized ligand
GW2433 in PPARδ (RMSD = 1.86, mean RMSD = 3.30, and score = −11.88) and BMS493 in
RARα (RMSD = 0.16, mean RMSD = 1.50, and score = −11.00) confirmed suitability of the
method.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms231710070/s1.
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