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Abstract: Disseminated tumor cells (DTCs) are studied as a prognostic factor in many
non-hematopoietic tumors. Melanoma is one of the most aggressive tumors. Forty percent of
melanoma patients develop distant metastases at five or more years after curative surgery, and
frequent manifestations of melanoma without an identified primary lesion may reflect the tendency
of melanoma cells to spread from indolent sites such as bone marrow (BM). The purpose of this
work was to evaluate the possibility of detecting melanoma DTCs in BM based on the expression of
a cytoplasmatic premelanocytic glycoprotein HMB-45 using flow cytometry, to estimate the influence
of DTCs’ persistence in BM on hematopoiesis, to identify the frequency of BM involvement in
patients with melanoma, and to analyze DTC subset composition in melanoma. DTCs are found
in 57.4% of skin melanoma cases and in as many as 28.6% of stage I cases, which confirms the
aggressive course even of localized disease. Significant differences in the groups with the presence
of disseminated tumor cells (DTCs+) and the lack thereof (DTC−) are noted for blast cells, the total
content of granulocyte cells, and oxyphilic normoblasts of erythroid raw cells.
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1. Introduction

Today oncology is a rapidly developing field of medicine. Every year novel target and
immunological agents acting against cancer at the molecular level are added to clinical oncologists’
practice, and many such agents are currently at various stages of clinical development. However,
notwithstanding significant progress over the last decade and a broad variety of therapeutical options,
several fundamental questions remain to be answered: What are causes of cancer development? What
are mechanisms of metastasis and recurrence? At what stage of disease development can we influence
these processes?

Over the last 150 years there were many theories to explain processes developing both in the
tumor and in the patient’s body. By the end of the first quarter of the 21st century the world medical
community has passed a long way from the first publication by T.R. Ashworth in the Medical Journal of
Australia in 1869 [1], where the author described for the first time circulating tumor cells in a cancer
patient, and the ‘seed and soil’ theory proposed by Stephen Paget in 1889 [2], through the theory
of late dissemination (linear progression) by William Stewart Halsted [3–5] to the theory of early
metastasis (parallel progression) by Christophe Klein [6] and the concept of the premetastatic niche by
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Bethan Psaila and David Lyden in 2009 [7]. The key question in all of these theories was how tumor
cells managed to overcome immune surveillance [8], to preserve their proliferative potential and to
proliferate in alien environments even after several decades of latency [9,10].

It seems natural that bone marrow (BM) with its advanced capillary network and a cocktail of
soluble protein factors, integrins, chemokines, cell adhesion molecules, and a variety of growth factors
is the most attractive niche for tumor cells [11,12]. Being basically alien, BM makes its environment
appropriate for disseminated tumor cell (DTC) persistence via sophisticated antigenic, immunogenic,
and cellular mechanisms [13,14]. DTCs may have different fates in a new microenvironment. Most of
them die within several weeks or months [15], while DTCs preserving their vitality without decrease
or increase in their total number may enter latency and form so called dormant metastases.

Dormant tumor cells have three main differences from other tumor cells, i.e., the ability to
survive in alien and even hostile environments for a long time, temporary but reversible growth arrest,
and resistance to target cytostatic agents [16]. These DTC properties make them biologically closer to
tumor stem cells, a minor primary tumor subset seeming to play a leading role in the self-maintenance
and metastasis of malignancies [17].

BM involvement is described in multiple non-hemopoietic neoplasms and is shown to be
an independent poor prognostic factor for overall and disease-free survival [18–23]. Interestingly,
these publications mainly address cancers of the breast, stomach, lung, colon, or prostate, while studies
of melanoma are few and require further analysis.

Observations of hematogenous metastases from melanoma after 10 [24] or even 40 [25] years after
removal of the primary tumor and frequent melanoma manifestations without an identified primary
may reflect melanoma cell tendency to spread from indolent sites [26,27] such as BM.

gp100—HMB-45, a cytoplasmatic premelanocytic glycoprotein is a reliable marker of melanoma
cells. It was discovered as one of the first melanoma antigens to demonstrate high sensitivity (up to
93%) and specificity (up to 100%) [28] and is usable to identify DTCs.

The Hemopoiesis Immunology Laboratory (N.N. Blokhin Cancer Research Center, Russian
Federation Health Ministry) has developed a procedure to identify DTCs by flow cytometry [29].
Flow cytometry has certain advantages as compared to cytology, immunohistochemistry, and molecular
biology techniques. For instance, contemporary multicolor flow cytometry can analyze 12 or more
parameters in a single cell and accumulate a large number of events with sensitivity close to that of
PCR (10–4 to 10–6) and allows most complete description of the DTC immunophenotype [30]. Besides
pure quantification of DTCs, flow cytometry therefore helps to study DTC subsets such as tumor stem
cells or to identify surface molecular targets for drugs (Her2/neu, PDL1).

The purpose of this work was to evaluate the possibility of detecting melanoma DTCs in BM based
on the expression of HMB-45 using flow cytometry, to determine the frequency of BM involvement
in patients with melanoma, to analyze DTC subset composition in melanoma as to the expression
of CD56 and CD57 that were an additional criterion for melanoma immunological diagnosis, and to
assess the proportion of tumor stem cells among DTCs based on the presence of CD133.

2. Materials and Methods

A total of 47 patients (23 males and 24 females) aged 20–72 (median 49.8) years managed at the N.
N. Blokhin Russian Cancer Research Center for skin melanoma during 2018–2019 were enrolled in
the study. The diagnosis was verified histologically in all patients. This study was approved by the
institutional ethical committees (Local ethical committee N. N. Blokhin Russian Cancer Research Center
of Ministry of Health of the Russian Federation; UDC 616-006, Reg. № AAAA-A16-116122210071-4,
Inv. 479.) and was done with the informed consent of the patients. Most of the patients (42.6%) had
stage IV disease based on complex examination. BM involvement was assessed by morphology and
immunology at diagnosis. Table 1 demonstrates patient distribution by stage.
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Table 1. The distribution of patients by disease stage.

Stage Frequency Percent (%)

I 7 14.9
IIa 1 2.1
IIb 5 10.6
IIc 3 6.4
III 11 23.4
IV 20 42.6

Total: 47 100

Morphological examination included myelogram count and identification of tumor cells on
six Romanovsky-stained bone marrow smears by two morphologists in parallel. Immunological
identification of DTCs in BM was done by flow cytometry. Samples were lysed using BD FACS lysing
solution (Beckton Dickinson, Franklin Lakes, NJ, USA), then washed in phosphate-buffered saline
(PBS), and re-suspended in 100 mL of PBS. Cells were incubated for 15–20 min in the dark at room
temperature together with a cocktail of monoclonal antibodies directly conjugated with fluorescein
isothiocyanate (FITC), phycoerythrin (PE), allophycocyanin (APC), and Horizon V500 and Horizon
V450 fluorochromes (Table 2). All samples were processed within 24 h after collection. Antibody
labeling was measured by multiparameter flow cytometry using FACS Canto II (Beckton Dickinson).
Twenty million myelokaryocytes (or all cells in the sample) were collected to identify DTCs. Tumor cells
were detected by the lack of expression of the common leukocyte antigen CD45 in combination with
bright expression of HMB-45. To identify DTC subpopulations expression of CD133, CD56, and CD57
molecules was analyzed among the CD45–HMB-45+ cells.

Table 2. Monoclonal antibodies used in the study.

No. MoAbs/Fluorochromes Function Manufacturer

1 Syto41 Nuclear dye Thermo Fisher Scientific,
Walthem, MA, USA

2 CD45 Leukocyte common
antigen Beckton Dickinson

3 HMB-45 Melanoma cell
antigen gp100

Santa Cruz
Biotechnology, Dallas,

Tx, USA

4 CD56 Neuronal cell adhesion
molecule (NCAM) Beckton Dickinson

5 CD57 NK-cell molecule
(HNK1) Beckton Dickinson

6 CD133 Hematopoietic stem cell
antigen Beckton Dickinson

Results were analyzed using Kaluza Analysis v2.1 (Beckman Coulter, Brea, CA, USA) software.
Statistical analysis of data used IBM-SPSS Statistics v.17 package (IBM, Armonk, NY, USA).

3. Results

Morphological analysis of BM biopsies included myelogram count and tumor cell identification.
In the analysis of hematopoiesis, we excluded cases with bone marrow dilution with peripheral

blood. Comparison of the average bone marrow parameters according to the myelogram is shown in
the Table 3.
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Table 3. Comparison of the average bone marrow according to myelogram.

Myelogram Parameters DTCs n Mean Value Errstdmean p

Cellularity negative 19 67.0 6.51
NS*positive 20 67.3 7.87

Blasts
negative 20 1.46 0.14

0.026positive 25 1.09 0.09

Promyelocytes negative 20 0.44 0.11
NSpositive 25 0.37 0.08

Neutrophilic myelocytes negative 20 7.80 0.72
NSpositive 25 8.95 0.54

Neutrophilic
metamyelocytes

negative 20 8.58 0.65
NSpositive 25 7.83 0.53

Band neutrophils negative 20 16.50 0.91
NSpositive 25 18.70 1.00

Segmented neutrophils negative 20 24.47 1.39
NSpositive 25 27.266 1.71

All granulocyte cells negative 20 60.76 1.45
0.025positive 25 65.41 1.38

Neutrophil maturation
index

negative 20 0.43 0.034
NSpositive 25 0.38 0.034

Monocytes negative 20 2.78 0.26
NSpositive 25 3.30 0.24

Lymphocytes negative 20 12.85 0.79
NSpositive 25 12.02 0.68

Plasmocytes negative 20 0.60 0.10
NSpositive 25 0.77 0.15

Basophilic normoblasts negative 20 1.23 0.17
NSpositive 25 0.97 0.13

Polychromatophilic
normoblasts

negative 20 11.16 0.91
NSpositive 25 10.19 0.82

Oxyphilic normoblasts negative 20 9.08 0.88
0.006positive 25 6.25 0.52

Sum of nucleated
erythroid cells

negative 20 21.47 1.44
0.042positive 25 17.41 1.29

Erythroid maturation
index

negative 20 0.96 0.01
NSpositive 25 0.96 0.01

Leuco–erythroid ratio negative 20 4.02 0.39
0.034positive 25 5.58 0.59

* NS—not significant.

Significant differences in the groups with the presence of disseminated tumor cells (DTCs+) and
the lack thereof (DTC−) were noted for blast cells, the total content of granulocyte cells, and erythroid
germ indicators.

The level of blast cells was higher in patients with no DTCs: 1.46% ± 0.14% (n = 20) and
1.1% ± 0.09% (n = 25), p = 0.026.

On the contrary, the total content of granulocyte cells was higher in patients with DTCs in the BM:
65.4% ± 1.4% (n = 25) and 60.8% ± 1.5%: (n = 20), p = 0.025.

The most significant differences were obtained with respect to cells of the erythroid series. Thus,
the percentage of oxyphilic normoblasts was significantly higher in patients with no DTCs in the BM:
9.1% ± 0.88% (n = 20) and 6.3% ± 0.52% (n = 25), p = 0.006. It should be noted that, in the group as
a whole, the levels of oxyphilic normoblasts were increased compared to the norm in 67% of patients.
Accordingly, the sum of nucleated erythroid cells was also higher in melanoma patients with no
DTCs in the BM: 21.5% ± 1.4% (n = 20) and 17.4% ± 1.3% (n = 25), p = 0.042. This was reflected in
a significantly higher leuco–erythroid ratio in patients with the presence of DTCs in the bone marrow:
5.6% ± 0.6% (n = 25) and 4.0% ± 0.4 (n = 20), р = 0.034.
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It is interesting to note that when analyzing according to the tables of conjugacy of characters,
only two indicators of the myelogram were reliably associated with the presence of DTCs in the
BM—the total content of granulocyte cells and the level of oxyphilic normoblasts.

The relationship of DTCs with the total amount of granulocyte cells consisted in the fact that,
in the presence of DTCs, a decrease in the total level of granulocyte cells was observed in only 8%
of cases, while in the absence of DTCs a decrease in granulocyte cells was observed in 30% of cases,
chi-square = 8.9; p = 0.012.

A different situation was noted with respect to oxyphilic normoblasts, whose normal content
in the absence of DTCs was observed in 15% of cases, and in the presence of DTCs—three times
more often—in 44% of cases. On the contrary, an increase in the level of oxyphilic normoblasts in the
absence of DTCs occurred in 85% of cases, in the presence of DTCs, in 56%, chi-square = 4.4; p = 0.037.
Melanoma cells were identified in BM by morphology in one of 47 cases only (Figure 1).

Figure 1. Melanoma disseminated tumor cells in bone marrow. This figure presents a case of detection
of skin melanoma cells in bone marrow punctate ((a) and (b), ×1000 magnification). Punctate bone
marrow is poor. Normal lines of myelopoiesis are depressed. Cell complexes of a non-hemopoietic
nature are determined. Additionally, there are scattered, separately lying tumor cells. They are
represented by cells of a large size, and basophilic colored pigment granules of various sizes are visible
in the cytoplasm. The morphological picture of the bone marrow is characteristic of metastatic lesions
in melanoma.

Immunological analysis of DTCs in BM was based on a threshold of one tumor cell
(Syto41+CD45−HMB-45+) per 10 million myelokaryocytes. A mean of 14,146,987 (±957,728)
myelokaryocytes were analyzed in each sample. DTCs were found in 57.4% of BM samples (n = 27)
based on the threshold level. Interestingly, flow cytometry of melanoma cells has specific features
due to morphological characteristics of these cells such as a rather large size and the presence of
pigmented inclusions of various diameters (from dust-like to large fused granules of different diameter).
For instance, the melanoma DTCs have high direct and side light scatter characteristics and require
adequate protocols for flow cytometer tuning.

There were no significant differences in DTC counts with respect to gender, age, or disease stage.
What is important is that BM involvement was discovered at all disease stages (Table 4). This means
that hematogenic tumor cell dissemination occurs already from clinically localized disease.

Table 4. Frequency of disseminated tumor cell (DTC) detection at various stages of melanoma.

Stage Number of Patients Frequency of DTCs + Cases

I 7 28.6%
II 9 55.6%
III 11 63.6%
IV 20 65.0%
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DTCs were additionally characterized by CD56 and CD57 expression. In our study, CD56 and
CD57 expression was assessed in 23 BM samples. Among them, DTCs were present in 54.2% (n = 13)
though these cells did not express CD56. CD57 expression on DTCs was found in six cases (46.2%)
(Figure 2). Importantly, not all 100% of DTCs in each BM sample demonstrated CD57 expression.
On average 87.4% ± 5.8% of DTCs were CD57-positive. Of interest, 50% of CD57+ patients had stage
IV, two of six had stage III, and one patient had stage IIc disease.

Figure 2. Disseminated tumor cells of skin melanoma as identified by immunological flow cytometry.
This figure shows an example of detection of skin melanoma DTCs. On the cytogram (a) in gate C,
DTCs were observed on the basis of the bright expression of HMB-45 (y-axis) and the absence of CD45
expression (x-axis). On the cytogram (b), the analysis of the subpopulation composition of DTCs in
melanoma was performed in relation to the expression of the CD57 antigen. Cells are characterized by
distinct CD57 expression (y-axis) and lack of CD45 expression (x-axis). Most DTCs (91.19%) are CD57+.

A minor tumor stem cell (TSC) subset with maximum resistance to conventional anticancer
therapies plays a special role in metastasis. According to the literature, melanoma TSCs are characterized
by expression of antigens such as CD44, CD271, and CD133. We identified TSCs among melanoma
DTCs by CD133 expression.

CD133 expression was analyzed in 22 BM samples. Half of these BM samples were DTC-positive.
There was a single DTC-positive sample containing a CD133+-DTC subset, which accounted for 1.38%
of all DTCs in this case (Figure 3).

Figure 3. Identification of CD133-positive DTCs. This figure shows an example of the assessment of
DTC subpopulations by the tumor stem cell marker CD133. On the cytogram (a), 0.01% DTCs was
detected by the distinct expression of HMB-45 (y-axis) and the lack of expression of the pan-leukocyte
antigen CD45 (x-axis). Within the DTCs, expression of CD133 evaluated. Cytogram (b) (x-axis is CD45,
y-axis is CD133) shows that CD133+ cells make up 1.36% of all DTCs.
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We have demonstrated that both the primary tumor and DTCs in BM may have a heterogeneous
composition and express various antigens. The significance of this finding for the disease course and
prognosis deserves assessment in further studies.

4. Discussion

BM as a niche for micrometastasis plays a key role in hematogeneous dissemination. By creating
a unique microenvironment for tumor cells BM maintains their proliferative potential for many years.
Disease recurrence decades after treatment of the primary is described for many entities, and skin
melanoma is not an exception. Forty percent of skin melanoma patients develop distant metastases at
five or more years after curative surgery [27], therefore finding novel factors for disease prognosis
and markers of early tumor cell dissemination for personalization of early systemic treatment is of
much importance.

As demonstrated in our study, flow cytometry with a specific antibody HMB-45 in combination
with CD45 is a useful technique to assess BM involvement in melanoma. DTCs were found in 57.4%
of skin melanoma cases. The DTCs were present in 28.6% of stage I disease, which confirms the
aggressiveness of skin melanoma even in localized disease. The findings of CD57 and CD133 expression
are evidence of DTCs heterogeneity and the complex hierarchical relations between the primary and
the DTCs. The prognostic significance of our results will be assessed in further studies.

Thus, we can talk about the complex relationship of hematopoiesis in general and the development
of skin melanoma. Both myelo- and erythropoiesis are involved in and reacting to the tumor process
occurring in the body. Of particular interest are changes in the bone marrow hematopoiesis arising in
the presence of DTCs. Perhaps they are a reflection of the reorganization of the microenvironment of
the DTCs, contributing to their long-term persistence in the bone marrow. The role of these changes in
the prognosis of the course of the disease remains to be assessed.

The ‘seed and soil’ theory therefore is still valuable after 150 years and requires further development
using up-to-date diagnostic approaches.
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