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Abstract

COVID‐19 is a sneaking deadly disease caused by severe acute respiratory

syndrome coronavirus 2 (SARS‐CoV‐2). The rapid increase in the number of in-

fected patients worldwide enhances the exigency for medicines. However, precise

therapeutic drugs are not available for COVID‐19; thus, exhaustive research is

critically required to unscramble the pathogenic tools and probable therapeutic

targets for the development of effective therapy. This study utilizes a chemoge-

nomics strategy, including computational tools for the identification of viral‐
associated differentially expressed genes (DEGs), and molecular docking of po-

tential chemical compounds available in antiviral, anticancer, and natural product‐
based libraries against these DEGs. We scrutinized the messenger RNA expression

profile of SARS‐CoV‐2 patients, publicly available on the National Center for

Biotechnology Information–Gene Expression Omnibus database, stratified them

into different groups based on the severity of infection, superseded by identification

of overlapping mild and severe infectious (MSI)‐DEGs. The profoundly expressed

MSI‐DEGs were then subjected to trait‐linked weighted co‐expression network

construction and hub module detection. The hub module MSI‐DEGs were then

exposed to enrichment (gene ontology+ pathway) and protein–protein interaction

network analyses where Rho guanine nucleotide exchange factor 1 (ARHGEF1)

gene conjectured in all groups and could be a probable target of therapy. Finally, we

used the molecular docking and molecular dynamics method to identify inherent
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hits against the ARHGEF1 gene from antiviral, anticancer, and natural product‐
based libraries. Although the study has an identified significant association of the

ARHGEF1 gene in COVID19; and probable compounds targeting it, using in silico

methods, these targets need to be validated by both in vitro and in vivo methods to

effectively determine their therapeutic efficacy against the devastating virus.
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1 | INTRODUCTION

Eighteen years after the outbreak of severe acute respiratory
syndrome (SARS) caused by SARS‐coronavirus (SARS‐CoV),
the world is now facing a new dare posted by version 2.0 of
CoV causing similar symptoms like SARS emerged from
Wuhan city, China, which was initially named SARS‐CoV‐2
and later renamed by the World Health Organization as
COVID‐19 on February 11, 2020.1–3 As of July 1, 2021, the
total number of laboratory‐confirmed cases of COVID‐19
infection in the world were 182 988 210, including 3 962 976
associated deaths.4 The first COVID‐19 patient‐reported from
SeafoodMarket inWuhan was possibly infected by the direct
or indirect transmission of COVID‐19 virus from bats or
pangolins and later the epidemic spread to the whole world
via human‐to‐human transmission.5,6 The spread toward
Asian countries, especially in India, has further raised the
concern to the wider population.7

CoV belongs to the largest group of viruses and comes
under the Coronaviridae family and the Coronavirinae
subfamily, found in birds and mammals. CoVs are clas-
sified into four genera: α, β, δ, and γ where COVID‐19
refer to β‐CoV which also consists of Middle East re-
spiratory syndrome (MERS)‐CoV and SARS‐1.8(p. 2),9

Images from transmission electron microscopy re-
vealed that CoV gives a crown‐like appearance with spike
proteins projecting out from the spherical virion surface.
COVID‐19 shares about 50% similarity with MERS
whereas approximately 79% with SARS‐CoV indicates that
SARS‐CoV‐2 is closer to SARS‐CoV. All the human CoV
consists of 3ʹ‐polyadenylated tails which encodes struc-
tural proteins (nucleocapsid protein, membrane proteins,
spike proteins, and envelope proteins) responsible for
maintaining viral life cycle, and 5ʹ‐methylated cap region
is for nonstructural proteins, which are important for
replication of the virus.10(p. 19),11,12

Among various human CoVs, SARS‐CoV‐2 caused a
severe mortality rate close to 1.38, and the most common
symptoms in positive cases were cough, fever, headache,
fatigue, diarrhea, and blood‐stained mucous. In the

current scenario, the characterization of novel bio-
markers which may play an important role in prediction
and observation in the status of SARS‐CoV‐2 disease is
required.13,14(p. 2)

Many studies related to SARS‐CoV‐2 have been pub-
lished in these 2 years covering aspects like high‐throughput
transcriptomic analysis, network‐based dynamics, artificial
intelligence‐based drug repurposing, and novel therapeutic
compounds identification followed by molecular dynamics
(MD) validation. Our study is novel as it presents an age‐
based weighted network of SARS‐CoV‐2 transcriptomic da-
taset for robust identification of highly correlated hub
module along with therapeutic targets identification thus
enabling us to understand the disease mechanism at the
molecular and systems level.

In the present study, SARS‐CoV‐2 associated messenger
RNA (mRNA) expression profile was retrieved from Na-
tional Center for Biotechnology Information (NCBI)–Gene
Expression Omnibus (GEO) followed by identification of
differentially expressed genes (DEGs) in different infection
severity groups. The overlapping mild and severe
infectious (MSI)‐DEGs present in both groups were sub-
jected to trait‐linked weighted gene co‐expression network
(WGCN) construction and hub module detection. The hub
module MSI‐DEGs were forwarded to protein–protein in-
teraction (PPI) network construction and enrichment ana-
lyses for predicting potential therapeutic targets. Lastly, we
applied molecular docking and MD method against Rho
guanine nucleotide exchange factor 1 (ARHGEF1) gene15 to
discover potential hits for SARS‐CoV‐2 from antiviral, an-
ticancer, and natural product‐based libraries. The novelty of
our work involves an amalgamation of transcriptomic, net-
work analysis, PPI, and enrichment analyses of COVID‐19
peripheral blood mononuclear cell (PBMC) patient samples
for investigation of human target gene which might be re-
sponsible for controlling the severity of SARS‐CoV‐2 infec-
tion, unlike earlier research work.16,17 The potential
candidate hits can be further selected for in vitro and in vivo
studies in future work to speed up the drug discovery against
SARS‐CoV‐2.
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2 | MATERIALS AND METHODS

2.1 | SARS‐CoV‐2 microarray data
collection and differential expression
analysis

NCBI‐GEO (https://www.ncbi.nlm.nih.gov/geo/)18 was
queried to extract SARS‐CoV‐2‐related mRNA expression
profile with “COVID‐19” and “SARS‐CoV‐2” being used as
appropriate keywords. Our searching criteria for picking a
suitable dataset was as follows: (1) the dataset must be “ex-
pression profiling by array” type and its samples must be
from “Homo Sapiens”; (2) the dataset must be having both
healthy and COVID‐19 (varying severity levels) patient
samples; (3) the dataset must be having diverse age group
samples; (4) the dataset must be having processed and raw
microarray data; and (5) the dataset submission date must be
within 1 year. Any studies devoid of nonhuman samples,
case reports, review articles, abstracts, and cell‐line‐based
experimental study designs were excluded. Series matrix
expression file of the chosen dataset was downloaded using
GEO query R package.19 Mapping of probe IDs to their
corresponding HUGO Gene Nomenclature Committee
(HGNC) symbols was performed using feature data stored in
the expression set object of dataset. The averaging expression
value of genes mapping to more than one probe IDs was
done to avoid redundancy. The COVID‐19 patient samples
in the dataset were bifurcated into groups based on their
infection severity levels followed by the elimination of 50%
low variance genes.20 HGNC multisymbol checker (https://
www.genenames.org/tools/multi-symbol-checker/) was uti-
lized and only officially approved HGNC symbols were re-
tained. A two‐sample statistical t‐test was utilized for
calculating the p‐value of each gene between control
and COVID‐19 samples (infection severity group‐based) fol-
lowed by obtaining their log (fold change)2 and
Benjamini–Hochberg (BH) p‐values utilizing the Limma R
package.21 The genes corresponding to BH p<0.01 and
|log (fold change)| > 22 were regarded as DEGs. DEGs with
log (fold change) > 22 and log (fold change) < −22 were
bifurcated as up‐ and downregulated, respectively. The DEGs
overlapping between different infection severity groups was
considered as MSI‐DEGs.

2.2 | WGCN construction and hub
module identification

Weighted Gene Co‐Expression Network Analysis (WGCNA)
R package22 was utilized for establishing a WGCN from
SARS‐CoV‐2 specific MSI‐DEGs and identifying re-
presentative module genes having a high correlation with
clinical characteristics (i.e., age). All the MSI‐DEGs along

with their samples were passed through the good-
SamplesGenes function to eliminate any missing values. The
samples were clustered thereafter to eliminate any outliers.
The age information of all samples was also taken into
consideration before identifying modules. The pickSoft-
Threshold function assisted in selecting a suitable soft‐
thresholding power (β) to which co‐expression similarity will
be raised for computing adjacency. In general, a suitable
value of β was chosen in compliance with the approximate
scale‐free topology criterion. However, in some cases, the
data does not follow appropriate scale‐free topology due to
the presence of a strong driver which makes a subgroup of
samples globally distinct from the rest. This difference causes
an elevated correlation amongst a large cluster of genes that
invalidates the assumption of the scale‐free topology ap-
proximation. In such cases, a suitable value of β needs to
be chosen based on the sample size in accordance with
the WGCNA guidelines (https://horvath.genetics.ucla.edu/
html/CoexpressionNetwork/Rpackages/WGCNA/faq.html)
to make the resulting network conservative. For reduction in
noise and false associations, the weighted adjacency matrix
was converted into a topological overlap matrix (TOM) fol-
lowed by computation of corresponding dissimilarity (diss-
TOM). The hclust function was utilized to generate a
hierarchical clustering tree (dendrogram) of genes in con-
sideration with the dissTOM measure. To identify densely
interconnected highly co‐expressed gene patterns (i.e.,
modules) from the branches of a tree, a dynamic tree cut
algorithm was incorporated. Module eigengene (ME) and
dissimilarity measure between MEs were computed to
merge the modules with highly co‐expressed genes. ME
dendrogram was checked based on Pearson correlation for
merging multiple modules with comparable expression
profiles. Correlation‐based absolute module significance (i.e.,
average gene significance [GS] of participating genes in a
given module) with the age of samples followed by module
membership (MM) (correlation of the ME and the gene
expression profile) for all modules were computed. In-
tramodular connectivity (k.in) can be explained as a measure
of network connectivity with respect to nodes or genes of a
specific module. The correlation of MM versus GS, GS versus
k.in, and MM versus k.in was used to identify the most
significant associations and the module having significantly
highest correlation with age was chosen as the hub module.

2.3 | PPI network construction,
pathway, and gene ontology term
enrichment analyses

The MSI‐DEGs present in our hub module were
subjected to PPI network construction using Search
Tool for the Retrieval of Interacting Genes (STRING,
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https://string-db.org/) v11.5 web‐based tool.23 This PPI
network was formed at the highest confidence (corre-
sponding to interaction score >0.9) and afterward vi-
sualized using Cytoscape v3.9.0.24 Pathway and GO term
enrichment data for MSI‐DEGs present in the hub
module was compiled using various libraries (i.e., re-
actome for pathways and gene ontology [GO]‐biological
process [BP], GO‐molecular function [MF], and GO‐
cellular compartment terms) available within Enrichr
database.25 Top 10 pathways and GO terms correspond-
ing to p <0.05 were regarded as statistically significant
ones. The MSI‐DEGs overlapping between constructed
highest confidence PPI network, top 10 significant
pathways, and GO terms were regarded as SARS‐CoV‐2
hub MSI‐DEG(s), respectively.

2.4 | Identification of binding sites and
preparation of protein

RhoGEF1 enzyme encoded by ARHGEF1 gene was the
hub driver MSI‐DEG in SARS‐CoV‐2 infectious process
and was selected as a promising target for COVID‐19.
The binding sites of the identified protein (RhoGEF1),
PDB ID: 3ODO, were searched using the machine
learning method on PrankWeb server (https://prankweb.
cz/)26 due to very little information available about pro-
tein binding site. Before this, the protein structure was
prepared using the automatic protein preparation mod-
ule of Discovery Studio (DS) 2019. Hydrogen atoms were
added followed by side‐chain refinement and protonation
states were determined. A receptor grid sphere with co-
ordinates X= 46.5266, Y=−41.5728, Z= 26.6118, and
radii = 12 Å was generated based on PrankWeb server
information.

2.5 | High‐throughput virtual screening
using LibDock

LibDock27 is a high‐throughput screening program in
which both ligands, as well as protein, were rigid. It
enumerates the hotspots at the binding site of the protein
by using apolar and polar probes which were used to
match the ligands to form favorable interactions.
Natural‐Product‐Like Compound Library (900 com-
pounds), Anticancer Screening Library (6300 com-
pounds), and Antiviral Compound Library (13 700
compounds) were retrieved from Life Chemicals (https://
lifechemicals.com/) and COVID‐19 related library (35
compounds) to screen ARHGEF1 inhibitors. Using the
defined coordinates site, an active site for molecular
docking was generated. Structure‐based virtual screening

was executed by docking all the compound libraries at
the prepared active site by using the LibDock module of
DS 2019. The LibDock score was used as a criterion to
rank the docked poses and grouped by name.

2.6 | Ligand preparation and ADMET
prediction

The filtered ligands from LibDock docking were selected
for the calculation of the ADMET properties (absorption,
distribution, metabolism, excretion, and toxicity) and
Ames mutagenicity using ADMET28 and TOKAT29

module of DS 2019. These compounds were further fil-
tered based on their molecular properties using Lipinski's
and Veber rule28 implemented in DS 2019. Filtered
compounds were subjected to energy minimization by
using the steepest descent (5000 cycles) followed by the
conjugate gradient (5000 cycles) to satisfy the minimum
criteria of root mean square gradient of 0.001.30

2.7 | Molecular docking

All the ligands that were successfully filtered out were
submitted for molecular docking using the CDOCKER
module of DS 2019 which is a CHARMM‐based MD si-
mulated docking tool in which ligands were allowed to
be flexible while receptor to remain rigid.31 Crystal
structure of ARHGEF1 (PDB ID: 3ODO)32 with the same
binding site was selected for molecular docking. By re-
taining all the default parameters, filtered ligands were
docked into the binding site of ARHGEF1. Different
conformations for each ligand were generated and in-
vestigated based on CDOCKER energy. Next, we gener-
ated the nonbond interactions between the ARHGEF1,
and ligand conformations obtained from CDOCKER
docking with the help of Analyse ligand poses module of
DS 2019.33 Detailed knowledge of nonbond interactions
is important in structure‐based design, as it helps to se-
lect the favorable interactions between ligands and their
receptor.

2.8 | Flexible docking

To cross‐validate the identified binding site and mole-
cular docking process, a flexible docking method was
used. It may also generate more correct or accurate
ARHGEF1 complexes which may be used as a starting
structure for MD simulation. The top 15 complexes were
selected after analyzing the nonbond interactions for
redocking by using the flexible docking module of DS
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2019 which docks the hit ligands with induced‐fit protein
optimization while simulating the protein flexibility.
Favorable residues from analyzing ligand pose protocol
were defined as flexible residues. The receptor con-
formations (50) were generated using ChiFlex34 and
subsequently, 255 conformations were generated for li-
gand. Next, ligand docking was done by the LibDock
algorithm followed by side‐chain refinement using
ChiRotor.34 The final refinement of complexes was done
by using CDOCKER under the CHARMM forcefield.35

2.9 | MD study

The top three hit‐complexes were used as starting structures
for MD simulation by using Gromacs 4.5.6 package36 and
Gromos96 forcefield.36 Additionally, the top two hit com-
plexes from the COVID‐19 related library were also included
in this study. The topology and parameter file for ligands
were generated on the GlycoBioChem PRODRG2 Server
(http://davapc1.bioch.dundee.ac.uk/cgi-bin/prodrg).37 The
complexes were solvated with a cubic box of a simple point
charge with 1Å margin. Systems were next neutralized by
adding Na+ and Cl− ions to balance the system charges.
Each complex was energy minimized with 10 000 steps of
the steepest descent algorithm to remove any steric clashes.
Then the system was equilibrated with 100 ps of NVT fol-
lowed by 100 ps of NPT at a constant temperature of 300K
and a constant pressure of 1 atm. All bonds were constrained
with LINC algorithm38 and long‐range electrostatics were
calculated with the particle‐mesh Ewald algorithm.39 Finally,
50 ns of MD run was performed and snapshots were saved
for every 5 ps. Final trajectories were analyzed in pymol and
Gromacs tools (g_energy, g_rmsf, g_rmsd, g_gyrate, and
g_hhbond) to calculate potential energy, root‐mean‐square
fluctuation (RMSF), root‐mean‐square deviation (RMSD),
the radius of gyration, and h‐bond analysis.

2.10 | Molecular mechanics
Poisson–Boltzmann surface area

The binding free energies for docked complexes were cal-
culated using molecular mechanics Poisson–Boltzmann
surface area (MM‐PBSA) to revalidate the MD simulation
studies using the g_mmpbsa tool. We performed the calcu-
lations from the last 5 ns of each MD run and used all the set
parameters. Next, the binding energies of the best three
ligands‐complexes were enumerated using the follow-
ing equations as reported earlier40:

ΔG = ΔG –[ΔG + ΔG ],bind.pred complex Rec lig (1)

G = E + G –TS,gas sol (2)

E = E + E + E ,gas int ele vdw (3)

G = G + G ,sol PB(GB) sol‐np (4)

G = γSAS.sol‐np (5)

3 | RESULTS

3.1 | SARS‐CoV‐2 microarray data
collection and differential expression
analysis

On the basis of searching criteria, we chose SARS‐CoV‐2
mRNA expression profile possessing accession number
GSE164805. It comprised a total of 15 PBMC patient samples
(i.e., 5 controls and 10 COVID‐19 [5 mild+ 5 severe]).
Mapping probe IDs to their corresponding genes was fol-
lowed by averaging expression values corresponding to du-
plicates which led to 44 822 unique genes. The COVID‐19
patient samples in the dataset were bifurcated into MSI
groups along with common controls in both groups leading
to 10 samples in each group (i.e., Group 1: 5 mild+ 5 con-
trols and Group 2: 5 severe+ 5 controls). The variance of
each gene across samples in both groups was computed
leaving 22 411 high variance genes in both the groups. After
passing these genes through HGNC multisymbol checker, a
total of 10 729 and 10 518 officially approved HGNC symbols
were left in Groups 1 and 2, respectively. A total of 837 and
1935 genes were differentially expressed corresponding to
BH p<0.01 and |log (fold change)| > 22 in Groups 1 and 2.
Amongst these DEGs, 427 and 1129 were downregulated
while 410 and 806 were upregulated in Groups 1 and 2.
Volcano plots showing the distribution of significant (colored
points) as well as nonsignificant (black colored points) genes
in Groups 1 and 2 were shown in Figure 1A,C.
Figure 1B,D shows an annotation heatmap of top 10 up and
downregulated DEGs in Groups 1 and 2. The sample type,
gender, and age annotation bars were placed at the top of
the heatmap. The controls clustered distinctly from mild
and severe samples in both groups as evidenced from the
heatmap. FST [log (fold change) = −5.962 ] and TEX101
[log (fold change) = 10.732 ] were most down and upregu-
lated in Group 1. Whereas ADAT1 [log (fold change) =2

−6.75] and TEX101 [log (fold change) = 9.962 ] were most
down and upregulated in Group 2. Among the top 10 up‐
and downregulated DEGs, ADAT1, HBD, and FST were
commonly downregulated in both groups. Also, TEX101,
FAM177B, and OR51E1 were commonly upregulated in
both groups. TEX101 was the highest upregulated DEG in
both groups. Group 1 samples constituted 20% females and
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FIGURE 1 (A) Volcano plot showing the distribution of DEGs (downregulated: 427 + upregulated: 410) and nonsignificant (9892)
genes across control and mild COVID‐19 samples (i.e., Group 1). (B) Annotation heatmap showing the distribution top 10 up‐ and
downregulated DEGs across Group 1 samples. The expression value of DEGs (in rows) is normalized across all the samples (in columns).
Cluster dendrograms representing Euclidean distance‐based hierarchical clustering for both rows and columns are presented along the left
and top sides of the plot. Sample type (medium blue for controls and carmine for mild), gender (eastern blue for females and midnight blue
for males), and age annotation bars are placed at the top of the heatmap. (C) Volcano plot showing the distribution of DEGs (downregulated:
1129 + upregulated: 806) and nonsignificant (8583) genes across control and severe COVID‐19 samples (i.e., Group 2). (D) Annotation
heatmap showing the distribution top 10 up‐ and downregulated DEGs across Group 2 samples. The expression value of DEGs (in rows) is
normalized across all the samples (in columns). Cluster dendrograms representing Euclidean distance‐based hierarchical clustering for both
rows and columns are presented along the left and top sides of the plot. Sample type (Prussian blue for controls and ruby red for severe),
gender (green for females and orange for males), and age annotation bars are placed at the top of the heatmap. The green‐ and magenta‐
colored points signify the up‐ and downregulated DEGs in volcano plots. While the black‐colored points signify the nonsignificant genes.
The x‐ and y‐axes represent log2(fold change) and −log10(p‐value). DEG, differentially expressed gene
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80% males while Group 2 samples constituted 10% females
and 90% males. Venn plot showing the 569 overlapping MSI‐
DEGs between both groups is shown in Figure S1A.
Figure S1B shows a kernel density plot distribution of sam-
ple age for all 569 MSI‐DEGs. Three samples (i.e., one con-
trol, one mild, and one severe) with age 54 were having the
highest density as evidenced from the plot. All the samples
in Group 2 were having an age ≥50 with 73 being the
maximum age. Whereas all samples in Group 1 except one
were had age ≥50 with 71 being the maximum age.

3.2 | WGCN construction and hub
module identification

The expression data of all 569 MSI‐DEGs along with their
sample age information were used as an input in WGCNA.
No obvious sample outliers were detected from the sample
clustering dendrogram as shown in Figure S2. Our WGCN
did not follow the scale‐free topology criterion for choosing
the appropriate value of β with respect to ≥R 0.82 . Hence,
in accordance with the WGCNA guidelines, β = 18 (for less
than 20 samples) was chosen. Hierarchical clustering tree
and dynamic tree cut algorithm revealed a total of five color‐
coded gene modules (i.e., blue, turquoise, brown, green, and
yellow) as shown in Figure 2A. The size of these five gene
modules were as follows: blue= 109, turquoise= 231,
brown=102, green= 56, and yellow=71. The multi-
dimensional scaling plot of all modules in three scaling di-
mensions is shown in Figure 2B. There was no need for
merging these modules due to the low merging height ob-
served in the ME dendrogram. Figure S3A shows the gene
co‐expression network as a heatmap plot depicting TOM
among all module genes. Figure 2C shows the Barplot of GS
(correlated with age) with respect to each module. The GS
values for the modules were as follows: blue= 0.14, tur-
quoise= 0.27, brown=0.15, green= 0.41, yellow=0.23.
MM versus GS correlation values along with their p‐values
for each module are shown in Table S1. The GS versus k.in
values along with their p‐values for each module is shown in
Table S2. MM versus k.in values along with their p‐values for
each module are shown in Table S3. As evidenced from
Tables S1–3, blue, yellow, and turquoise modules were
eliminated from any further analysis since they were not
statistically significant (p > 0.05). All these results indicated
that the green module was the most promising and highly
correlated (module significance= 0.41, GS versus MM
= −0.49, GS versus k.in = −0.4, MM versus k.in = 0.43) as
compared to the brown module. Therefore, the green mod-
ule (comprising 56 MSI‐DEGs) was chosen as our hub
module. Figure 2D shows a scatterplot of GS for age with
respect to MM in the green hub module. Figure S3B shows a
scatterplot of GS for age with respect to MM in the brown

module. Figure S3C,D shows heatmap plots of green and
brown module genes along with their corresponding ME
levels.

3.3 | PPI network construction,
pathway, and GO term enrichment
analyses

All the 56 MSI‐DEGs present in our hub module were given
as an input to the STRING web‐based tool where a total of
4 (3 upregulated+ 1 downregulated) MSI‐DEGs participated
in the PPI network corresponding to STRING interaction
score >0.9. The PPI network as shown in Figure 3A com-
prised four nodes and four edges. Also, a total of 12, 14, and
10 out of 56 MSI‐DEGs within our hub module participated
in the top 10 significant pathways, GO‐BP, and GO‐MF
terms. The most significant pathway, GO‐BP, and GO‐MF
terms were G alpha (12/13) signaling events
(p = 1.21 × 10−3), regulation of mitotic spindle checkpoint
(p = 1.15 × 10−4), and ATP‐dependent DNA helicase ac-
tivity (p = 2.77 × 10−3). Sankey plot showing the associa-
tion of top 10 significant GO‐BP and GO‐MF terms with
corresponding 18 genes is shown in Figure 3B. Chord plot
showing the association of 12 MSI‐DEGs with the top 10
significant pathways is shown in Figure 3C. The width of
interaction edges connecting the pathways and MSI‐DEGs
varied according to the p‐values. PSMF1, ARHGEF9, GNG4,
and AP2M1 appeared in a maximum number of pathways
(i.e., 4) whereas F10, ABCG2, BRIP1, GJD3, RASAL2, and
DUSP9 appeared in a minimum number of pathways (i.e.,
1). Venn plot as shown in Figure 3D revealed ARHGEF1 as
the overlapping hub MSI‐DEG between PPI, pathway, and
GO term (i.e., GO‐BP, GO‐MF) genesets.

3.4 | Identification of binding sites and
preparation of protein

Since there is no crystal structure available for our pre-
dicted target ARHGEF1 with co‐crystallized ligand and
very little knowledge available about binding site, the
refined or prepared structure of ARHGEF1 protein (PDB
ID:3ODO)32 was examined on PrankWeb server26 and
topographic features of protein were assessed through
P2Rank program. Out of the three predicted pockets, we
selected pocket 1 based on rank score. The amino
acids predicted in pocket 1 were Thr427, Ala430, His431,
Met434, Arg551, Leu552, Asp556, Met557, Thr560,
Gln563, Arg564, and Lys567. On the basis of these amino
acids found in the pocket (score = 5.22) (Table S4 and
Figure S4), we defined the binding site for structure‐
based virtual screening.
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3.5 | High‐throughput virtual screening
using LibDock

To identify novel compounds against ARHGEF1
through Dbl‐ and pleckstrin‐homology (DH/PH) binding
pocket, a docking‐based virtual screening was performed
using the LibDock module of DS 2019. Total 20 900

purchasable compounds comprising antiviral, antic-
ancer, and natural products were taken from Life Che-
micals (https://lifechemicals.com/) database and 35
COVID‐19 related inhibitors from Selleck chem library
which were currently tested for COVID therapy (https://
www.selleckchem.com/covid-19-related-products.html)
were also selected as a positive control. A total of 741 542

FIGURE 2 (A) Hierarchical clustering dendrogram of MSI‐DEGs clustered based on the dissimilarity measure (dissTOM) and five
color‐coded modules (obtained using Dynamic Tree Cut). The modules contained highly similar expression profiles with the following sizes:
turquoise (231), blue (109), brown (102), yellow (71), and green (56). (B) Three‐dimensional MDS plot where each colored point denotes a
gene belonging to the module of the corresponding color. (C) Barplot showing the distribution of average gene significance (GS), that is,
“module significance” and error bars across turquoise, blue, brown, yellow, and green modules. (D) Scatterplot showing significantly
(p < 0. 05) highest correlation of GS for age with module membership (MM) in the green module. DEG, differentially expressed gene;
MDS, multidimensional scaling; MSI, mild and severe infectious; TOM, topological overlap matrix
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conformations of ligand were generated which aligned to
the polar or apolar region of the protein known as hot-
spots and 1 491 483 poses were docked successfully into
the predicted binding site of the ARHGEF1. All the
docked poses were shortlisted based on the highest Lib-
Dock score.

3.6 | Ligand preparation and ADMET
prediction

To become a successful drug, ADMET, TOPKAT, and
physiochemical properties of hit‐compounds were pre-
dicted by using different modules of DS 2019. The top 300
compounds were selected for toxicity prediction followed
by ADMET properties. Next, the oral bioavailability of
selected hit compounds was calculated by Lipinski's rule
of 5 and Veber's rule. Total 197 compounds following the
TOPKAT, ADMET, Lipinski, and Veber's rule were
subjected to energy minimization via steepest and con-
jugate algorithm. As COVID‐19 related compounds were
already approved for other targets, there is no need to

perform ADMET prediction. Therefore, final hit com-
pounds were having satisfying drug‐likeness properties
and were predicted to have good bioavailability.

3.7 | Molecular docking

A total of 197 filtered compounds, were docked into the
predicted binding site (X= 46.5266, Y=−41.5728,
Z= 26.6118, and radii = 12 Å) of ARHGEF1 protein (PDB
ID:3ODO). Out of 197 compounds, 125 ligands were able
to dock into the defined receptor cavity. Additionally,
only 5 out of 35 COVID‐19 related compounds were able
to interact with ARHGEF1 using a favorable cDocker
energy score. All the ligands were arranged according to
cDocker energy score whereas positive cDocker energy
scored compounds were removed from the list. The
molecular interaction of the binding poses was analyzed
with analyse ligand poses in DS 2019. From all the
binding poses, a total of 2381 favorable interactions, 1088
hydrogen bonds, 1052 hydrophobic interactions, and
only 19 interactions were unfavorable. The top five

FIGURE 3 (A) Protein–protein interaction (PPI) network comprising four nodes and four edges corresponding to STRING interaction
score>0. 9, that is, “highest confidence score.” The red‐ and green‐colored nodes represent up‐ and downregulated proteins. (B) Sankey plot
showing the association of top 10 significant GO‐BP and GO‐MF terms with corresponding 18 genes. The width and color intensity of
interaction edges varied with respect to the p‐values. (C) Chord plot showing the connection of 12 MSI‐DEGs (on right semicircle) with
10 significant pathways (on left semicircle) via colored edges. The width of edges varied with respect to p‐values. The edges initiated from
unique colored strips present on the right semicircle (indicating genes) and converged to unique colored strips present on the left semicircle
(indicating pathways). (D) Venn plot showing the overlapping hub MSI‐DEG (1) between PPI, GO‐BP, GO‐MF, and pathway genesets.
BP, biological process; DEG, differentially expressed gene; GO, gene ontology; MF, molecular function; MSI, mild and severe infectious
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residues with favorable interactions were: Lys567,
Arg551, Met434, Ala430, and Leu552 (Figure S5).

3.8 | Flexible docking

Flexible docking or induced fit docking overcome the
problem of false‐negative results and was more precise
and accurate but it took more time to dock one ligand
into the receptor cavity than other methods. The top 10
ligands from CDOCKER docking results and 5 ligands
from COVID‐19 related compounds were redocked via
flexible docking method into the above binding site using
DS 2019. The obtained docking poses were sorted based
on their LibDock score (first‐level screening) followed by
cDocker energy (second‐level screening). The cDocker
energy score after flexible docking (third‐level screening)
of each pose was improved tremendously and en-
umerated in Table 1 and interactive residues of ARH-
GEF1 with top three hits were shown in Table 2 whereas
docking scores of top hits from COVID‐19 related com-
pounds were enumerated in Table S5 and top two ligand
interactions were shown in Table S6. The
receptor–ligand interactions were analyzed in DS 2019
and, for instance, the interactions of the top three li-
gands, F3222‐4380, F3394‐0943, and F6548‐1087 are ex-
plained in Figure 4 whereas interactions of the top two
ligands (COVID‐19 related library) are explained in
Figure S6. It can be seen in Figure 4A, F3222‐4380 binds
with the active site of ARHGEF1 through interactions:
hydrogen bonds (His431, Arg550, and Arg551), pi‐cation/
alkyl/pi‐alkyl (Ala430, Arg433, Leu552, Lys567, and
Arg564), and van der Waals interactions (Ser394, Thr427,
Met434, Val437, Gln563, and Thr560). F3394‐0943 in-
teracted via hydrogen bond (Thr427, Arg551, and

Lys567), pi‐cation/alkyl/pi‐alkyl (Ala430, His431,
Arg433, Arg550, Arg564, and Lys567), and with van der
Waals interactions (Met434, Val437, Leu552, and
Gln563) (Figure 4B). Finally, the interaction between
F6548‐1087 and ARHGEF1 was also observed, the in-
teractions were hydrogen bonds (His431, Arg564, and
Lys567), pi‐cation/alkyl/pi‐alkyl (Ala430, Arg433, and
Leu552), and van der Waals (Glu423, Thr427, Met434,
Val437, Arg550, Arg551, and Thr560) (Figure 4C).

3.9 | MD simulation

In computer‐aided drug design, MD simulation studies
are used as a validation tool that predicts the binding
stability of the complexes throughout the simulation run.
Herein, the top three docked complexes with ARHGEF1
were examined via a 50 ns MD simulation run. Trajec-
tories were extracted to analyze the dynamic properties
of each receptor–ligand complex. Additionally, MD si-
mulations of the top two ligands from COVID‐19 related
library (Mitoxantrone and Camostat) complexed with
ARHGEF1 were also performed for validation purposes.
Each ligand shares the common binding pocket and ex-
hibited similar kinds of interactions throughout the MD
run. Additionally, five properties were also extracted
from 50 ns MD trajectory for each hit compound, which
includes (a) energy, (b) RMSD, (c) RMSF, (d) radius of
gyration, and (e) hydrogen bonds.

The average potential energy score was found higher
in ARHGEF1‐Lead3 as −7.91041e5 kcal/mole in com-
parison to control protein (ARHGEF1) which has an
average potential energy of −8.76562e5 kcal/mole. The
ARHGEF1‐Lead1 and ARHGEF1‐Lead2 had average
potential energy of −1.16112e6 and −1.16114e6 which

TABLE 1 Molecular docking score of the top 10 selected hits

Compound Name
First‐level screening Second‐level screening Third‐level screening

ClassLibDock score ‐CDOCKER energy Flexible (‐CDOCKER energy)

Lead 1 F3222‐4380 132.739 34.7124 50.0296 Antiviral

Lead 2 F3394‐0943 135.581 30.5814 45.7904 Anticancer

Lead 3 F6548‐1087 129.865 28.3122 44.6191 Anticancer

Lead 4 F3394‐0911 135.581 30.5814 43.8092 Anticancer

Lead 5 F0372‐0536 137.649 34.5305 43.4841 Antiviral

Lead 6 F0375‐0251 138.437 26.6627 42.1999 Anticancer

Lead 7 F1342‐0042 131.347 32.7999 41.738 Antiviral

Lead 8 F3407‐3720 126.415 30.3855 41.2499 Anticancer

Lead 9 F0886‐0075 136.183 27.0587 40.27 Antiviral

Lead 10 F0886‐0050 130.1 32.6969 36.0879 Antiviral
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represents the stability of the complexes in terms of en-
ergy (Figure 5A). The potential energy of ARHGEF1‐
mitoxantrone and ARHGEF1‐camostat complex were
also energetically stable (Figure S7A). To measure the
structural and conformational stability of the protein, the
RMSD of the backbone atoms (Figure 5B and Figure S7B)
for each complex was computed with respect to the in-
itial docking structure. In all the receptor–ligand com-
plexes and control protein, backbone RMSD showed
deviation less than 0.4 nm. ARHGEF1‐Lead1,
ARHGEF1‐Lead3, and ARHGEF1‐mitoxantrone showed
similar kinds of trends like control protein, whereas
ARHGEF1‐camostat and ARHGEF1‐Lead2 complex was
the least stable complex in comparison to other com-
plexes and control proteins. Furthermore, the flexibility

of the amino acid residues was calculated using the
RMSF profile. From Figure 5C and Figure S7C, RMSF of
the backbone atoms was examined where residues of all
complexes were found in the acceptable range of RMSF
values, except in the case of F3394‐0943 against ARH-
GEF1 in which there is a minimal amount of fluctuation
from Glu586 to Leu599, but not in the binding region of
the protein. From Figure 5D and Figure S7D, it was ob-
served that the average Rg of all the complexes was below
2 nm which indicates the compactness of the system.
Moreover, the number of hydrogen bonds that had a
crucial role in the stability in the protein–ligand complex
was analyzed from simulation trajectories. All the com-
plexes remained stable (Figure 5E and Figure S7E),
throughout the 50 ns run signified rigidity in the

TABLE 2 Nonbond interactions
between RhoGef1 and top three
compounds

Compound name Residues in contact Types of interaction
Distance
(A°)

Lead 1 (F3222‐4380) His431 Carbon hydrogen bond 2.33

Arg550 Carbon hydrogen bond 2.76

Arg551 Conventional
hydrogen bond

3.79

Ala430 Alkyl 4.39

Arg433 Pi‐alkyl 4.69

Leu552 Alkyl 4.97

Arg564 Pi‐cation 4.58

Lys567 Pi‐alkyl 2.55

Lead 2 (F3394‐0943) Thr427 Carbon hydrogen bond 3.59

Arg551 Conventional
hydrogen bond

5.73

Lys567 Conventional
hydrogen bond

5.12

Ala430 Pi‐alkyl 3.79

His431 Pi‐alkyl 4.58

Arg433 Pi‐alkyl 4.38

Arg550 Pi‐alkyl 5.49

Arg564 Pi‐cation 4.61

Lys567 Pi‐alkyl 6.19

Lead 3 (F6548‐1087) His431 Carbon hydrogen bond 4.77

Arg564 Conventional
hydrogen bond

4.83

Lys567 Conventional
hydrogen bond

5.54

Ala430 Pi‐alkyl 5.02

Arg433 Pi‐alkyl 5.25

Leu552 Pi‐alkyl 4.97
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structure. The post‐MD binding interactions of the
top three leads were analyzed, where all the hit com-
pounds remain in the binding pocket of the protein
(Figure 6).

3.10 | MM‐PBSA analysis

The MM‐PBSA binding free energy calculation of the top
five complexes (including two‐hit compounds from

FIGURE 4 2D and 3D molecular interactions between ligands and ARHGEF1obtained by molecular docking. (A) F3222‐4380,
(B) F3394‐0943, and (C) F6548‐1087. All the polar and nonpolar interactions were color‐coded and indicated at the right bottom, which was
built using Discovery Studio 2019. 2D, two dimensional

FIGURE 5 Plots to investigate the energy conformations, stability, and fluctuations of ARHGEF1 apo and ARHGEF1 bound state:
(A) represents energies, (B) represents RMSD, (C) represents RMS fluctuations, (D) radius of gyration, and (E) hydrogen bond. Black color
shows the apo form of protein, red color, green color, and blue color represents Lead 1 (F3222‐4380), Lead 2 (F3394‐0943), and Lead 3
(F6548‐1087) bound ARHGEF1. RMS, root mean square; RMSD, root‐mean‐square deviation

684 | JHA ET AL.



COVID‐19 related library) were performed to revalidate
the MD simulation and molecular docking exercises and
are tabulated in Table 3. All the top five complexes ex-
hibited negative binding energy in the MM‐PBSA
threshold, respectively. However, among three com-
pounds, Lead 1 (F3222‐4380) exhibits a better net binding
energy score which may be comparable with the flexible
CDOCKER energy score (−50.0296 kcal/mole) (Table 2).
The difference in net binding energy among all the
complexes is due to the difference in polar solvation
energy score which plays a minimum role in
protein–ligand interactions.

4 | DISCUSSION

COVID‐19 pandemic has radically affected the human
population. Now, more than a year into the COVID‐19
has passed but still, no specific therapeutic option is
available for its treatment. This is one of the main
reasons that new cases and deaths are still reported
throughout the world. Therefore, identification of new
therapeutic targets and development of therapeutic
agents in COVID‐19 are vigorously being pursued. On
the basis of the life cycle of SARS‐CoV‐2 and the
interaction of other molecular factors in COVID‐19,
we can propose several targets for drug development
as well as propose therapeutic agents (existing drug

molecules and new ones) for the treatment of COVID‐19.
This can be achieved through computational ap-
proaches that significantly speed up the identification of
therapeutic targets and the development of therapeutic
molecules in drug discovery. Many new therapeutic tar-
gets and therapeutic molecules have been proposed in
COVID‐19.41–43(p. 2),44,45 But only a few have shown in-
hibition potency in bioassays, warranting new drug tar-
gets and drugs for the treatment of COVID‐19. Some of
the repurposed drug molecules such as remdesivir have
been registered for COVID‐19 therapy although based on
the overall response of this drug globally till now states
that it has several side effects. In addition to this, several
vaccines have been approved for clinical use in the pre-
vention of COVID‐19.

To serve the same purpose, we applied the WGCNA
to identify biologically relevant therapeutic targets in
PBMC COVID‐19 patient samples which were categor-
ized into two groups, that is, Group 1: 5 mild + 5 controls
and Group 2: 5 severe + 5 controls. WGCNA is a well‐
known approach for gene co‐expression network analy-
sis.46,47 We specifically aimed to identify the common
therapeutic target (i.e., MSI‐DEGs) in both groups. The
DEGs overlapping between two groups was considered as
MSI‐DEGs. We found 569 MSI‐DEGs which along with
different age groups of patients were subjected to WGCN
construction and hub module identification. In the
WGCNA, we identified five unique gene modules. The

FIGURE 6 Binding modes of the screened ligand into the active site of protein after 50 ns of MD run. DH, Dbl homology;
MD, molecular dynamics
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green module (containing 56 MSI‐DEGs) which was
significant and highly correlated (Tables S1–S3) was se-
lected as our hub module. Among these MSI‐DEGs three
upregulated (PPY, GNG4, and ARHGEF1) and one
downregulated (CCL4L2) participated in the PPI net-
work. While analyzing these MSI‐DEGs for the most
significant pathway, GO‐BP, and GO‐MF terms, we
found that 12 MSI‐DEGs participated in the top 10 sig-
nificant pathways, 14 MSI‐DEGs participated in the top
10 GO‐BP, and 10 MSI‐DEGs participated in top 10
GO‐MF terms. The MSI‐DEG(s) overlapping between
constructed highest confidence PPI network, top 10 sig-
nificant pathways, and GO terms were considered as
SARS‐CoV‐2 specific hub MSI‐DEG(s), respectively. We
revealed ARHGEF1 as the overlapping hub MSI‐DEG
between PPI, pathway, and GO terms (i.e., GO‐BP and
GO‐MF). ARHGEF1 gene encodes for the Rho-
GEF1 protein.48,49 RhoGEF1 is a member of a group of
four RhoGEF proteins known to be activated by G
protein‐coupled receptors (GPCRs) coupled to the G12
and G13 heterotrimeric G proteins.49,50 We report that
the most significant pathways associated with ARHGEF1
are G alpha (12/13) signaling events and signaling by
nerve growth factor. The GO‐MF terms showed that
ARHGEF1 is associated with Rho guanyl‐nucleotide ex-
change factor activity (GO: 0005089), while GO‐BP terms
revealed its association with Rho protein signal trans-
duction (GO:0007266), regulation of intracellular signal
transduction (GO:1902531), and regulation of small
GTPase mediated signal transduction (GO:0051056).

The involvement and overlapping of ARHGEF1 be-
tween PPI, significant pathways, and GO terms reflect its
translational product as a suitable target for the ther-
apeutics and therapeutic management of COVID‐19.
Studies have reported that ARHGEF1, an intracellular
signaling molecule, is involved in restraining signaling
events from GPCRs to RhoA. It is crucially implicated in
GPCR signaling events by possessing two regulatory do-
mains – regulator of G‐protein signaling (RGS) domain
that combines with Gα13‐containing heterotrimeric
G‐proteins and mitigates GPCR signaling; and tandem
DH/PH domains that participate in RhoA activation by
encoding Rho guanine nucleotide exchange factor (GEF).

Activation of RhoA, in turn, regulates several cellular
processes and hence ARHGEF1 also regulates cell mi-
gration.50(p. 13),51(p. 13) Several reports have demonstrated
its role in cell migration and motility.52,53 Moreover, it
also plays a critical role in pulmonary immunity. It was
demonstrated by a study where ARHGEF1 existed as a
tetramer in a B cell line, however, interrupting in-
tramolecular association, lead to constitutive activation
of RGS and RhoGEF. On the other hand, deficiency of
ARHGEF1 increased adhesion of B lymphocytes, while
its constitutive activation caused increased adhesion of B
lymphocytes. In addition, it has also been found that
ARHGEF1 is a key player in the production of Th2 cy-
tokines by T cells, in the case of airway hyperrespon-
siveness and inflammation. Furthermore, ARHGEF1
deficient mice exhibited increased leukocytes and pul-
monary components such as increased airspace and
matrix metalloproteinase (MMP) activity with decreased
lung elastase; typically found in patients with chronic
obstructive pulmonary disease.54–58 It is also found to be
involved in a novel signaling pathway, comprising of
thromboxane A2 that is endowed in pulmonary in-
flammation. High or low levels of ARHGEF1 determines
thromboxane receptor‐dependent production of MMP9
and macrophage association of fibronectin.59

Additionally, there is no ligand complexed crystal
structure available for ARHGEF1 at present. Likewise,
there is no clear‐cut information available regarding the
ligand‐binding sites present on ARHGEF1. Therefore, to
target the ARHGEF1 for the therapeutics of COVID‐19,
we analyzed its structure and predicted three binding
pockets. Pocket 1 was defined as a suitable binding site
based on rank score and composition of amino acids
namely Thr427, Ala430, His431, Met434, Arg551,
Leu552, Asp556, Met557, Thr560, Gln563, Arg564, and
Lys567. The majority of these amino acid residues pro-
vide a plinth for the binding of potent inhibitors of many
therapeutic targets in CoV diseases.41(p. 2),42,60

Next, we applied molecular docking and MD method
against ARHGEF1 gene15 to discover potential hits for
SARS‐CoV‐2 from the antiviral library, anticancer li-
brary, and natural product‐based library. We found that
the three top ligands – Lead F3222‐4380, F3394‐0943, and

TABLE 3 MM‐PBSA energetic profile for the top three complexes

Compound Name
ΔEVDW

(kcal/mol)
ΔEELE

(kcal/mol)
ΔGSOL‐PB

(kcal/mol)
ΔGSOL‐NP

(kcal/mol)
ΔGbind‐PBSA

(kcal/mol)

Lead 1 (F3222‐4380) −50.35 −7.20 20.76 −4.13 −40.92

Lead 2 (F3394‐0943) −48.89 −22.75 42.69 −4.47 −33.42

Lead 3 (F6548‐1087) −45.51 −31.60 54.63 −4.02 −26.50

Abbreviations: MM, module membership; PBSA, Poisson–Boltzmann surface area.
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F6548‐1087 possessed significant interactions with the
active site of ARHGEF1, including hydrogen bonds, pi‐
cation, and Van der Waals Interactions, suggesting their
potential in modulating functional roles of ARHGEF1.
To validate our findings and endorse the molecular
docking study, we have selected the top 3 hit compounds
for MD simulation. The RMSD profile from F3222‐4380,
F3394‐0943, and F6548‐1087 did not exceed 0.4 nm as
their averages were 0.2134, 0.2967, and 0.2336 nm, re-
spectively, which represents their structural stability. The
F3222‐4380 and F6548‐1087 complex were energetically
more stable than the control protein. On the other hand,
RMSF analysis exhibited that F3394‐0943 fluctuated
more in the region of Glu586 and Leu599 in comparison
to F3222‐4380 and F6548‐1087, overall, all the hit com-
pounds have RMSF profile have less than 1 nm. These
potential candidate hits could act as probable compounds
that may target the important gene ARHGEF1, im-
plicated in COVID‐19, and can be further selected for in
vitro and in vivo studies in future work to speed up the
drug discovery against SARS‐CoV‐2. Additionally, we
performed molecular docking and dynamics method
against COVID‐19 related library which serves as a po-
sitive control in our study. However, our novel hit
compounds had better cDocker energy and MM‐PBSA
profile in comparison to mitoxantrone and camostat
(COVID‐19‐related compounds). Overall, our study has
identified some important components involved in pul-
monary immunity, and understanding the MMs behind
the ARHGEF1 mediated regulation of immunity may
reveal potential therapeutic targets to limit chronic in-
flammation. Besides, chemical compounds targeting
ARHGEF1 could pave the way towards the development
of medicine for the calamitous disease.

In conclusion, as we navigate through the findings, our
study has identified some important components involved in
pulmonary immunity. This study showed a significant as-
sociation of the ARHGEF1 gene with COVID‐19, therefore
highlighting it as a probable drug target for conventional
treatments of this pandemic disease. The understanding
of the MMs behind the ARHGEF1 mediated regulation
of immunity may limit chronic inflammation in COVID‐19
patients. This study also found some actionable drug mole-
cules with a rationale against the ARHGEF1 gene. These
molecules may be effective alone or in combination with
other drug molecules in COVID‐19. The in vitro and in vivo
validation are warranted to determine their therapeutic ef-
ficacy against the devastating virus.
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