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Pooled image-base screening of mitochondria with
microraft isolation distinguishes pathogenic
mitofusin 2 mutations
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Most human genetic variation is classified as variants of uncertain significance. While

advances in genome editing have allowed innovation in pooled screening platforms, many

screens deal with relatively simple readouts (viability, fluorescence) and cannot identify the

complex cellular phenotypes that underlie most human diseases. In this paper, we present a

generalizable functional genomics platform that combines high-content imaging, machine

learning, and microraft isolation in a method termed “Raft-Seq”. We highlight the efficacy of

our platform by showing its ability to distinguish pathogenic point mutations of the mito-

chondrial regulator Mitofusin 2, even when the cellular phenotype is subtle. We also show

that our platform achieves its efficacy using multiple cellular features, which can be config-

ured on-the-fly. Raft-Seq enables a way to perform pooled screening on sets of mutations in

biologically relevant cells, with the ability to physically capture any cell with a perturbed

phenotype and expand it clonally, directly from the primary screen.

https://doi.org/10.1038/s42003-022-04089-y OPEN

1 Department of Genetics, Washington University School of Medicine, St Louis, MO, USA. 2 Functional Imaging for Variant Elucidation at the McDonnell
Genome Institute, St Louis, MO, USA. ✉email: wbuchser@wustl.edu

COMMUNICATIONS BIOLOGY |          (2022) 5:1128 | https://doi.org/10.1038/s42003-022-04089-y | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04089-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04089-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04089-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04089-y&domain=pdf
http://orcid.org/0000-0001-5909-7802
http://orcid.org/0000-0001-5909-7802
http://orcid.org/0000-0001-5909-7802
http://orcid.org/0000-0001-5909-7802
http://orcid.org/0000-0001-5909-7802
http://orcid.org/0000-0003-4944-9047
http://orcid.org/0000-0003-4944-9047
http://orcid.org/0000-0003-4944-9047
http://orcid.org/0000-0003-4944-9047
http://orcid.org/0000-0003-4944-9047
http://orcid.org/0000-0001-5803-9723
http://orcid.org/0000-0001-5803-9723
http://orcid.org/0000-0001-5803-9723
http://orcid.org/0000-0001-5803-9723
http://orcid.org/0000-0001-5803-9723
http://orcid.org/0000-0002-5477-7689
http://orcid.org/0000-0002-5477-7689
http://orcid.org/0000-0002-5477-7689
http://orcid.org/0000-0002-5477-7689
http://orcid.org/0000-0002-5477-7689
http://orcid.org/0000-0002-6675-6359
http://orcid.org/0000-0002-6675-6359
http://orcid.org/0000-0002-6675-6359
http://orcid.org/0000-0002-6675-6359
http://orcid.org/0000-0002-6675-6359
mailto:wbuchser@wustl.edu
www.nature.com/commsbio
www.nature.com/commsbio


The explosion of functional genomics in the past decade1

has enabled a massive shift in the study of the underlying
genetics of human pathology. Even so, it is difficult to

connect specific genetic mutations to disrupted cellular pheno-
types, necessitating a detailed phenotyping-based functional
genomics platform that can both screen large numbers of genetic
perturbations/variants—so-called multiplexed assays of variant
effects2—and work alongside methods of generating variant
libraries, such as deep mutational scanning3.

To assess the impact of these variants on complex phenotypes,
high-content imaging/screening4–8 is performed in an arrayed
format. While some of these methods are particularly
advanced9–14, methods under this framework are difficult to scale
and infeasible for assaying combinatorial effects. Pooled genetic
perturbation screens, on the other hand, have generally relied on
enrichment analysis9 and cannot provide a one-to-one corre-
spondence between a single cell and its phenotype. Beyond
enrichment, simple phenotypes measurable by flow
cytometry10–12, or phenotypes measurable by sequencing13–15 are
possible. There are now platforms that use an imaging-based
approach in pooled genetic perturbation screens and have been
demonstrated on relatively simple phenotypes16–18 or on precise
phenotypes that were known in advance19,20.

Although some platforms do isolate individual cells21, most
genetic perturbation screens use a pooled population-level mea-
surement as their endpoint22. The main challenge for such
screens that operate on the single-cell level is mapping the per-
turbation back to each cell post-sequencing. For screens where
the phenotype is measurable through sequencing, the perturbagen
can be found simultaneously with the phenotype with single-cell
resolution13,15, and newer methods have incorporated more
advanced sequencing techniques to find additional data, such as
surface protein presence15.

Pooled screening platforms that incorporate complex pheno-
types only accessible through microscopy have required more
involved approaches. Mapping phenotype to perturbation
requires retaining information about the cell’s physical position,
and there are a few strategies for accomplishing that. Some
platforms use in situ sequencing (ISS)23–25 to generate sequencing
results that contain positional data of a specific cell19,26 using
specialized non-commercial sequencing rigs. Other platforms
photoactivate endogenous fluorophores in targeted cells which
are then put through FACS-seq18,20,27.

In this paper, we present Raft-Seq, a pooled screening platform
that predicts individual cell perturbations from high-content
imaging and machine learning. Raft-Seq improves on other
platforms in several important ways: 1, it uses a microraft
plate28–30 for context-aware isolation of identified cells 2, it can
use vital dyes or stains, so no genetic modification of the cell is
required other than the perturbation itself; 3, it is largely phe-
notype-agnostic, needing only knowledge of the broad physiology
beforehand for stain selection and initial feature filtering; 4, it uses
machine learning to identify perturbed cells, allowing the iden-
tification of complex cell-autonomous phenotypes; 5, It is able to
connect genetic variation to disrupted cellular phenotypes in a 1:1
fashion; 6, it selects cells with high-viability and clonability,
directly from the primary screen. The use of microraft plates for
pooled screening has been demonstrated before30, and this
manuscript builds on its use to make an extensible single-cell
automated screening platform.

Here, we use the Raft-Seq platform to examine neurologically
relevant mutations in the MFN2 gene, which normally protects
against cellular stress from damaged mitochondria by regulating
mitochondrial fission and fusion31. Clinical MFN2 mutations
(pathogenic variants) primarily result in Charcot-Marie-Tooth
Disease, the most common inherited neuromuscular disorder

characterized by peripheral neuropathy with impairment of the
central nervous system32–36. We find that the phenotype caused
by pathogenic MFN2 variants is distinct, but the difference is not
adequately described by a single measurement/feature, necessi-
tating a more complex feature analysis. Following the findings
from the single perturbation experiments, we targeted a screening
gRNA library across the MFN2-coding region to identify anom-
alous phenotypes caused by these mutations.

Results
Raft-seq is a microraft-based perturbation platform for
screening complex phenotypes. The workflow of Raft-Seq can be
summarized in five steps: perturbation, imaging, model building,
isolation, and sequencing (Fig. 1a, b). In the first step, we intro-
duce a set of genetic perturbations to a population of cells. The
cells are then seeded onto a microraft plate, stained, and imaged
on a high-throughput confocal microscope. We designed Raft-seq
primarily using live-cell staining so that we could isolate viable
cells. After imaging, the fluorescence data is used to compute cell/
nuclear/organelle features with Cytiva’s INCarta software and are
then compiled with metadata into a dataset. The resulting dataset
is quality-checked (Methods: Image Analysis and Quality Control)
and normalized prior to further data preprocessing and modeling.
Several supervised models are trained, varying by algorithm,
hyperparameters, and features (list in Supplementary Note 1),
and the models are evaluated on several metrics using training
and testing subsets of cells with known perturbation/genotypes
(Methods: Machine Learning and Model Generation / Modeling
Considerations). The best model determines the cells to be
isolated.

Isolation is performed using the CellRaft Air System, where
100 × 100 µm microrafts containing cells of interest are auto-
matically transferred to a 96-well plate, either for immediate
genotyping or for initial outgrowth. Due to the time it takes to
isolate each microraft, Raft-seq has a lower average throughput
than other screening methods. In contrast to methods that use
ISS19,23, Raft-seq physically isolates the cells which can be
sequenced using commercial technology. Raft-seq associates a
sequence with the specific image of cell(s), something not possible
in methods that sort using FACS-Seq18,20,27. Previous screening
experiments using microrafts30 isolated fixed cells, so Raft-Seq’s
ability to capture individual live cells for growth alongside their
original microscopy data is unique among pooled screening
platforms.

As a preliminary test of raft-based imaging and isolation, we
performed Raft-Seq on cells with dual genome-encoded RFP and
GFP that had been given a gRNA to knock out either RFP or
GFP. These cells were plated on a microraft plate as a mixture and
were imaged. Using fluorescent marker intensity, we predicted
the guide presence, isolated those cells, performed single-cell
DNA sequencing to look for the edited genomic targets, and
determined the true genotype. The correspondence between the
predicted guide and the true guide was near perfect (Accuracy=
98.8%, n= 162) and comparable to flow-based single-cell
sequencing run in parallel (Fig. 1c).

Identifying subtle mitochondrial phenotypes in a mixed-
variant pool. To validate the efficacy of Raft-Seq in a more
complex screen, we attempted to separate a mixture of wild-type
and mutant cells by reproducibly predicting a given cell’s mutant
status determined by a set of features extracted from imaging data
(with no fluorescent reporters, Fig. 1d). For this experiment, we
set out to separate cells containing pathogenic MFN2 mutations
from those containing the wild-type MFN2 cDNA.
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We generated U2OS cell lines that each contain MFN2 cDNA
with single point mutations through lentiviral infection. Six
clinically pathogenic MFN2 variants37 and five control variants
annotated as “benign” from ClinVar38 (Supplementary Fig. 1a).

To investigate the phenotypes caused by theMFN2 variants, we
assessed mitochondrial morphology and membrane potential
using MitoTracker and TMRM (a tetramethylrhodamine analog),
respectively39. FCCP, an oxidative phosphorylation uncoupler,
was used to confirm that Mitotracker and TMRM were dosed at
appropriate concentrations and were reporting on mitochondrial
fluorescence40 (Supplementary Fig. 2).

A visual comparison of the MFN2 cell lines demonstrates
subtle phenotypic differences among them (Supplementary Fig. 1),
specifically, perinuclear aggregation of mitochondria in the cells
containing the pathogenic mutations. Mitochondrial aggregation
and disrupted mitochondrial membrane potential are present in
the mutants (Supplementary Figs. 1c, 3, 4). Although there are

significant differences in the population of mutants, the features
have largely overlapped distributions across genotypes. PCA and
UMAP dimensionality reduction were performed on the full set
of cellular image-based features (Supplementary Figs. 1d, 5) and
each shows that using data from multiple features more reliably
distinguishes cells with pathogenic mutations.

The goal was then to identify any of four pathogenic mutants
(L76P, R94Q, P251A, R280H) from WT in an admixture of those
cells. In the different wells of the microraft plate, we plated either
1) MFN2 WT cells, 2) a mixture of the 4 MFN2 mutants (in equal
proportion), 3) a mixture of the wild-type and the 4 pathogenic
cells at a wild-type:pathogenic ratio of 90:10, and 4) a similar
mixture at a ratio of 50:50. We distinguish between the first two
groups and the last two by calling the former (1,2) “labeled” and
the latter (3,4) “unlabeled” to clarify for which cell populations
the genotype class was known prior to imaging and analysis.
Following the application of a set of stains (Methods: Staining),

Fig. 1 Raft-Seq experimental workflow. a A perturbagen library, primarily a lentiviral gRNA or plasmid overexpression library, is introduced to cells, which
are then seeded onto a microraft plate. The plate is imaged, and cell feature data are then extracted from the resulting images and used to build machine-
learning models. The trained model then selects rafts to either be isolated into a PCR plate for immediate analysis or a tissue culture plate for clonal
expansion. Following isolation, the cells are genotyped. b Modeling workflow. Each model comprises a feature set and machine learning algorithm with
different hyperparameters, represented here by λ. Each model is evaluated with training and testing cell data, and the model that shows a large separation
between the ranked prediction curves for the test set and is deemed to have minimal overfitting is used to generate a list of cells (rafts) to pick, along with
their predicted genotype. c Pie charts showing the composition of cells identified as either expressing GFP or RFP, after being separated by either the raft-
based approach or flow cytometry. The color represents the expected appearance of the cells based on genotype (green = contains RFP gRNA, red =
contains GFP gRNA), and the fractions/percentages are the amount in each group that is correctly identified. d Performance evaluation workflow. The blue
and red wells represent the labeled cell populations and the purple wells represent the unlabeled population that is a mixture between the two. A model is
used to select rafts that are then isolated and single-cell genotyped. The comparison between the prediction scores and the true genotype class generates a
receiver operator characteristic curve to evaluate model efficacy.
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the cells were imaged, and their features were computed. Next, we
designed classification models that best distinguished the labeled
populations (MFN2 WT vs. MFN2 mutants).

Using the selected model, we chose cells for isolation from the
unlabeled wells with additional control cells picked from the
labeled wells (from a set of 30,682 cells that were imaged in 1.4 h).
Over 1000 cells were then automatically and individually isolated
into wells of several 96-well PCR plates (384 labeled control cells,
758 unlabeled cells). From there, the cells underwent amplicon
library construction, multiplexing, and NGS, from which their
genotypes were ascertained.

With the knowledge of each cell’s genotype (nWT= 159,
nL76P= 61, nR94Q= 74, nP251A= 41, nR280H= 6), we found the
total accuracy of our on-the-fly predictions to be 72.4%
(50:50= 75.7%, and 10:90= 64.5%). Therefore, when training
with only WT vs. a mixture of MFN2 mutants, we could predict

that individual cells were mutant from an admixture in which we
were completely blind to the real genotype using only the subtle
mitochondrial phenotype (Fig. 2a, b). As expected, when trying to
identify mutants that were the vast minority (in the 10:90
admixture), the model does correctly identify true pathogenic
mutant cells, but a number of cells predicted as pathogenic were
truly WT. Figure 2c shows the further breakdown of all unlabeled
cells by specific mutant and by whether the model correctly
identified them as pathogenic mutants (per-mutant metrics are
not available in this experiment since we did not train on
individual classes of mutants). The mutations most successfully
recovered were R94Q and L76P, agreeing with the previous data
showing those mutants as having a more severe phenotype
(Supplementary Fig. 1). We recovered a similar number of false
negatives of the P251A and R280H mutants, despite fewer overall
numbers of each mutant, indicating that these mutants likely have

Fig. 2 Raft-seq proof-of-principle results with MFN2 pathogenic mutations. a Confocal images of mutant cells at two magnifications (blue = nuclear
staining by Hoechst, green = mitochondria staining by MitoTracker). Subtle mitochondrial differences can be observed amongst the mutant populations.
Known pathogenic mutants display perinuclear aggregation of mitochondria and a lack of mitochondrial spreading. In comparison, wild-type cells show
ample mitochondrial spreading. Insets are 550 µm in width and height. b Confusion bar charts of predicted genotype vs. true genotype for the model used
from cells in the WT/Pathogenic mixture. “All Mixes” refers to all cells isolated from the mixture, while “50%WT” and “90%WT” refer to a breakdown of
the total according to whether the cells were isolated from the well containing 50% or 90% wild-type cells, respectively. c A bar chart of picked mutants
separated by allele and counting the final status of individual cells. d ROC Curves generated using the best model identified a posteriori separated by data
generated from cells picked from control pure wells (Labeled) and from mix wells (Unlabeled). The red curves are the experimental results and the gray
curves are a control generated by random shuffling of labels. e A scatterplot showing the performance of all 290 models that were generated in detecting
mutants in a mixture of wild-type cells and four pathogenic mutants. Each point represents a single model and its position is determined by its ability to
distinguish cells in the labeled control wells and cells in the mixed wells. The vertical and horizontal lines represent the AUCs of the model that was used to
choose cells for isolation. f A histogram of AUCs for models detecting mutants in a mixture of wild-type cells and four pathogenic mutants. A histogram of
AUCs generated from randomly assigned models is shown as a comparison.
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a weaker phenotype—leading to a less confident prediction and
exclusion from the list of cells to isolate—rather than less
penetrance. To check the model quality, we evaluated the receiver
operating characteristic (ROC) curves and the resulting area
under the curve (AUC) Fig. 2d. The curves in red show the ROC
of the model—for the cells picked from labeled (AUC= 0.94) and
unlabeled (AUC= 0.74) populations. The AUC for the labeled
cells represents the theoretical maximum AUC that we can obtain
when applying the model to the unlabeled cells.

We also took a larger view and assessed the quality of all
models generated (290 in total), not just the one used to select
cells for isolation. Figure 2e shows a scatterplot of AUCs (labeled
populations vs. unlabeled populations) and Fig. 2f shows the
AUC distribution of all models applied to unlabeled populations.
Importantly, the majority of models had the discriminatory
ability. This entire experiment was repeated successfully using a
mixture of all six mutants, and histograms and scatterplots of the
models generated are shown in Supplementary Fig. 6.

Multiple mitochondrial features enhance prediction of MFN2
mutants. Multi-feature models were necessary for accurate pre-
dictions, warranting exploration into the importance of individual
features and the performance impact associated with them. Using
data from the experiment containing wild-type MFN2 cDNA and
four pathogenic mutants, we generated additional models by
varying the number of features used, sampling from the eight
features in the pick model (Supplementary Table 1). Histograms
showing the distributions of the AUCs, separated by the number
of features are shown in Fig. 3a. When more features are added,
the models can better distinguish between the populations of
cells. We also examined the importance of individual features in
building models (Fig. 3b–d). We used the original feature data
(Supplementary Fig. 1) and generated Kruskal-Wallis χ2 for each
feature between the wild-type and pathogenic mutant cells from
labeled populations. A ranking of the 16 features associated with
the highest χ2 are shown in Fig. 3b. We compared the resulting
AUCs from models built off each specific feature alone (Fig. 3c),
and to the resulting AUCs from models built from the 16 features
minus one (Fig. 3d). Importantly, we find that single features are
not the key to discriminating these clinically relevant pathogenic
MFN2 point mutants. Instead, small numbers of relevant features
can inform a useful model.

Improved recovery of weak pathogenic MFN2 mutants. Our
pipeline can also recognize relatively weak phenotypes. Of the six
pathogenic mutants, the R280H and P251A appear most like
benign mutants (Supplementary Fig. 1c). Despite the subtle
phenotype, we recovered R280H cells in the experiment above
(Fig. 3b), though comparably fewer than cells with other muta-
tions. Given those results, we explored the ability of Raft-Seq to
isolate cells with the R280H mutation compared against MFN2
wild-type. Figure 4a shows images of R280H mutation-harboring
cells in the microraft plate. As a baseline measurement against
more conventional methods of cell separation, we ran separate
samples of aMFN2WT and R280H mutant cell lines each stained
with MitoTracker through flow cytometry (Supplementary
Fig. 7a). While there is variation between the two in the Mito-
Tracker intensity, there is too much overlap to separate a mixture
(Supplementary Fig. 7b AUC= 0.6).

We then followed the Raft-Seq process described above,
replacing the mixture of MFN2 mutants with just R280H mutant
cells, and therefore training the models directly on the weaker
phenotype. Additionally, the experiment was done with different
culture densities and cross-compared to confirm that culture
conditions had no “residual phenotype” that impacted the model’s

prediction. When we examined the predictions from individual
models, it was apparent that many cells were confidently scored as
being WT or R280H, while others were less confidently scored by
the models, and were therefore not selected for picking (Fig. 4b).
Figure 4c, d show histogram and scatterplots for the resulting
models in this experiment, demonstrating that Raft-Seq discrimi-
nated between the R280H mutant and the MFN2 wild-type (AUC
of picked model 0.72, best models >0.8, nWT= 265, nR280H= 205).
We also ran a similar experiment comparing the P251A pathogenic
mutant cell line—the other pathogenic mutation with a weaker
phenotype—to the D221= benign cell line. Cells containing the
synonymous substitution D221= act as an alternative control.
Supplementary Fig. 8 shows that the resulting model, when applied
to a mixture of the cell lines, was able to discriminate between the
two (AUC= 0.8, nD221= 103, nP251A= 65). The AUCs mentioned
above apply to all the unlabeled cells that were physically picked. If
we limit our results to cells whose class the model is increasingly
confident about, then the accuracy of the model gets increasingly
better (Fig. 4e, f). For cells that the model is at least 80% confident
about (prediction score ≥0.8 or ≤0.2), we get high AUCs and
accuracies in both the R280H/WT and P251A/D221= experi-
ments (AUC= 0.94,0.98 Acc= 0.88,0.92 n= 17,24).

We have shown that Raft-Seq can accurately predict genotypes
from strong mitochondrial point mutants as well as weak mutants
in MFN2 and predict them as part of a mixed culture where there
was no a priori knowledge of each cell’s genotype. The model’s
predictions were realistically tested by isolating single cells and
genotyping them to reveal the method’s accuracy.

Mutational scanning of MFN2 VUS with Raft-seq. While the
previous experiments were done by over-expressing a mutant
MFN2 cDNA, we also sought to study editing of an endogenous
gene. As a proof-of concept for endogenous mutations, we first
used an existing U2OS line with mutations in the mitochondrial
primase PRIMPOL41 and found that it alters mitochondrial
morphology (Supplementary Fig. 9). We then followed the Raft-
Seq process described above and verified that the platform per-
forms well for an endogenous genetic perturbation (AUC 0.87).
We next tested Raft-Seq against a series of (mostly VUS—variants
of uncertain significance) mutations in MFN2. We constructed a
CRISPR-Cas9 gRNA library (Supplementary Data 1) targeting all
18 exonic regions ofMFN2 (CRISPR tiling42) on sites near known
ClinVar variants (Supplementary Fig. 10) with 357 gRNAs. The
library was delivered by lentivirus to U2OS cells with a dox-
inducible Cas9 construct, and the cell population was split in two,
with only half receiving doxycycline. DNA samples were collected
at intervals over a 10-day period for survival screening43 which
revealed no significant representation differences (Supplementary
Fig. 11)—so while mitochondrial changes are observed, those do
not result in large viability shifts.

Then in a Raft-Seq screening experiment, 68,348 cells were
imaged, and mitochondrial anomaly detection models were trained
on the feature data of −Dox (no Cas9) cells and deployed to the
data of +Dox (Cas9 induced) cells to infer which cells had
abnormal mitochondrial phenotypes. Unlike previous modeling
techniques, training data of known mutants was not included
(necessitating the use of anomaly detection). The most highly
anomalous cells had some feature similarity to the strong
pathogenic mutants (Supplementary Fig. 12). We selected 1659
cells for isolation, which we then genotyped to identify the gRNA
for each cell (Fig. 5a). The result is a rich dataset where each of the
single cells are measured for phenotypic features (from confocal
imaging) and the corresponding gRNA. Since individual gRNAs
have different efficiency, we presumed that frameshift edits to
MFN2 would be more likely to result in the strongest phenotypes.
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Fig. 3 MFN2 Genotype Prediction does not depend on specific features. a Histograms of AUCs resulting from models built from combinations of a set of
8 features used when picking, arranged in panels split by the number of features used in each subset. b Bar chart of the Kruskall–Wallis χ2 values for the 16
features with the highest values. “Mito” and “Nuc” indicate features measured from mitochondrial and nuclear stains, respectively. c Bar chart of the AUCs
resulting from models built out of each individual feature. Note that the most significant feature was unable to produce a good model alone. d Bar charts of
the AUCs resulting from models built using all but one feature (leaving 15 features). All AUCs listed indicate the performance of the model trained from
labeled data on their ability to predict unlabeled cells in admixed conditions.
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Fig. 4 Raft-seq can predict MFN2 WT and MFN2 R280H mutant cells which have nearly undetectable phenotypic differences. a Images of the R280H
mutant and MFN2 WT cell line in the microraft plate. b Ranked histogram of the prediction scores for several models predicting the genotype from the
R280H experiment. Each curve shows the distribution of prediction scores for a particular labeled genotype (WT or R280H) where a score of 0 means the
model is confident that a particular cell is WT and a score of 1 means the model has a strong prediction of R280H. 8 different 6-feature models are shown.
The dashed lines indicate an ensemble model. c Scatterplot showing the performance of all 433 models in detecting mutants in a mixture of wild-type cells
and the R280H mutant. d A histogram of AUCs for models detecting mutants in a mixture of wild-type cells and the R280H mutant. A histogram of AUCs
generated from randomly assigned models for comparison. e, f Accuracies and confusion bar charts of the predictions from the unlabeled wells, when only
picking cells with prediction scores ≥0.9 (≤0.1), ≥0.8 (≤0.2), and ≥0.7 (≤0.3). e uses the model to predict R280H against WT MFN2, while f uses the
model to predict P251A against D221=.
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We compared each cell’s mitochondrial anomaly score to the
probability of the gRNA inducing a frameshift mutation (calculated
with Indelphi44). Indelphi only yields a prediction, and each single
cell with a gRNA may have different genomic consequences of the
Cas9 cut. We found that nearly all gRNAs with a high anomaly
score also had a high predicted frameshift mutation rate (Fig. 5b,

p value at 3 frameshift thresholds: 90%= 0.0013 [n 42], 80%= 0.05
[n 111], 70%= 0.37 [n 39]).

We next undertook a broader screening experiment with Raft-
Seq on the scanning mutagenesis library of MFN2 (357 gRNAs).
After imaging 76,574 cells across five replicate experiments and
selecting 1,222 rafts to single-cell sequence for gRNA
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identification, modeling was performed. 479 supervised binary
classifiers were trained on a subset of 11,876 cells with known
genotype. Each model then inferred a prediction score on all
76,574 cells. An overview of the screening result (Fig. 5c) shows
that while the models produce different scores, they are generally
in agreement about whether the hit was more WT-like (left green
side of the graph) or MFN2 mutant-like (right red side). This
screening set also provided for metrics of measuring reproduci-
bility, and we found that 74.7% gRNAs (which could be measured
for reproducibility across replicate experiments) were reproduci-
ble in the screen (Supplementary Fig. 13).

Next, we utilized some of the core components of the Raft-Seq
pipeline to isolate perturbed single cells from an MFN2 gRNA-
infected library for downstream analysis and experiments. We
captured the cells intact and alive into tissue culture plates and
grew them clonally as isogenic lines. This allowed enough
genomic material to do two rounds of sequencing—first to find
the gRNA present in each cell and second to examine the gRNA
target site—and use the cells for downstream analyses, something
that has not been previously done in other imaging-based
perturbation screens (could theoretically be done with Craft-
ID30). Most of the isogenic lines with Cas9 edits were in the
UTRs, while six affected the protein (Supplementary Table 2). For
example, the isogenic H20fs/WT had a gRNA targeted to the first
translated exon, which resulted in a 7 bp deletion, then a
frameshift. We analyzed the isogenic cells (arrayed) to quantita-
tively assess the level of mitochondrial abnormality (Fig. 5d).
Three dozen of the individual mitochondrial or TMRM features
(Supplementary Table 3), as well as all multi-feature models,
showed significant differences between the set of WT clones and
the mutated clones (Supplementary Fig. 14).

We performed additional validation experiments on two of the
clones, one UTR mutant and one coding mutant (Fig. 5e). We
found that these isogenic endogenous mutations were separable
from a WT clone in our Raft-Seq mix assay (AUC= 0.90,
Supplementary Fig. 15). We also analyzed the set of MFN2
isogenic lines using the Seahorse XF assay, which analyzes key
metabolic processes reflective of mitochondrial health (Supple-
mentary Table 4). Both the H20fs/WT and the L76P mutants had
a reduced basal oxygen consumption rate when compared to WT,
indicating a mitochondrial deficit from the mutations (Fig. 5f).
Overall, we showed pooled cellular screening with Raft-Seq and
its ability to generate isogenic lines with mutant phenotypes,
including novel mutations that have not previously been studied.

Discussion
We have developed a method, Raft-Seq, to efficiently screen many
genetic variants based on their impact to a cell’s phenotype. We

have shown that our method can effectively discriminate between
wild-type cells and cells containing different pathogenic point
mutations of theMFN2 and PRIMPOL genes. Though we utilize a
particular individual model for the selection of cells for isolation,
we found that most of the models that we generate can identify
pathogenic mutant cells. Since our feature selection process is
only mildly dictated by the actual phenotype that we are looking
for, our ability to predict a cell’s genotype comes from quickly
generating complex computational models. This enables our
pipeline to exploit more phenotypes than the scientific literature
is currently familiar with, therefore making almost any gene in
the genome amenable to this functional screening and thus
enabling the re-cataloging of VUS as benign or pathogenic.

We developed Raft-Seq primarily as a screening platform to
work in concert with Deep Mutational Scanning45, a method for
creating a library of every single possible mutation in a gene. Our
results show that our screen can correctly identify pathogenic
variants, since we were able to recover pathogenic MFN2 mutants
from a mixture with wild-type cells. We were also able to see how
Raft-Seq would perform in the discovery of novel variants and
morphology. In a small, pooled screening experiment, we
examined 357 different gRNAs against MFN2, and had repro-
ducibility ~75% amongst experimental replicates. Our anomaly
detection models were able to identify similar mitochondrial
features to the pathogenic variant cells, and this anomalous
morphology correlated with a high predicted frameshift fre-
quency from the gRNA contained in the cell. Lastly, we used Raft-
Seq to generate isogenic cell lines directly from the primary
screen. We analyzed these clonal/isogenic lines to find consistent
mitochondrial phenotypes and blunted metabolic responses. This
process presents a large gain over other phenotyping screens,
since we can generate cell lines that can be more deeply
sequenced and assayed, while simultaneously tracking each line to
the specific image and features from which it was selected in the
original screen.

Since Raft-Seq isolates cells for sequencing individually rather
than in pools, we have a few advantages over other platforms. For
one, we are able to find the specific genotype of each isolated cell,
rather than having to perform batch measurements, meaning that
we can identify effects of combinations of perturbations. We can
also have as many categories in our machine learning models as
cells, though using more than a handful of features causes the
modeling and analysis to deteriorate, likely due to overfitting (but
is countered by higher n). Another advantage of this approach is
the flexibility that comes from using machine learning to identify
phenotypes. Since we can easily combine features for more
accuracy, we can potentially screen for any visible phenotype,
given a strong enough signal provided by staining or other

Fig. 5 Endogenous scanning mutations inMFN2 simulate variants of uncertain significance. a Scatterplot of genotyped cells. x and y axes are the number
of models placing that cell in the top 5% or 10% of all cells, respectively. A subset of cells are shown with an inset of the fluorescent image taken during the
screen and the gRNA present within the cell (labeled by the nucleotide position before the start codon [B], within the coding region [C], or after the stop
codon [P], also see Supplementary Data 1). b Scatterplot of predicted frameshift frequency vs. mitochondrial anomaly score for all the gRNAs recovered
from the screen. c Screening results from 357 gRNAs across MFN2. The heatmap has 3 sections, each showing half a dozen examples of models
constructed with logistic regression, ridge classifiers, or linear SVMs. The color indicates the prediction score of the model where green means a low value
(WT-like) and red means a high value (mutant-MFN2 like). Significance of the gRNA is indicated by the height of the blue bar. d Established isogenic lines
of U2OS cells with the specific MFN2 variant(s) rank ordered based on their phenotypes. More “WT-like” phenotypes (likely benign) are shown to the left
while more “mutant-like” phenotypes (likely pathogenic) are shown on the right. Bars show average with 95% confidence intervals (n= 18–32 well/plate
replicates, L76P mutant is shown in yellow and the parental control clone WT 3E5 is shown in black. *p < 0.05, **p < 0.01, ***p < 0.001). e Example images
of isogenic U2OS cells with either a control gRNA that did not cut, 5’UTRins A04 isogenic line, or H20fs/WT isogenic line. The frameshift-mutant (H20fs/
WT) has similar mitochondrial aggregation to the L76P mutant (Fig. 1), while the UTR mutant has a distinct but subtle mitochondrial morphology. Scale bar
50 µm. f Metabolic analysis of OCR (oxygen consumption rate) for WT, L76P, and the H20fs/WT lines. OCR is measured in four phases, first basal, then
mitochondrial toxins Oligomycin (ATP synthase inhibitor), FCCP (uncoupler), and Rotenone (electron transport inhibitor). OCR is normalized by nuclei
count. The asterisk in c are V459fs/WT cells spiked into the screen.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04089-y ARTICLE

COMMUNICATIONS BIOLOGY |          (2022) 5:1128 | https://doi.org/10.1038/s42003-022-04089-y | www.nature.com/commsbio 9

www.nature.com/commsbio
www.nature.com/commsbio


fluorescence. Unsupervised learning methods, like clustering, are
also possible and allow for a simpler setup since no labeled wells
would be needed.

From the mutant mixing experiments, there are some factors to
consider. For example, based on the accuracy difference between
the two unlabeled wells housing cells at two different ratios of
WT:pathogenic, our ability to recover pathogenic variants
appears to decrease as the proportion of pathogenic variants
present decreases (low ‘hit’ rate). This indicates that such a screen
would perform significantly better on genes for which mutations
are more likely to result in a pathogenic variant. This limitation
can be potentially countered with a higher number of cells if
studying mutant phenotypes that are distinct from wild-type. It is
difficult to examine phenotypes that have highly overlapping
distributions between wild-type and mutant for any screening
method that classifies phenotype on a single-cell level, such as
Raft-Seq. Second, we were able to identify the mutants with more
extreme phenotypes (L76P, R94Q) more frequently than other
mutants with subtler phenotypes, meaning that a scaled-up
screen would show similar results, with more extreme variants
being overrepresented. However, because we were able to identify
the weaker mutants (R280H, P251A) with relative ease when they
were not mixed with any other mutants, we can assume that the
overrepresentation of specific variants is not due to the absolute
strength of the resulting phenotype. Instead, we assume it is due
to the relative strength when compared to other variants.

Several other technologies can perform pooled screening for
imageable phenotypes46, and these screening-imaging systems are
listed in Table 1 for comparison. The quality of imaging varies by
system (Table 1a). Arrayed screening (where each condition is
separated by well) utilizes confocal microscopy without con-
straint. Raft-Seq and CRaft-ID also employ high-content imaging,
but optical working distance is increased because of the raft
design, and thickness variations cause occasional focus failures.
ISS and photo activation (PA) are restricted in imaging by choice
of dyes that do not conflict with the sequencing chemistry or
photoactivatable chemical, respectively. ISS and PA can overcome
these conflicts with custom probes and careful titration. The
techniques vary greatly on how individual cells are “IDed” for the
perturbation that was made (Table 1b). Both raft platforms rely
on single raft collection to isolate cells while PA collects cells
through FACS sorting of labeled cells. Arrayed screening and ISS
do not capture the cell at all. The ability to collect cells physically
opens other possibilities, but the state of the cells vary (Table 1c,
d). The raft platforms can both collect fixed or high-viability live
cells, but Raft-Seq is tuned towards single cells and CRaft-ID is
optimized for colonies. ISS can image and sequence at single-cell
resolution, but the cells are rendered non-viable in the process.
PA collects bulk cells, which removes the 1:1 relationship between
an image and a specific sequence. The sorting methods subject the
cells to more pressure and stress than the raft methods, which
instead leave the cells adhered to the plate while the transfer

occurs (critical for delicate cells like neurons). The collection of
viable cells allows for the production of isogenic cell lines from
single mutants (for example).

In terms of genotyping (Table 1e), Raft-Seq, Craft-ID, and PA
utilize standard Illumina sequencing (although Raft-Seq and
Craft-ID need more preamplification due to the small starting
amount). ISS originally required a custom sequencing micro-
scope/rig, but there are now several commercial options. While
the read length is limited because of the in situ reaction para-
meters, it is still long enough for a barcode which provides the
identity of the perturbation for a screen with less than a thousand
perturbations.

Except for Arrayed screening, the other methods listed start
with all the cells/perturbations in a pool (Table 1f, g), making
them highly scalable. As compared to a PA screen20, the
throughput of Raft-Seq and a PA method is similar, as is the
number of cells captured over a subset of the experiment with a
scale of about a thousand perturbations. Raft-Seq has the cap-
ability to image 500 K single cells per day. The rate-limiting step
is physically picking the single cells with the Cell Microsystems
instrument (limited to around 3 K per day). Since so many more
cells can be imaged than picked, we can increase the pool of
isolation candidates, allowing cells to be selected with higher
confidence. Translating those numbers into a full screen then
depends on the strength of the phenotype and the rate of hits in
the screening set.

There are two steps in Raft-Seq that are done manually but will
soon be automated. The first is image quality control which can
be automated by a convolutional neural network, similar to the
previous microraft experiments30. The second is model selection,
which can be automated by choosing among several model per-
formance metrics on the labeled data.

Since the raft identifies the location of the cell stably over time,
we can do on-the-fly training from the entire experiment, then go
back and select cells to pick. We have also found that Raft-Seq
can be used to apply past training (labeled) data to future
experiments. A normalization schema allows for accretion of
previous training data to utilize it in future models (allowing a
gain of accuracy in identifying specific phenotypes over time).

We are optimistic that with increased scale, Raft-Seq can be used
to sensitively find variants across a wide breadth of perturbed
cellular phenotypes. An increase in scale would make the models
more accurate, both by providing more training data and by
identifying more cells that are confidently classified by the model.
Altogether, we have shown that using various cell lines we can
deploy flexible machine learning from data within an experiment
(on-the-fly) or from previous experiments (pre-trained) to select
clinically relevant point mutations in a screening setting.

Methods
Cell culture and transfection. Human osteosarcoma (U2OS, ATCC HTB-96) cell
lines were maintained in McCoy’s 5 A Modified Medium (16600082, Gibco,

Table 1 Cell screening-imaging platforms.

Comparison criteria Arrayed
screening8,48

In situ sequencing24,25 Photo-activation18,20,27,49 CRaft-ID30 Raft-seq(this
paper)

a. Imaging constraints No limitations Impacted by seq
chemistry

Limited by # of usable
channels

Optics impacted
by raft

Optics impacted
by raft

b. How cells are Collected NA NA FACS Raft picking Raft picking
c. Genotype resolution Bulk Single cell Bulk Colony Single cell
d. Live cell collection No No Medium viability Possible Yes
e. Genotyping method NA Specialized Bulk NGS Colony NGS Single-cell NGS
f. Pooled scalability Not pooled Highest Yes Yes Yes
g. Bottleneck Physical plates ISS Technology Photo activation Raft picking Raft picking
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Gaithersburg, MD, USA) supplemented with 10% fetal bovine serum (FBS)
(16000044, Gibco). Human embryonic kidney (HEK) 293 T cells (CRL-11268,
ATCC) were cultured in Dulbecco’s Modified Eagle’s Medium (11965-092, Gibco,
Gaithersburg, MD, USA) supplemented with 10% FBS (16000044, Gibco, Gai-
thersburg, MD, USA), 1% Penicillin-Streptomycin (15140122, Gibco) and 1% non-
essential amino acids (11140050, Gibco).

All cell lines were maintained in T75 tissue culture flasks in an incubator at
37 °C, 5% CO2 and they were observed daily for growth and overall health. Once
confluent, cells were passaged using 0.25% Trypsin-EDTA 1× (25200056 Gibco,
Gaithersburg, MD, USA) at a sub-cultivation ratio of 1:10. Live-cell counting was
performed with the BioRad TC20 automated cell counter. Centrifugation of cell
cultures was performed at 1200 rpm for 3 min. Lentiviral infection was performed
in T75 flasks when cells were 85% confluent. STR profiling, to confirm cell type,
was performed using NGS-based analysis by the Genome Engineering and Stem
Cell Center (GESC) at Washington University in St. Louis. Testing for mycoplasma
was performed bi-annually. For all experiments in this paper, either 100 × 100 or
200 × 200 micron quad reservoir plates containing 48,000 (12,000 cells per quad)
and 36,000 cells (9000 cells per quad), respectively were used. Prior to plating,
microraft plates were prepared by rinsing with 1 mL PBS three times with 3-min
incubation periods. Cells were added in 200 µl media to aid in distribution, then
plated and incubated overnight (14–16 h).

Virus production and MFN2 single mutant line creation. MFN2 lentiviral
expression plasmids were cloned into the CCIV lentiviral plasmid with a GFP
marker37. In preparation for lentiviral packaging, 8.0 × 105 HEK293T cells were
plated into each well of a six-well plate and incubated at 37 °C overnight. The cells
were then transfected with TransIT Lenti-transfection reagent (MIR 6600, Mirus
Bio, Madison, WI, USA) using an envelope plasmid (pVSVg: Addgene plasmid #
8454), a packaging plasmid (psPAX2: Addgene plasmid # 12260), and each indi-
vidual MFN2 expression plasmid in a mass ratio of 0.5/1/0.5 respectively for a total
of 2 µg. After 48 h, media was collected, centrifuged, and sterile-filtered before
being concentrated (Lenti-X Concentrator 631232 Takara Bio, Kusatsu, Shiga,
Japan). The concentrated virus was resuspended in 200 µL 1× PBS per well, col-
lected, and stored at −80 °C.

To create stable MFN2-mutant expressing lines, T75 flasks containing 6 million
U2OS cells were infected with 70 µL of concentrated lentivirus at an MOI > 1 and
polybrene was added (NC9840454 Santa Cruz Biotechnology, Texas) at a final
concentration of 10 µg/mL. They were then incubated for 24 h, after which the
virus-containing media was removed and replaced with fresh, virus-free media.
Cells were taken to the Washington University Siteman Flow Core for fluorescent
sorting on the Sony Synergy, 100-micron sorter. Cells were sorted based on
viability and GFP expression (since no puromycin selection was performed, the
fluorescent signal from the GFP in the MFN2 plasmid was used to determine
transgene expression). GFP expression levels were compared within and across
generated cell lines to ensure population purity and comparable fluorescent
expression levels. The PRIMPOL KO U2OS cell line was received from the
Vindigni lab and was produced by the GESC.

CRISPR/Cas9 gRNA library infection and induction. A dox-inducible Cas9
(iCas9) U2OS cell line was generated via CRISPR-mediated homology directed
repair. The Cas9 protein, gRNA, and donor construct were introduced via
nucleofection. Isogenic iCas9 clones were isolated using the Cell MicroSystems
CellRaft AIR System and then propagated for further experiments. Presence of the
construct was validated via junction PCR47 prior to propagation. Puromycin-
resistant MFN2 scanning gRNA libraries were generated and cloned by the
Washington University GESC. Lentivirus was produced (see Virus Production
above) and used to infect iCas9 U2OS cells at an MOI of <0.2 followed by 8 µg/mL
puromycin selection for seven days. The cells were then allowed to grow in fresh
media. At 60–70% confluency, Doxycycline (Cat#: D9891-1G, Millipore Sigma)
was added at a final concentration of 2 µg/mL. The cells were incubated at 37 °C for
48–60 h before proceeding with staining and imaging.

Staining and microscopy. The following vital dyes were used; DNA labeling/
nuclei (Hoechst, Thermo Fisher H3570), mitochondria (MitoTracker Deep Red,
Thermo Fisher M2246), and mitochondrial membrane potential (Tetramethyl
Rhodamine methyl ester TMRM, Thermo Fisher I34361). MitoTracker and TMRM
were incubated for 40 min at concentrations of 0.5 and 0.1 µM, respectively.
Hoechst was incubated for 15 min at a concentration of 10 µg/mL (16.2 µM). Each
plate was rinsed twice with culture media prior to imaging. Images were captured
using a 20 × 0.45 NA objective in the Cytiva INCell 6500HS Confocal microscope.
Exposure times for Hoechst (405 nm) and TMRM (561 nm) averaged 0.15 seconds
while MitoTracker Deep Red (642 nm) averaged 0.05 seconds. Confocality was
used in the 405 and 642 wavelengths to decrease the background fluorescence of
the CytoSort raft plate. Each field-of-view overlapped by 12% of their area. Imaging
settings were held constant throughout the course of an experiment. Following
imaging, an extra 500 µL of cell culture media was added to the CytoSort raft plate
(additional liquid helps the CellRaft AIR System isolate microrafts).

Image analysis and quality control. Image tracing and feature extraction was
performed using Cytiva’s INCarta software. Mitochondrial puncta were identified
(within 20 µm of the nuclei using the ‘networks’ algorithm) and quantified for each
cell as were a set of texture features. Raft coordinates were recorded for each cell
(using FIVTools/ CalCheck, included in the GitLab repository). Images were also
curated semi-manually (via FIVTools/ CalCheck) to ensure that out-of-focus
images were excluded. The cell feature dataset was joined with the image quality
data and raft position mapping data described above by custom software (via
FIVTools/ main window). Post tracing quality control was performed with each
dataset in Tibco Spotfire Analyst. First, aberrant tracing artifacts were excluded
based on nuclear area, nuclear form factor, and proximity to the raft’s edge. Next,
non-nuclear debris and dead nuclei were excluded by gating on nuclear area,
intensity, and cell intensity. Rafts with too many cells (>6) or a fiduciary marker
were excluded. The resulting dataset typically contains 170 cell body, nuclei, or
mitochondrial measurements. This filtered set of cells is normalized by plate and
used for the machine learning models downstream.

Machine learning and model generation. After exporting the quality-controlled
cell-based feature table, we built multiple supervised binary classification models
that used cell-specific phenotype measurements as explanatory variables. The
response variable defined each cell as known “WT” or pathogenic mutant “MU”.
Although the “MU” label was applied indiscriminately to various cells, these cells
manifest a variety of perturbed phenotypes; therefore, the machine learning
models’ understanding of what constitutes a perturbed phenotype was limited to
those phenotypes manifested in the training set. There may be other legitimate (but
quite dissimilar to the positive controls) perturbations in the cell population to
which our binary classification models were blind. This is a limitation of a binary
class setup and is one advantage of anomaly detection models.

Statistics and reproducibility. For clarity, when we refer to ‘genotype’ we mean
the specific point mutation present (R280H, WT, H20fs, etc). If we refer to ‘gen-
otype class’, these are WT, Benign, or Pathogenic (aka what is designated by the
model). ‘Labeled Cell Population’ are the cells used for training the models and
‘unlabeled cell population’ are admixtures of labeled cells (like benign + patho-
genic) or in screening, where the researchers are completely blind to the identity of
individual cells. Prior to training, all cell feature vectors were normalized, and if the
proportion of WT to pathogenic labels was unbalanced, they underwent synthetic
minority oversampling. Feature selection was accomplished by several techniques,
including setting a threshold minimum for variance within each feature vector,
setting a threshold maximum for correlation between features, randomly selecting
features (usually numbering between 2 and 20), selecting only the k highest scoring
features according to their ANOVA F-value, and selecting from feature importance
according to a Linear Support Vector Machine with L1 regularization.

The models were trained and used to select cells within the same day. A variety of
machine learning platforms (Microsoft AzureML Studio, Scikit Learn, and H2O.ai.)
and algorithms were employed to predict a cell’s unknown genotype class. The details
on which models, features, and hyperparameters are listed in Supplementary Note 1.
Models were evaluated by their AUC, Matthew’s correlation coefficient and their
ability to distinguish between labeled populations that were withheld during training.
Based on model performance on the testing dataset, a trained model was selected and
used to infer prediction probabilities on the unlabeled cell populations. While the
genotype of the cells in the unlabeled population was unknown, the expected
proportion ofWT to perturbed cells was known (a meta-feature). The final evaluation
of our model was to plot a ranked histogram that included these unlabeled
populations for which the underlying distribution of WT to perturbed cells was
known and determine if the model produced prediction probabilities that accord with
that distribution (This can be seen in Supplementary Fig. 9b). This meta-feature was
one of the strongest protections against overfitting. We then selected cells with the
highest and lowest inferred prediction probabilities from our selected model to
generate the list of cells (and therefore rafts) to be picked. Details on the statistics are
listed throughout, and a special section is included on reproducibility which is
referenced in Supplementary Fig. 13. Statistical significance of gRNAs of interest was
computed using a Benjamini–Hochberg corrected one sample t test with a false
discovery rate of 0.2.

Cell capture and DNA extraction. Cells were isolated using the Cell MicroSystems
CellRaft AIR System. CytoSort raft plates were received from Cell Microsystems
(Durham, North Carolina). Given a list of raft coordinates, the AIR System used a
needle to eject each individual raft and transfer the raft to a semi-skirted 96-well
PCR plate (1402–9200, USA Scientific) via a magnetic wand. Each well of the PCR
plate contained 5 µL extraction buffer (molecular grade water with 10 mM Tris-
HCl (pH 8.0), 2 mM EDTA, 200 µg/mL Proteinase K, and 0.2% TritonX-100). Raft
isolation was confirmed twice through post-ejection imaging of the raft location
and through visual inspection using a Leica S8AP0 dissection scope, after DNA
extraction. Genomic DNA was extracted in a thermocycler immediately following
raft isolation by incubating at 65 °C for 15 min than at 95 °C for 5 min.

Single-cell DNA amplification. Amplification of single-cell DNA prior to library
preparation consisted of two separate amplifications. An initial preamplification
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was conducted using extracted DNA with KOD Hot Start DNA Polymerase
(71842-4, Millipore Sigma, Burlington, MA, USA) according to manufacturer’s
instructions using all 5 µL of extracted DNA in a total reaction volume of 20 µL.
Pre-amplified product was processed through an AMPure XP (Catalog: A63882,
Beckman Coulter, Brea, CA, USA) bead clean-up according to the manufacturer’s
instructions using 10 mM Tris-HCl pH 8.5 as elution buffer. The second ampli-
fication used the cleaned template and BioLine MyTaq HS Red Mix 2× (C755G97,
Meridian Life Sciences, Memphis, TN, USA), according to the manufacturer’s
instructions, including 5% by volume DMSO. Primers in the second amplification
contained universal 5’ tags to be compatible with Illumina library preparation
(Forward tag: 5′-CACTCTTTCCCTACACGACGCTCTTCCGATCT-3′, Reverse
tag: 5′-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3′).

For the amplification of MFN2 cDNA, primers amplifying the entire cDNA
were used in the first amplification step, followed by multiplexed amplification of
two specific regions containing the relevant mutations. Genotyping of the RFP-
GFP cells used multiplexed primers that amplified specific regions in both the RFP
and GFP regions. All primers are listed below in Table 2.

Illumina library preparation. These methods are expanded from Connelly et al.
and Bell et al. After amplification with universal primers, each plate was amplified
with specific forward and reverse Illumina index primers that indicate the PCR
plate position and a unique plate ID. PCR amplification was performed with
BioLine MyTaq HS Red Mix 2× (C755G97,Meridian Life Sciences, Memphis, TN,
USA) according to the manufacturer’s protocol, pooled, and then cleaned using
AMPure XP beads (A63882, Beckman Coulter Life Sciences, Indianapolis, IN,
USA). DNA was quantitated on a NanoDrop One Spectrophotometer (Thermo
Scientific, ND-ONE-W) before being submitted to the Center for Genome Sciences
and Systems Biology (Washington University) to generate 2 × 250 reads on the
Illumina MiSeq platform.

Sequencing analysis. Illumina paired reads were demultiplexed by the core facility
and FastQ files were returned. The rest of the analysis was performed with
laboratory software available on Gitlab (FIVTools/ LA, “Library Aligner”). Reads
were joined and trimmed, then aligned with small sequence fragments at the
genetic sites of interest containing the sequence to mutant or WT alleles. The result
was a ‘counts’ table that gave the number of reads containing each 20-mer for each
well. 20-mer search fragments are listed below in Table 3. After accounting for
isolation and genomic amplification errors, ~80% of the isolated cells genotypes
were captured.

For MFN2 cDNA genotyping, each mutation locus was given a %mutant score
calculated as the number of mutant reads divided by total number of reads at that
locus. Cells were designated as wild-type if no locus had >50% mutant score,
otherwise they were designated as a specific mutant based on which locus had the
highest mutant score (ambiguous cells were excluded). Lastly, a flat file was
exported containing each picked raft and its assigned genotype.

Using our custom software (FIVTools/AUC), we joined the modeling and
genotyping flat files to find overall accuracy and generate ROC curves for each
model. We also generated ‘noise’ ROC curves by shuffling the assigned genotypes.
Prediction scores between 0.4 and 0.6 were filtered out (scores ~0.5 meant the
specific model was unable to classify these cells). For the data presented in Fig. 4e, f,
this threshold was further adjusted.

Isogenic line production. For clonal cell growth, single live cells were isolated by
the CellRaft AIR System into 96-well tissue culture plates (TPP 92096), containing
200 µl of media per well. As the isogenic lines grew, the entirety of each well was
passaged into a plate of larger size (96-well to 24-well to 12-well to 6-well plates

from TPP) after reaching ~70% confluency. It took 2–3 weeks to go from single-cell
to 70% confluency in the 96-well plate, and during that time wells were checked for
contamination and media level every 2 days. After the cells were plated in the
6-well plate, they were grown to 90% confluency and one-third of the cell sus-
pension was taken for genotyping, one third was frozen for long term storage, and
the remaining third was kept for downstream experiments. The entire process took
~2.5 months to go from single cells to frozen stocks/genotyping data (with a large
fraction of cells not growing enough to go to the next stage). Genomic DNA
samples were initially genotyped to determine the gRNA(s) present (as described in
the preceding sections). Following identification of specific gRNA(s), primers were
designed by identifying regions containing gRNA target sites and finding primers
that encompassed those regions (Supplementary Data 1). The genomic DNA
samples were then amplified and genotyped a second time using the primer set(s)
specific to the target regions in the sample.

Metabolic analysis. All metabolic analyses were conducted using an Agilent
SeahorseXF96 extracellular flux analyzer. Cell culture microplates (Agilent 102601-
100) were seeded with 50,000 cells 24 h prior to running the assay. Sensor car-
tridges (Agilent 102601-100) were hydrated with sterile water and incubated, along
with XF calibrant (Agilent 100840-000), in a non-CO2 incubator 24 h prior to use.
Complete Seahorse assay medium (Agilent 103680-100) was made immediately
prior to running the assay according to the manufacturer’s instructions. 160 µL of
XF calibrant was added to the entirety of the plate. The cell culture microplate and
sensor cartridge were then incubated at 37 °C in a non-CO2 incubator. All assays
performed used the Seahorse XF Cell Mito Stress Test Kit (Agilent 103015-100)
with Oligomycin 1.5 µM, FCCP 1.0 µM, Rotenone/Antimycin A 0.5 µM, com-
pounds were reconstituted and diluted using complete seahorse medium on the day
of the assay. Cell number normalization was performed through image-based
counting of cells prior to running the assay (using the InCell as described above).

Cell picking. Each raft has a four-character alphanumeric coordinate (Raft ID).
Fiduciary markers located at fixed locations on the raft plate (Supplementary
Fig. 16) in conjunction with custom software (FIVTools > Cal Check, Calibration)
were used to locate individual rafts for map generation (see “Image Analysis and
Quality Control”).

HEK293 cell nucleofection. SF cell line solution stock was prepared from the
Lonza SF Cell line 4D-Nucleofector LV Kit XL (V4LC-2520) kit by combining
82 µL of SF Cell Line NucleofectorTM Solution with 18 µL Supplement 1. 20 µL of
stock solution was then combined with 2 µL 1 mg/mL Cas9 protein (QB3 Mac-
roLab) and 2 µL 1 mg/mL gRNA. The complexes were incubated on the benchtop
for 10 min. Cell suspensions of 2 × 105 cells were placed in 1.5 mL microcentrifuge
tubes and spun down. The supernatant was carefully removed avoiding the cell
pellet. The cells were rinsed in 1× PBS and centrifuged a second time. The
supernatant was carefully removed, and the cells were resuspended in the final
combined SF cell line solution and transferred to a nucleofector cuvette, found in
the nucleofector kit. The cuvette was placed in the Lonza 4D-Nucleofector Unit
(Lonza AAF-1002X, AAF-1002B) and nucleofected with Pulse code CM130.
Nucleofected material was added to a prewarmed six-well plate with 5 mL of
DMEM media in each well. Nucleofected cells were incubated for 48 h for recovery.

Table 2 Genotyping primers.

Name Sequence (excluding tags, where
necessary)

PCR stage

pMFN2.All.F GCTCTTCTCTCGATGCAACTCT 1
pMFN2.All.R GCAGGTACTGGTGTGTGAAC 1
pMFN2.1.F CACATGGCTGAGGTGAATGC 2
pMFN2.1.R GCAGGAAGCAATTGGTGGTG 2
pMFN2.2.F CTCAGAGTCCACCCTGATGC 2
pMFN2.2.R CACTTGAAAGCCTTCTGCGAG 2
RFP.F GTTCATGCGCTTCAAGGTGC 1, 2
RFP.R CAAGTAGTCGGGGATGTCGG 1, 2
GFP.F TGAAGTTCATCTGCACCACCG 1, 2
GFP.R TCGCCCTCGAACTTCACCTC 1, 2
PRIMPOL.F GCAACCCAGTTTTGAAACCA 1, 2
PRIMPOL.R TCGATGTCCAGCTTTCCTCT 1, 2
gRNA.F CTTGTGGAAAGGACGAAACACC 1, 2
gRNA.R TTGTGGATGAATACTGCCATTTGT 1, 2

Table 3 20-mer fragments.

Name 20-mer (relevant mutations/deletions bolded)

MFN2_V69 TGGACCCCGTTACCACAGAA
MFN2_V69F TGGACCCCTTTACCACAGAA
MFN2_L76 ACAGGTTCTGGACGTCAAAG
MFN2_L76P ACAGGTTCCGGACGTCAAAG
MFN2_R94 TGCTGGCTCGGAGGCACATG
MFN2_R94Q TGCTGGCTCAGAGGCACATG
MFN2_D221 CTGGATGCTGATGTGTTTGT
MFN2_D221= CTGGATGCTGACGTGTTTGT
MFN2_P251 CTCTCCCGGCCAAACATCTT
MFN2_P251A CTCTCCCGGGCAAACATCTT
MFN2_R280 CATGGAGCGTTGTACCAGCT
MFN2_R280H CATGGAGCATTGTACCAGCT
MFN2_W740 AAAGCCGGTTGGTTGGACAG
MFN2_W740S AAAGCCGGTTCGTTGGACAG
RFP_guide GGCCACGAGTTCGAGATCGA
RFP_control AAGGTGCGGATGGAGGGCAG
GFP_guide TGCCCGAAGGCTACGTCCAG
GFP_control CTACCCCGACCACATGAAGC
PRIMPOL_WT GATAGCGCTCCAGAGACAAC
PRIMPOL_del GATAGCGCTCCAGAGAAACA
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The cell line solution is not healthy for the cells, so the speed is a priority upon
resuspension in the cell line solution.

RFP-GFP cell perturbation and isolation. A HEK293 cell line expressing both
RFP and GFP (Gentarget #SC009) was used in this experiment. Cells were then
nucleofected with a gRNA targeting GFP (TGCCCGAAGGCTACGTCCAG) or
RFP (GGCCACGAGTTCGAGATCGA) and Cas9. All gRNAs were ordered from
Synthego. Nucleofection was conducted using a Lonza 4D-Nucleofector Unit.
(Lonza AAF-1002X, AAF-1002B). Following the Raft-Seq workflow, cells were
imaged and the guide presence was predicted by a combination of RFP and GFP
intensity features. Cells were selected and isolated into 96-well plates. Alternatively,
cells were sorted using a Sony SH800S cell sorter individually by their RFP and
GFP fluorescence. Cells were then genotyped and designated as being given the
RFP or GFP guide if the locus that the respective guide targets had been altered.

Modeling considerations. We implemented several specific design criteria during
the experimental setup and model selection. First, the ‘pure’ samples were split into
testing wells and training wells so that we could decrease overfitting during model
selection. For most of the, the training datasets consisted of 2 of the 3 labeled wells
of each type—these two wells came from different plates—making the remaining
two labeled wells the “testing sets”. We split the data by well, rather than randomly
assigning cells from all pure population wells, to mitigate the influence of batch
effects during modeling. The data used for validation is the gRNA identities from
the unlabeled cell population (that are completely unknown at the outset). Since
training data and testing data technically come from separate samples, we observed
skewed distributions from the batch effects, which can present a large and con-
sistent obstacle to cell imaging analysis (Caicedo et al.). In the screening experi-
ments, the training and testing data were derived from a randomized 80–20 split,
and batch effects were dealt with through the implementation of a multi-dataset
integrating algorithm (harmony). Relatedly, we made sure not to create any arti-
ficial batch effects generated by inconsistencies in the screening process. All stains
used were prepared as a single batch to be used across plates. All imaging and
feature extraction settings were kept constant across each plate in a screening
experiment.

Another aspect of model design that we considered is the exclusion of “leaky”
variables, or variables that happen to correlate with the data labels. Since our
labeled data existed on specific positions of the plate, including a variable that is
effectively a proxy for cell position would render the model useless on unlabeled
data. We found that several variables that are in the standard output of INCarta
feature extraction are leaky, such as features measured on a global basis, and we
excluded them before starting the modeling process.

We also faced a time constraint in our modeling pipeline, caused by the
necessity to keep cell locations constant between imaging and isolation. Though we
could fix the cells, this would limit our ability to perform Raft-Seq for the isolation
of live cells. Optimally, we completed feature selection, modeling, and raft selection
within 6 hours of imaging, and continued on to isolation.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Figure source data is provided in Supplementary Data 2–4.

Code availability
All custom software can be found at https://gitlab.com/buchserlab/FIVTools. To
investigate the version used in the manuscript instead of the newest version, pull the
commit with FIVTools SHA b56214c98ea0a0df788ce8b75a75850cc1f29d59, and Jupyter
SHA 5000c85f40cdd88c9615fa57d533d147a8266dfa.
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