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Shared associations identify causal relationships
between gene expression and immune cell
phenotypes
Christiane Gasperi 1,5, Sung Chun 2,3,6, Shamil R. Sunyaev2,3 & Chris Cotsapas 1,4✉

Genetic mapping studies have identified thousands of associations between common variants

and hundreds of human traits. Translating these associations into mechanisms is complicated

by two factors: they fall into gene regulatory regions; and they are rarely mapped to one

causal variant. One way around these limitations is to find groups of traits that share

associations, using this genetic link to infer a biological connection. Here, we assess how

many trait associations in the same locus are due to the same genetic variant, and thus

shared; and if these shared associations are due to causal relationships between traits. We

find that only a subset of traits share associations, with many due to causal relationships

rather than pleiotropy. We therefore suggest that simply observing overlapping associations

at a genetic locus is insufficient to infer causality; direct evidence of shared associations is

required to support mechanistic hypotheses in genetic studies of complex traits.
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Genetic mapping studies have identified thousands of
associations between common variants and hundreds of
human traits. Uncovering the mechanisms that underlie

these traits requires understanding the molecular, cellular and
physiological events altered by causal genetic variants. Incomplete
fine mapping due to linkage disequilibrium and the possible
action of causal variants across diverse cell types, contexts and
genes currently limits our ability to infer the mode of action of
causal variants, and hence the biology underlying traits. Experi-
mentally testing multiple such mechanistic hypotheses across
thousands of associations rapidly becomes a problem of scale; we
thus need principled approaches to generating and testing such
mechanistic hypotheses.

We and others have suggested such an approach, building on
the concept of pleiotropy. The molecular and cellular events
altered by causal genetic variants are, by definition, also genetic
traits, and they must be associated with the same variant. To link
traits together and thus form mechanistic hypotheses, one can
thus look for shared genetic associations between traits1–4. Such
sharing is often defined as two traits associated with variation in
the same general genome region, often within an arbitrary win-
dow of physical distance. A more robust alternative is to identify
pairs of traits that share an underlying causal effect, rather than a
shared genomic segment, and several methods have been devel-
oped to this end5–12.

We have reported a relative paucity of overlaps between
expression quantitative trait loci (eQTLs) and disease risk asso-
ciations12. This result appears paradoxical given the strong
enrichment of risk heritability in gene regulatory regions13–15,
which suggests that the majority of risk effects should alter gene
regulation, and therefore expression. This paucity may be because
we are not interrogating the right cell types, or the right phy-
siological or stimulation conditions for those cells; or it may be
that we lack power to detect such overlaps, though our simula-
tions suggest the latter is not a major factor3,12.

It is tempting, therefore, to assume that requiring a demon-
stration of shared association between traits is overly stringent,
and simply identifying associations to the same region is a more
productive approach. A further temptation is then to assume
causality, especially when the two traits are drawn from different
levels of physiology: it is natural to assume that a gene expression
trait is causal for disease risk rather than the other way around,
for example. This assumption of causality is made implicitly when
pairs of associations are used to propose mechanistic hypotheses
of pathophysiology. However, it is also possible that the two traits
are either associated to different variants in the same locus, or to a
single pleiotropic variant and otherwise share no biological
underpinning (horizontal pleiotropy). To our knowledge, there is
no a priori way to set a prior expectation for causality or pleio-
tropy. How useful, therefore, is it to identify shared effects
between two traits, rather than simply identify associations to the
same broad locus?

Here, we answer this question by first assessing how many
associations to different traits in the same locus are due to the
same underlying effect, and thus shared; and if these associations
shared between traits are likely due to a causal relationship
between these traits, or if horizontal pleiotropy is widespread. We
compare 164 distinct immune cell phenotypes from the Milieu
Intérieur project16,17 to gene expression traits in monocytes,
neutrophils and T cells from the BLUEPRINT consortium18. We
first select pairs of immune traits and gene expression traits with
associations at the same genetic locus, and then identify which
of these pairs share an association and which are associated
with different variants in close proximity. We find that trait
pairs with shared genetic associations are more likely to share a
broader genetic correlation and are more likely to share a causal

relationship, as assessed by two Mendelian randomization
approaches. Our results show that a substantial proportion of
shared associations between traits is likely to be due to causal
relationships. We therefore suggest that simply observing asso-
ciations of different traits to the same genetic locus is insufficient
to infer causality, and direct evidence of shared association must
be the minimum evidence required to link traits.

Results
Immune phenotype loci harbor eQTLs but do not share asso-
ciations with them. To identify effects shared between immune
and gene expression phenotypes, we first identified associations
for each of the 164 immune phenotypes included in the Milieu
Intérieur project data (Supplementary Table 1). JLIM, our joint
likelihood mapping method, detects shared associations based on
patterns of LD, so we excluded the major histocompatibility
complex (MHC) locus on chromosome 6, where LD structure
is particularly complex. We found 1379 distinct non-MHC loci
(200 kilobases windows centered on the most associated variant)
with evidence of independent association to at least one immune
phenotype (p < 1 × 10−5; 32 loci at p < 5 × 10−8). In 83/1,379 loci,
we found more than one independent effect for the same immune
phenotype (conditional p < 1 × 10−5, 6% of loci).

We next looked for genes whose expression could plausibly be
influenced by the same genetic effect in these loci. We found
14,634 genes with a transcription start site within 1 megabase of
the lead variants, with at least one gene in 1318/1379 (95.6%) of
the loci. We found that 7365/14,634 (50.3%) genes in 1201/1318
(91.1%) of loci have an eQTL in at least one immune cell type
profiled by the BLUEPRINT Consortium (p < 1 × 10−3). Most of
these 7365 genes were influenced by more than one conditionally
independent eQTL within a 1.2 megabase window around the
TSS: 3762/5748 (65.4%), 3476/5004 (69.5%), and 4146/5906
(70.2%) in T cells, neutrophils and monocytes, respectively
(Supplementary Fig. 1). We included all these effects in our
subsequent analyses, to make sure we capture all possible gene
expression effects. Thus, consistent with previous reports across a
spectrum of human traits12,19, most loci associated with an
immune phenotype also harbor at least one cis-eQTL, and many
eQTLs have conditionally independent effects20,21.

We used JLIM to assess if the immune phenotypes and nearby
eQTLs were driven by the same underlying genetic effect,
indicating shared mechanisms. After filtering, we compared
22,379 pairs of conditionally independent associations represent-
ing all 164 immune traits and 7060/7365 (95.6%) of genes, at
1199/1379 (86.9%) of the discovered loci. We found evidence for
a shared underlying causal variant for 207/22,379 (0.9%) pairs,
involving 92/164 (56.1%) immune phenotypes and 127/7060
(1.8%) distinct genes, at an FDR < 0.05. These 207 shared effects
include 15 instances where a gene expression and immune
phenotype pair shared two (13 pairs) or three (two pairs) genetic
effects. For 190 distinct combinations of a gene expression trait
and an immune phenotype at least one shared association could
be identified. Thus, though we test the vast majority of cases
where immune phenotypes and eQTLs overlap, we find limited
statistical evidence for shared effects between them. This is
consistent with our previous observations of limited sharing
between autoimmune disease associations and cis-eQTLs12. Also
similar to our previous findings, we observe that the power to
detect shared association thus depends in part on statistical power
in the secondary trait cohorts (Supplementary Fig. 2). We see
correlation between immune traits across individuals, suggesting
that some gene expression traits may spuriously share associa-
tions with more than one such trait; however, we found no
difference in correlation between immune traits that shared
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associations with gene expression traits and immune traits that
did not (Spearman’s ρ= 0.11 ± 0.13 and 0.13 ± 0.14, respectively),
suggesting this is not a major factor in our analysis.

Some of our results highlight clear relationships between traits:
for example, we see a shared effect between expression level of
SELL and the level of its protein product L-selectin (CD62L;
Fig. 1a, b). We find the eQTL in all three BLUEPRINT cell types,
and the immunological trait association in both neutrophils
and eosinophils. As expected, the allele associated with increased
SELL transcript abundance in neutrophils and monocytes is also

associated with CD62L intensity in both neutrophils and
eosinophils (Fig. 1a–c and Supplementary Fig. 3). However, the
same allele decreases SELL transcript abundance in T cells. We find
strong evidence that the T cell eQTL and CD62L intensity trait
association are shared, suggesting a distinct mode of regulation in
different cell types (for example, different factors binding to the
same regulatory element in different cell types, with both types of
interactions influenced by the same genetic variant).

We found that many shared effect cis-eQTLs are not in the
same immune cell subpopulation as their cognate immune

Fig. 1 Shared genetic association on chromosome 1 for L-selectin (CD62L) in neutrophils and SELL expression in neutrophils, monocytes and T cells.
The association signal of the mean fluorescence intensity (MFI) of L-selectin (CD62L) in neutrophils at a genetic locus on chromosome 1 is consistent with
the association signal to SELL expression in neutrophils, monocytes and T cells at the same genetic locus (a, shaded by linkage disequilibrium (LD, r2) to the
immune phenotype lead single nucleotide polymorphism (SNP)). The association Z statistics of the mean fluorescence intensity (MFI) of L-selectin in
neutrophils and SELL expression in the three different cell types are strongly correlated (b). c The MFI of L-selectin and SELL expression in the three
different cell types (both rank transformed) per genotype of the lead variant rs4987369.
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phenotype. In some cases, we did not have expression data for the
subpopulation in which an immunophenotype was measured. We
found, for instance, a shared effect between the expression
level of CR2 in T cells and the level of its protein product,
complement receptor type 2 or CD21 in multiple B cell
populations (Supplementary Fig. 4). CD21 is the route through
which Epstein-Barr virus infects B cells, and there is more recent
evidence that this is also the mechanism of T cell infection22. This
may therefore be a constitutive CR2 eQTL, and may have a
bearing on susceptibility to EBV infection.

We also found more complex patterns of sharing between cell
types. We found several examples where a T cell immune
parameter had a shared effect with an eQTL in monocytes or
neutrophils, but the gene was either not expressed in T cells or
there was no evidence of a shared eQTL in our data (Fig. 2). This
suggests the possibility that changes to gene expression in one cell
type have effects on population number and behavior of another
cell type, consistent with the complex and dynamic interplay
between immune cell subpopulations.

Trait pairs sharing associations show broader genetic correla-
tion. Our broader goal is to establish whether shared associations
can identify traits that are causally linked. We therefore sought to
distinguish between horizontal pleiotropy, where the same variant
influences two otherwise unrelated phenotypes; and mediation,
where one phenotype is causal for the other. In horizontal
pleiotropy, there should be no further genetic relationship
between the traits. Conversely, in the case of mediation we expect

the two traits to share genetic architecture more broadly, as
perturbation of the intermediate trait should have an effect on the
outcome trait23–25. Therefore, to establish if traits with shared
associations are more likely to be causally related, we first assess
evidence for shared heritability between them, and then directly
assess evidence for mediation.

To assess evidence for shared heritability between immune-
expression phenotype pairs with a shared association, we asked if
PRS for the gene expression trait in each pair predicts the
immune trait. We compared 190 trait pairs with evidence of
shared effects (92 immune and 127 expression traits in 116 loci)
to 16,462 trait pairs that do not share the same causal variant per
our JLIM analysis. For each trait pair, we calculated a genome-
wide PRS for the gene expression trait, and determined the
variance of the paired immune phenotype explained by that PRS
(as R2

PRS). We reasoned that if traits with a shared association are
more likely to share heritability more broadly, we should see
more variance explained in the 190 trait pairs than in the 16,462
that do not pass our JLIM analysis. We knew, however, that the
presence of a shared association would bias this analysis in favor
of our expected outcome, because we would be including a known
positive association to the immune traits only in the 190 pairs.
We accounted for this bias by conditioning the eQTL data on the
main cis-eQTL effect with the strongest evidence for being shared
with the immune phenotype, thus removing the effect of the
shared variant (see Methods for details).

We found that the variance of an immune trait explained by
gene expression PRS was higher when the two traits shared an

Fig. 2 Shared genetic effects between gene expression traits in neutrophils or monocytes, but not in T cells, with immune phenotypes measured in
T cells. Shared association signals for different T cell immune phenotypes (a–d) and gene expression traits (expression traits quantitative loci, eQTLs) in
neutrophils or monocytes (e–h). There were no consistent association signals for these gene expression traits in T cells (i–l). The genetic variants are
shaded by linkage disequilibrium (LD, r2) to the immune phenotype lead single nucleotide polymorphism (SNP).
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association than when they did not share one, even though we
removed the effect of the shared association (Mann–Whitney–
Wilcoxon p < 0.05; Table 1 and Fig. 3a, d). We found that this was
generally true across a range of thresholds for selecting variants to
include in the PRS calculation26. The proportion of trait pairs
with a significant FDR adjusted empirical p-value in this analysis
was higher for traits that shared an association (Fig. 3c, f,
Table 1). We also found that in cases where an immune trait
shared an association with more than one eQTL, including PRS
for all shared eQTLs explained more variance than any single
expression trait alone (Supplementary Fig. 5). Our analysis is
conservative, as we condition on the variant with the strongest
evidence of shared association; as expected, including lead cis-
eQTL effects in the PRS calculations shows an even more extreme
difference (Supplementary Table 2).

To ensure our results were not due to selection artefacts
induced by p-value thresholds, we also examined the correlation
between all JLIM p-values and variance of immune phenotypes
explained by the gene expression PRS, and found significant
correlation (Table 1, Fig. 3b, e). Together, the results of the PRS
analyses provide evidence for a stronger genetic correlation
between colocalized gene expression and immune phenotypes if
they share the same underlying genetic effect.

Trait pairs sharing associations are more likely to be causally
related. We next assessed evidence for causality directly with
Mendelian randomization MR, again comparing trait pairs with a
shared association to trait pairs with no evidence of shared
associations. As our gene expression and immune phenotypes
come from different cohorts, we used TSMR27,28. Statistical
power in MR analyses is increased by selecting multiple variants
as instruments29. This presents a problem when considering
eQTLs as intermediate traits, because cis-acting effects often
explain a large portion of phenotypic variance, and there is little
power to detect trans-acting effects genome-wide30–32. To
account for this power issue, we selected 16,631/16,652 trait pairs
from above (190 with, and 16,441 without a shared association to
an immune phenotype) where we found evidence for at least 2
independent variants associated with the gene expression trait
(conditional p < 1 × 10−5). Using these variants as TSMR
instruments, we found that the estimated causal effects of gene
expression traits on immune phenotypes were higher in the 190
pairs with a shared association compared to the 16,441 non-
sharing pairs (Fig. 4a), but this difference was not significant.
However, we observed overall correlation between JLIM p-values
and the magnitude of the causal effect of gene expression traits on
immune phenotypes (Fig. 4b). We did not observe any trait pair
with a p-value <0.05 after FDR correction in this analysis; how-
ever, the proportion of trait pairs with an unadjusted p-value
<0.05 was higher for trait pairs with a shared association (Fig. 4c).
These results suggest that trait pairs sharing an association are
more likely to be causally related, and that this likelihood
increases with increasing evidence that a shared association exists.

To address the limited number of instruments available for
gene expression traits, we broadened our analysis to include other
transcripts in the locus influenced by the same variants33. For
each trait pair, we first identify variants independently associated
with the gene expression trait, as above. We then ask if these
variants are associated with any other transcript levels in the locus
(within 1 megabase of the lead variant in the shared association
test), and if so, identify all variants independently associated with
those transcripts too. We thus gather a larger set of instruments
for our MR analysis. We remove transcripts whose overall
expression is highly correlated to the initial gene expression trait,
to avoid over-estimating the effects of variants, as previously T
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suggested33. We then perform the same inverse variance-
weighted MR analysis as above, using the expanded instrument
sets.

We found that gene expression traits explained a higher
proportion of immune phenotype variance in the 190 pairs with
shared associations, compared to the 15,462 other pairs (with a
median absolute estimated causal effect of 0.267 and 0.095,
respectively; Fig. 4d). As in our TSMR analysis, we saw a positive
correlation between the strength of the JLIM p-value and the
estimated causal effects of the gene expression traits on immune
phenotypes (Fig. 4e). We also saw a significantly higher
proportion of trait pairs with a FDR adjusted p-value < 0.05 for
trait pairs with a shared association (36.8%) as compared to trait
pairs without a shared association (12.5%) in this Mendelian
randomization analysis (Fig. 4f). Cumulatively, our results suggest
that trait pairs with a shared association are more likely to be
causally related than trait pairs that do not share an association.

Discussion
In this work, we report that immune cell traits and gene expres-
sion traits share a small but significant set of associations, and that
these point to interesting biological events with mechanistic
implications. We then show that traits sharing a pleiotropic
association tend to be causally related, rather than subject to

horizontal pleiotropy. Thus, even though individual analyses may
be under-powered—especially for the likely more complex
immune traits—we are able to show in bulk that shared associa-
tions can occur between causally related traits. Like all methods,
the ones we use here have limitations. All comparisons of genetic
mapping results are sensitive to even subtle differences in popu-
lation structure and consequent differences in LD patterns; and
MR approaches, including two-sample methods, can also be
sensitive to invalid instruments. We also note that PRS based on
small numbers of variants can be unstable, and effects that are
clearly not shared can show a substantial proportion of variance
explained through LD (Supplementary Figs. 6 and 7).

These shared associations can uncover previously unknown
facets of immune cell biology. The shared effect between SELL (L-
selectin) expression and surface protein levels illustrates this
principle: an allele that increases SELL transcript levels in neu-
trophils and monocytes also increases the mean fluorescence
intensity of the L-selectin protein product CD62L expressed on
neutrophil and eosinophil surface membranes17. L-selectin is a
cell adhesion molecule used by diverse immune cells to enter
target organs by interacting with resident endothelial cells34. It is
particularly important for the entry of naive T cells into sec-
ondary lymphoid tissues as part of the maturation process35,36.
CD62L levels are thought to be predictive of treatment response
in leukemia37 and risk of adverse events in multiple sclerosis

Fig. 3 The immune phenotype variance explained by gene expression polygenic risk scores (PRS) is higher for trait pairs sharing associations. We
considered 16,652 gene expression/immune trait pairs in our analysis. For each, we identified all independent variants meeting a threshold of association in
the gene expression trait. We used these variants to calculate PRS for each individual in the Milieu Intérieur project immune phenotype collection, and
calculated the proportion of immune phenotype variance explained by these PRS (R2

PRS). We found that gene expression PRS could explain significantly
more immune trait variance for gene expression/immune trait pairs with a shared underlying genetic effect than for those that did not share an association.
We saw this effect at different thresholds for selecting PRS instruments a expression quantitative trait locus (eQTL) p < 5 × 10−8; and d eQTL p < 5 × 10−5.
We also found that the proportion of variance explained was correlated to the overall strength of evidence for a shared (JLIM p-value) at these two
selection thresholds (b, e). The proportion of trait pairs with a p-value < 0.05 for the variance of the immune phenotype explained is higher in trait pairs
with shared effects (c) as compared to trait pairs without a shared genetic effect (f). MWW=Mann–Whitney–Wilcoxon test.
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therapy38; the effect of the L-selectin eQTL on protein levels
could thus be misconstrued in a clinical setting.

We were struck by the number of shared effects between
monocyte and neutrophil gene expression traits and T cell
immune parameters. In these cases, the genes are either not
detected at all, or show no evidence of an eQTL, in our T cell data
(Fig. 2a–d, i–l). For example, we found a shared effect between
RPS20P15 in monocytes and the number of naïve CD4+ T cells
(Figures d, h, Supplementary Fig. 8). There is no corresponding
eQTL in T cells. RPS20P15 is an expressed ribosomal protein
pseudogene encoded in the first exon of SLC4A7, and appears to
act as an enhancer for that gene39. SLC4A7 encodes a bicarbonate
transporter involved in macrophage phagosome acidification40,
and which is activated and expressed during macrophage acti-
vation41. Bicarbonate induces macrophage response to stimu-
lus42. This suggests that differences in SLC4A7 regulation affect
the degree of macrophage activation in response to stimulus, and
this has a knock-on effect on T cell homeostasis.

Similarly, we see a shared effect between an eQTL for CARS2 in
neutrophils and CD4/CD8 ratio (Fig. 2c, g, Supplementary Fig. 9).
The gene is expressed in CD4+ T cells in our data, and has a
separate eQTL mapping approximately 100 kilobases from this
shared effect (Fig. 2k). CARS2 is a nuclear-encoded likely mito-
chondrial gene, whose product catalyzes cysteine loading onto
tRNA. Mutations in this gene have been associated with myo-
clonic epilepsy, indicating that perturbation has functional con-
sequences43. It is tempting to hypothesize that variation in
mitochondrial homeostasis in neutrophils leads to changes in T
cell homeostasis, either through changes to infection response or
baseline cell crosstalk.

Overall, these results suggest that changes to gene expression in
one cell type can have a direct effect on another population. Our
results also suggest that eQTLs in the three BLUEPRINT cell
types also influence traits in other cell types (Supplementary

Figs. 10 and 11); however, as we do not have eQTL data in those
cell types, we cannot say with certainty that the same eQTL is not
present there, creating a situation analogous to the SELL example.
Nonetheless, widespread cross-talk between immune cell subsets
is a well-attested phenomenon, but to our knowledge this is the
first time genetic mapping uncovers mechanisms of cellular
coordination across cell subsets. Predictions stemming from these
hypotheses will require experimental dissection.

A major challenge in human genetics is translating genotype-
phenotype associations into testable hypotheses of the underlying
molecular, cellular and physiological events. Directly predicting
the effect of a trait-associated variant remains challenging, espe-
cially for non-coding polymorphisms. This is further hampered by
the limited resolution of fine mapping, so that in most cases we
can only narrow an association signal to a group of variants over a
genomic interval, all of which must be investigated, rather than
pinpoint the exact causal variant. As variant function prediction
ability is limited, direct experimentation is necessary, gradually
uncovering molecular, cellular and ultimately physiological effects.
Without prior information, a variety of outcomes across different
cell types and conditions need to be assessed at each stage to
uncover trait-relevant events. This approach is not scalable, so
most translation efforts are necessarily conducted piecemeal.

One alternative approach to this bottleneck is to exploit
pleiotropy across traits to generate molecular, cellular and phy-
siological mechanism hypotheses, which can then be tested
experimentally in a more focused way. This approach uses the
fact that a variant associated with a physiological trait must act on
molecular and cellular events; these are, by definition, also genetic
traits as they are altered by a genetic variant, and the variant must
have a pleiotropic effect on all these traits. We can thus compare,
in unbiased fashion, many molecular traits (gene expression
levels, in the present work) with many cellular traits (here,
immunological parameters) to identify pleiotropic effects. Two

Fig. 4 Trait pairs sharing an association are more likely to be causally related.We assessed evidence for causality between gene expression and immune
cell traits using Mendelian randomization with cis-eQTL (expression quantitative trait loci) single nucleotide polymorphisms (SNPs) (a–c) and an expanded
set of instruments including nearby genes (c–e). For the latter, we saw a significant level of increased evidence for causal effects in trait pairs with a shared
effect (blue) compared to pairs without a shared effect (red) (d). We also saw an overall correlation between evidence for shared effects and the estimated
causal effect size (b, e). The percentage of trait pairs with a p-value of <0.05 in the TSMR was higher for trait pairs sharing an association (c) as was the
percentage of trait pairs with an FDR adjusted p-value of <0.05 when using an expanded set of instruments (f). MWW=Mann–Whitney–Wilcoxon test.
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broad approaches to this cross-trait pleiotropy have been
articulated: the first is to look for shared heritability between two
traits genome-wide44,45; and the second to look for shared effects
at specific loci where we see genotype-phenotype associations, as
we do in the present work. The latter is particularly suited to traits
such as gene expression, where one variant often explains a large
proportion of trait variance.

After identifying pairs of traits that share genetic effects (either
locus-specific or genome-wide), it is tempting to immediately
conclude that one trait directly causes the other. This conclusion
is particularly appealing when considering traits across different
levels of physiology, as we do here with gene expression and
cellular measurements. Our results, however, suggest that simply
observing association of different traits at the same genetic locus
is not sufficient. Rather, we must look for direct evidence for
causality between traits, and shared association mapping is a
useful approach to do so. Ultimately, only with explicit proof of
causality can we construct mechanistic hypotheses about trait
physiology.

Methods
A schematic overview of our analysis is presented in Fig. 5. Unless otherwise
specified, all analyses were carried out with R v3.4.146.

Milieu Intérieur project immune phenotype data processing. We obtained
imputed genotype data and flow cytometry measurements for 166 immune phe-
notypes (75 innate immune cell parameters, 91 adaptive immune cell parameters;
see Supplementary Table 1) for 816 healthy, unrelated people of Western European
ancestry from the Milieu Intérieur project17. We removed two phenotypes due to
the low number of non-zero values (Supplementary Fig. 12a, b). We found that all
but one of the remaining phenotypes were not normally distributed (Shapiro-Wilk
test), so we performed rank-inverse transformation on all phenotypes. After this
transformation, four phenotypes still showed evidence of non-normal distribution.
From visual inspection, two of these phenotypes—the number of founder B cells
and the number of HLA-DR+/CD4+ EMRA T cells (Supplementary Fig. 12c, d)—
appeared not to be detectable in a substantial subset of individuals. We therefore
reduced these to binary detected/not detected phenotypes. For each phenotype, we
defined the detection threshold as the point of the quantile-quantile plot with the

highest slope (Supplementary Fig. 13). The other two phenotypes had approxi-
mately normal distributions despite the Shapiro-Wilk test (Supplementary Fig. 12e,
f), so we did not modify them further.

All 816 individuals had been genotyped using the HumanOmniExpress-24
BeadChip and most of them (966 of the initially 1.000 individuals in the cohort)
have also been genotyped using the HumanExome-12 Beach Chip and quality
control (QC) and genotype imputation has been performed as described in the
original publication17, yielding a final data set of 5,699,237 SNPs with an IMPUTE
Score >0.8 and a minor allele frequency (MAF) > 0.05. We performed additional
QC, removing all individuals with excess heterozygosity of more than five standard
deviations from the sample mean (n= 6), one sample from each pair showing
cryptic relatedness (identical by descent (IBD) > 0.1875, n= 3) and population
outliers with a distance in the first four principal components of more than
4 standard deviations (n= 10). These QC steps were all based on a set of variants
with MAF > 0.05, genotyping rate >98% and a Hardy–Weinberg equilibrium
(HWE) test p-value > 1 × 10−3 and pairwise linkage disequilibrium (LD) < 0.2.
From the complete dataset, we then removed all variants out of Hardy–Weinberg
equilibrium (p < 1 × 10−5) and MAF < 0.05, and insertions, deletions and
multiallelic variants. Our final dataset was thus 5,231,477 variants across 797
individuals.

BLUEPRINT expression QTL data processing. We obtained RNA-seq data for
naive CD4+ T cells (169 individuals), CD14+ monocytes (193 individuals) and
CD16+ neutrophils (196 individuals) from the BLUEPRINT consortium, ascer-
tained to be free of disease and representative of the United Kingdom (UK)
population18. We downloaded FASTQ files and used the GTEx pipeline for RNA-
seq alignment, quantification and quality control (https://www.gtexportal.org/,
Analysis Methods for V8). Briefly, we performed alignment to the human reference
Genome GRCh38/hg38 using STAR v2.5.3a47, based on the GENCODE 26
annotation and gene-level quantification with RNA-SeQC v1.1.948. We produced
read counts and “transcript per million” (TPM) values as described in the GTEx
pipeline. We then selected genes with expression values of >0.1 TPM and ≥6 reads
in at least 20% of the samples and normalized between samples using “trimmed
mean of M-values” (TMM) as implemented in edgeR49. We then normalized
expression values across samples using an inverse normal transformation. All
samples had at least 10 million unique reads. From the BLUEPRINT data release,
we obtained genotype data for all individuals for 7,008,524 variants acquired by
whole genome sequencing. Sequencing, alignment, variant calling and quality
control had been performed as described in the original publication18. We addi-
tionally filtered out insertion/deletion and multiallelic variants, and all variants
with a MAF < 0.05 and a Hardy-Weinberg equilibrium chi-square p-value of <1 ×
10−5. We performed sample QC as described above for the MIP dataset, which did

Fig. 5 Overview of the analysis pipeline steps. We compared 164 distinct immune cell phenotypes from the Milieu Intérieur project to gene expression
traits in monocytes, neutrophils and T cells from the BLUEPRINT consortium. We first selected pairs of immune traits and gene expression traits with
associations at the same genetic locus, and then identified which trait pairs share a genetic association and which are associated with different genetic
variants in close proximity. Using polygenic risk scores (PRS) we then found that trait pairs with shared genetic associations are more likely to share a
broader genetic correlation. Additionally, using two different Mendelian randomization approaches we found that trait pairs that share genetic associations
are more likely to share a causal relationship. Abbreviations: eQTL = expression quantitative trait locus, JLIM= Joint Likelihood Mapping.
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not lead to the removal of any individuals, yielding a final genotype data set of 197
individuals and 4,853,096 single nucleotide polymorphisms (SNPs) (GRCh37
build). In total, we found 4,355,418 SNPs present in both the BLUEPRINT and the
Milieu Intérieur project data sets.

Both the BLUEPRINT and the Milieu intéreur project genotype data sets were
available in the GRCh37 build, but version 8 of the GTEx pipeline for RNA-seq
alignment and quantification uses GRCh38. We reconciled the different genome
builds by back-lifting the RNA-seq data to GRCh37, determining the transcription
start site for each gene with R/BiomaRt v2.34.350,51. Allele inconsistencies between
the two data sets were resolved by transforming the regression coefficients
accordingly and ambiguous SNPs were removed for the PRS.

Association analyses. We performed all association regression analyses with plink
v1.952, assuming an additive model of inheritance for all variants. We adjusted all
regression analyses on the immune phenotypes from the MIP data set for age, sex,
as well as two environmental factors—smoking (0=Non-smoker, 1=Ex-Smoker,
2=Smoker) and latent CMV infection (CMV serology 0=negative, 1=positive)—as
these have been identified as the main non-genetic factors affecting immune
phenotype variation in the original study17. Additionally, we corrected the
regression models for the top five principal components to adjust for population
stratification. For the association analyses on gene expression data (eQTL analyses)
we included age, sex, the first five principal components as well as 30 PEER
factors53 (calculated as described in the GTEx pipeline) as covariates. We used the
same covariates to generate permutation data for JLIM.

Identifying immune and gene expression trait associations in the same locus.
JLIM compares association data for a primary trait to association data for a sec-
ondary trait. In all analyses, we use the Milieu Intérieur immune phenotypes as
primary traits and BLUEPRINT gene expression traits as secondary. We thus first
identify potential associations in the immune phenotypes and then look for
overlapping BLUEPRINT eQTLs.

We first identified all independent immune phenotype associations by selecting
lead SNPs that (i) had suggestive levels of association (p < 1 × 10−5); (ii) are not
within 100 kilobases from another lead SNP; and (iii) are not within 500 kilobases
from another lead SNP and in LD (r2 > 0.2) with another lead SNP. To identify
conditionally independent associations, we performed stepwise conditional
association analyses for all markers within 200 kilobases of each lead SNP. At each
step, we identified the most associated SNP not in LD with any other lead SNP
(r2 < 0.2); if this SNP had p < 1 × 10−3, we added it to the model and repeated the
analysis until no independent SNP satisfied the p-value threshold. For each
conditionally independent signal, we then calculated residual association statistics,
where we condition on all other independent effects in a locus. All association
signals with a lead SNP with an association p < 1 × 10−5 were carried forward to
subsequent analyses. These represent strong independent associations, with any
residual weak effects removed (identified by the more lenient p < 1 × 10−3

threshold). We deliberately chose lenient thresholds for inclusion to maximize our
chances of identifying associations which may be shared across traits.

We next identified cis-eQTLs overlapping immune phenotype associations. We
adopted the GTEx definition of a cis-eQTL being within 1 megabase of the
transcription start site of the gene. We looked for conditionally independent
immune phenotype associations within 200 kilobases of each lead SNP above; we
therefore identified all genes with a transcription start site (TSS) within 1 megabase
of each lead SNP (R/BiomaRt v2.34.3, Ensembl build 37). We then looked for cis-
eQTL associations for each such gene in T cells, monocytes and neutrophils,
independently. For each identified eQTL (p < 1 × 10−3), we then performed
stepwise conditional association analyses as described above, for all SNPs within
1.2 megabases of the TSS (Supplementary Fig. 14). We chose this distance so any
effects overlapping the lead SNP window are conditionally independent.

Due to the smaller sizes of the gene expression traits we limited iterations to a
maximum of three independent signals per locus. As above, we then calculated
residual association statistics for each independent eQTL effect in each of the three
cell types. For each of the genetic loci associated with immune phenotypes we then
selected all gene expression association statistics with a lead SNP with an
association p < 1 × 10−3 at the respective genetic locus.

Identifying shared associations between immune and gene expression traits.
We tested for shared effects between immune and gene expression trait pairs with
JLIM v212. Given genotype-phenotype associations for two phenotypes in different
cohorts in the same locus, JLIM assesses the likelihood of the joint model that
variant i is causal in one trait and variant j in another trait, over some number of
variants observed in two distinct cohorts. If this joint likelihood is maximal when
i= j we can infer the presence of a single, shared effect driving both associations.
Conversely, when the likelihood is maximal when i ≠ j we can infer that the
observed associations are due to different underlying effects. JLIM assumes that
only one causal variant for each of the tested traits is present in the analyzed
window.

For each trait pair, we used the immune phenotype as the primary trait and the
gene expression trait as secondary. We used the 404 non-Finnish European
samples from the 1000 Genomes Project (phase 3, release 2013/05/02) as an

external LD reference panel. We permuted the secondary trait for each pairwise
comparison 100,000 times to obtain empirical significance levels, and used a false
discovery rate (FDR) < 0.05 as a significance threshold.

We compared 16,652 unique combinations of immune phenotype and gene
expression trait in one of three cell types across 1,199 genetic loci. These pairs
encompassed all 164 immune traits and 7,060 genes with eQTLs in at least one of
the three BLUEPRINT cell types. As we considered up to three conditionally
independent associations per gene and locus, we made a total of 22,379
comparisons.

Calculating polygenic risk scores within trait pairs. We used polygenic risk
scores (PRS) to assess the global genetic overlap between immune/gene expression
trait pairs, beyond the shared associations identified by JLIM. For each pair, we
selected independent variants associated with the expression trait at some threshold
and then calculated PRS for all individuals in the immune trait cohort, using
PRSice v2.2.11.b54 with default parameters for clumping and an additive genetic
model. A PRS Ŝi for the ith individual over m independent SNPs is defined as:

Ŝi ¼
Xm

i¼1

Xjβ̂j

where Xj is the number of minor alleles carried at the jth SNP, and β̂j is the eQTL
effect size for the jth SNP26. To account for shared effects between some trait pairs
but not others, we condition eQTL traits on the main variant from the association
signal with the strongest JLIM p-value (even if not significant), and use the now
conditionally independent eQTL data for the PRS calculation. We used ten dif-
ferent significance thresholds to select these SNPs: 1 × 10−2, 1 × 10−3, 1 × 10−4,
5 × 10−5, 1 × 10−5, 5 × 10−6, 1 × 10−6, 5 × 10−7, 1 × 10−7, and 5 × 10−8. We then
calculated the proportion of immune phenotype variance (R2) explained by these
PRS and their empirical significance, also using PRSice.

We then compared PRS results between trait pairs with a shared effect and trait
pairs with no sharing, using two approaches. We compared the proportion of
immune phenotype variance explained (i.e., the R2 values) with the
Mann–Whitney–Wilcoxon test, and the correlation between JLIM p-values and
PRS R2 with univariate linear regression.

Mendelian randomization analyses. We used two Mendelian randomization
(MR) approaches to assess evidence that gene expression traits are causal for the
immune phenotype traits for which they share an association. First, we used two-
sample Mendelian randomization (TSMR)27,28, as implemented in the TwoSam-
pleMR v0.4.25R package, using inverse variance weighting of effect sizes. As
instruments, we selected all independent SNPs associated with the gene expression
trait with an association p-value < 1 × 10−5.

We also used transcriptome-wide summary statistics-based Mendelian
Randomization (TWMR), an extension of TSMR33. As described by Porcu et al, we
first identified all variants associated with the gene expression trait in each trait pair
in each cell type (conditional association p < 1 × 10−3). We then identified all genes
within 1 megabase of the gene’s TSS, and selected all SNPs associated with the
expression levels of any of these genes. We then removed genes with highly
correlated expression values to the original gene (r2 > 0.2), and selected pairwise-
independent SNPs from the remaining list (pairwise LD r2 < 0.1). We used the
resulting set of variants as instruments in a multivariate MR model to estimate the
causal effect on the immune phenotype. Ambiguous SNPs were removed for both
MR analyses.

We compared causality estimates from both methods between trait pairs with a
shared effect and trait pairs with no sharing. We compared estimated causal effect
sizes with the Mann–Whitney–Wilcoxon test; and, as a continuous measure, the
correlation between JLIM p-values (strength of evidence of shared effect) with the
estimated causal effect sizes and corresponding p-values using univariate linear
regression.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
No data were generated beyond the publicly available datasets used. The BLUEPRINT
data was retrieved from the European Genome-phenome Archive (EGA) with the
following accession numbers: EGAD0000100266355 (whole genome sequencing),
EGAD0000100267156, EGAD0000100267457, and EGAD0000100267558 (RNA-seq data
for naive CD4+ T cells, monocytes and neutrophils, respectively). The Milieu Intérieur
project genotype data was retrieved from the EGA with the accession number
EGAS0000100246059. Data underlying Figs. 1–4 are provided in Supplementary Data 1–
4, respectively. Supplementary Table 1 is also available as an Excel file in Supplementary
Data 5.

Code availability
Details about software and algorithms used in this study are given in the “Methods”
section. All code, including dependency versions, is available on our GitHub repository
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(https://github.com/cotsapaslab/immuneMR); the exact version is archived at Zenodo
(https://doi.org/10.5281/zenodo.4472530).
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