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The equivalent internal orientation 
and position noise for contour 
integration
Alex S. Baldwin   , Minnie Fu, Reza Farivar, Robert F. Hess

Contour integration is the joining-up of local responses to parts of a contour into a continuous 
percept. In typical studies observers detect contours formed of discrete wavelets, presented against 
a background of random wavelets. This measures performance for detecting contours in the limiting 
external noise that background provides. Our novel task measures contour integration without 
requiring any background noise. This allowed us to perform noise-masking experiments using 
orientation and position noise. From these we measure the equivalent internal noise for contour 
integration. We found an orientation noise of 6° and position noise of 3 arcmin. Orientation noise was 
2.6x higher in contour integration compared to an orientation discrimination control task. Comparing 
against a position discrimination task found position noise in contours to be 2.4x lower. This suggests 
contour integration involves intermediate processing that enhances the quality of element position 
representation at the expense of element orientation. Efficiency relative to the ideal observer was lower 
for the contour tasks (36% in orientation noise, 21% in position noise) compared to the controls (54% 
and 57%).

The perception of lines and edges in the outside world requires the visual system to “join-up” local responses to 
points along those lines and edges into contours. The contour integration task introduced by Field et al.1 has the 
observer detect a contour composed of wavelets in a background of randomly-scattered wavelets. They explained 
their results with an “association field” model. In that model responses to individual wavelets are linked to form 
a representation of the contour. The linking is governed by rules concerning the position and orientation of each 
wavelet with respect to its neighbours. These rules are consistent with what would be expected based on statistical 
properties of edges found in natural images2. This contours-in-noise paradigm has been adapted for use in many 
subsequent studies3–7. For a recent review, see Hess et al.8.

Here we perform a noise-masking study for contour integration. This involves measuring the effect of differ-
ent levels of external noise (added to the stimulus on the screen) on performance. From this one can obtain the 
equivalent internal noise (representing the quality of the input to the process that solves the task) and the calcu-
lation efficiency (better processing strategies applied to the input give higher efficiencies, approaching the ideal 
observer which uses the best possible strategy). One important aspect of the standard contour paradigm is that 
performance is largely determined by the background noise field2,9. Without this background, it would be trivial 
to detect the presence of the contour. For this reason, it cannot be adapted for use in a noise masking experiment 
to measure equivalent internal noise. Although one could obtain a noise-masking function by adding noise to the 
contours in this task, fitting an equivalent internal noise parameter would simply quantify the amount of external 
noise introduced by the background noise field. It would not be possible to break through that other external 
noise source to measure the internal noise of the mechanism in the brain that performs contour integration. One 
can consider this in the context of the ideal observer (which achieves optimal performance on the task). A good 
task to use for an equivalent noise study is one in which the ideal observer is capable of perfect performance when 
the external noise is zero.

To enable the measurement of equivalent noise, we developed a novel task. It is based on the idea that a 
contour is defined by the conjoined positions and orientations of the parts that compose it. We propose that 
the visual system integrates contours by finding an appropriate conjunction of position and orientation infor-
mation10. Therefore, we devised a task where the observer must discriminate between two types of stimuli. The 
stimuli feature sets of wavelets whose position and orientation information form either valid or invalid contours 
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(Fig. 1). For the valid stimulus, we give each wavelet a position and orientation that describes a smooth contour. 
In the “invalid” stimulus the orientations of the wavelets are flipped so that they would be appropriate for a con-
tour curving in the opposite direction. This gives our stimuli two crucial properties. Firstly, it is not possible to use 
the position or orientation information alone from the contour to decide if it is valid. The observer is required to 
combine position and orientation information to solve the task. On this basis we argue that our task tests contour 
integration. Secondly, our stimuli are deterministic. Our basic task does not rely on the addition of any random 
noise to make it difficult. The ideal observer could achieve perfect performance, and the point at which the noise 
has an effect on threshold for our human observers reflects the internal noise of their contour integration process 
(see below).

The discrimination shown in Fig. 1 is easy. To make the task difficult one can reduce the curvature of the 
contour by using a smaller amplitude (A) in the cosine function that determines its shape. In the previous 
contours-in-noise task curved contours were more difficult to locate in the noise background. In our task, it is 
straighter contours that make the discrimination of good continuation more difficult. We used a four-alternative 
forced-choice task where single contours were briefly presented at 2.8 degrees of visual angle from fixation in four 
quadrants. Observers had to respond with which of the four was the valid contour. Control experiments allow us 
to compare performance in this task against a non-contour task based on discriminating orientation or position 
independently. Further details are provided in our methods section. Subjectively, the contour task itself is simple 
to perform. When the valid contour is detectable it usually “pops out” in an obvious way (giving a smooth contin-
uous impression). This helps observers quickly learn the task.

Having established our basic task, we now extend it to measure noise-masking functions. We added three 
types of noise to our contours: (a) orientation noise that added a random rotation to each of the wavelets in both 
the valid and invalid contours, (b) position noise implemented by adding a random positional offset to each 
wavelet, and (c) contrast noise implemented by adding a random contrast jitter to each wavelet. These are shown 
in Fig. 2, with the contour curvatures at twice that required for threshold performance. Measuring thresholds in 

Figure 1.  Examples of the valid and invalid contour stimuli used in our experiments. The modulation 
amplitude (A) determining the curvature of the contour is set to 0.25.

Figure 2.  Examples of the different types of noise stimuli used in our experiments. The amplitude of the 
curvature of the contour for each case is approximately twice that required for threshold performance: (a) 0.25, 
(b) 0.25, (c) 0.18.
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different levels of this external (stimulus) noise gives a noise-masking function. From this one can determine the 
equivalent internal noise in each domain. This is found by seeing how much external noise must be added to the 
stimulus before performance changes.

Noise masking functions can be interpreted using the Linear Amplifier Model11 (LAM). The signal to noise 
ratio (d′) is

β

σ σ
′ =

+
d A ,
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where σext is the standard deviation of the external noise added to the stimulus, σint is the standard deviation of 
the equivalent internal noise in the visual system, and β represents the efficiency of the processing performed on 
the input. The amplitude at threshold (Athreshold) can be found by solving for A when d′ = 1
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From Eq. (2) one can see that when int extσ σ  behaviour will be determined by the internal noise in the system 
(and the efficiency), and so thresholds will not be affected by the external noise. Once that noise level increases 
and int extσ σ  however, the behaviour will instead be driven by that external noise level (and efficiency). This 
results in a roughly linear increase in Athreshold as extσ  increases. This model was first derived to explain results from 
contrast detection studies, originally in white Gaussian noise11–13, (although later studies have suggested that 
other types of contrast noise may be more useful, 14,15). Since then however, the method and the model have also 
been applied to texture16, motion17, and stereoacuity18. When applied in this broader sense, the equivalent inter-
nal noise σint is a measure of the quality of the input used to perform the task. Its value is affected by intrinsic noise 
in the visual system, and by input gain or nonlinearities. Its units match those of the external noise, allowing 
comparisons to be made between tasks.

The efficiency parameter β indicates how well the visual system makes use of the noisy input information. 
For example, in our task if the observers ignored all but a pair of wavelets from each contour when determining 
which was the valid one (discarding the information available from those other wavelets) this would be inefficient 
compared to using all the wavelets. In tasks where ideal observer performance has been established efficiency can 
be measured on an absolute scale relative to that ideal observer. Otherwise, relative efficiency can be compared 
between observers or conditions that use the same task. In a previous study, Bex et al.19 have made such compari-
sons using a modified version of the standard contour task. The standard deviation of the orientation noise added 
to the contour in the background noise field was varied to measure a psychometric function (perpendicular to the 
measurements made in this study). This gave a measure of relative efficiency for contour integration.

It is worth noting that previous studies11 have presented calculation efficiency as k d( / )2β= ′ . For any d′ this k has 
an inverse square relationship with β, the parameter we use to represent efficiency in our fitting. The squaring in the 
calculation of k (or in η when it is being calculated as efficiency relative to the ideal observer, 20,21) usually has the role 
of defining efficiency in terms of contrast energy. For the modulation amplitude of our contours this would not have 
a clear meaning, so by working with β as our efficiency parameter we avoid this confusion. Using β gives us the 
vertical offset between noise masking functions, with which we show the ratio between human and ideal perfor-
mance. If desired, the log2β we present in this study can be converted to log2k by multiplying them by −2 (and  
relative log efficiencies should simply be doubled).

For our task, sufficient orientation or position noise should impair performance. This is because the task 
requires the observer to make use of both of these features. At the end of this paper we develop an ideal observer 
model to demonstrate how each of these types of noise should make the contour task more difficult. With our 
contrast noise, we explored the possibility that the contour “code” is multiplexed with the contrast signal. Previous 
studies have found that collinear arrangements of wavelets reduce their contrast threshold22,23. Although some 
of this effect can be attributed to uncertainty-reduction24, there appears to be a small collinear facilitation effect 
beyond this25,26. There is further evidence from neurophysiology that firing rates in V1 are modulated by context 
of this type27. In this case one might predict that adding noise to this code (by randomising the wavelet contrasts) 
could impair contour integration performance. This question has been investigated previously28, however that 
study used the contours-in-noise approach. The external noise introduced by the random background may have 
overwhelmed the impairment from the contrast randomisation. We use our new task to take another look at this 
question, alongside our investigation of the equivalent orientation and position noise.

Results
Noise masking functions obtained from our five observers are shown by the coloured points in Fig. 3. For four out of 
our five observers, performance was similar between them. The remaining observer (S5) exhibited higher thresholds 
in all conditions. The mean across the five observers is shown in black. For the orientation and position conditions 
(Fig. 3a,b) we find that the noise masking functions follow the standard shape. They are initially flat until a critical 
external noise level is reached, at which point the thresholds increase in proportion to the standard deviation of the 
masking noise. For the contrast condition (Fig. 3c) the masking noise does not result in any threshold elevation. This 
shows that randomising the contrast of the wavelets forming the contours had no effect on performance.

We compared thresholds for detecting inwardly and outwardly inflected contours by splitting the data into 
those two sets. We fitted new psychometric functions and performed a two-way within-subjects ANOVA (factors 
of inflection direction and noise condition) in R29. We found that on average thresholds were 36% higher for 
detecting outwardly inflected contours. This difference was significant ( = .F 46 061,4 , < .p 0 01) but did not inter-
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act with noise condition (F 0 687,28 = . , = .p 0 69). We performed a similar analysis to investigate whether there 
was a variation in sensitivity between different target locations. We split the data into quadrants, fitted psychomet-
ric functions, and performed a two-way within-subjects ANOVA (factors of quadrant and noise condition). We 
found no significant effect of quadrant ( = .F 0 363,12 , = .p 0 79) and no significant interaction between noise 
condition and quadrant (F 1 1021,84 = . , p 0 36= . ).

The solid lines in Fig. 3a,b show fits of the LAM (Eq. (2)) to the data. Fitting was performed in Python using 
the fmin function from the SciPy library30. This minimised the root-mean-square error (RMSe) between the data 
and the model prediction (both log-transformed). The details of these fits are shown in Tables 1 and 2. The values 
of the equivalent internal noise parameters are shown by the triangles in Fig. 3a,b. The five observers were quite 
consistent with each other. They had fitted equivalent internal orientation noise values of between 5° and 7°, and 
position noise of between 2 and 4 arcmin. Efficiencies are calculated relative to the ideal observer. Within each 
condition the efficiency was similar for all observers except for S5, who had lower efficiency in both conditions. 
The efficiency for the orientation condition was higher than that for the position condition (36% vs. 21%). This 
indicates that our observers are able to make better use of the information extracted from the orientation noise 
stimuli than the position noise stimuli.

Figure 3.  Thresholds (d′ = 1) for detecting contours perturbed by the three types of noise shown in Fig. 2. For 
individual observers the standard errors are calculated over the bootstrap samples. For the mean, standard error 
is calculated over the observers. Parameters of the LAM fits shown in panels (a,b) are provided in Tables 1 and 2. 
The triangles on the x-axis indicate the equivalent internal noise intσ . The grey line indicates the efficiency of the 
ideal observer. In panel (c) a horizontal line is fit to the two data points (0% and 28% contrast noise) to 
demonstrate that there is no difference between the thresholds.

Observer log2β − log2βideal log2σint (degrees) RMSe

S1 −1.38 ± 0.11 2.6 ± 0.2 0.05

S2 −1.43 ± 0.10 2.7 ± 0.1 0.12

S3 −1.46 ± 0.09 2.3 ± 0.1 0.05

S4 −1.20 ± 0.12 2.7 ± 0.2 0.08

S5 −1.91 ± 0.12 2.8 ± 0.2 0.09

Mean −1.48 ± 0.12 2.6 ± 0.1 0.04

Table 1.  Parameters of the LAM fits to the orientation noise data shown in Fig. 3a. For individual observers, the 
standard error of the bootstrapped parameters is shown. For the mean the standard error is calculated over the 
observers. In linear units, the mean equivalent internal noise is 6.1°. The efficiency is 36% of the ideal observer.

Observer log2β − log2βideal log2σint (arcmin) RMSe

S1 −2.16 ± 0.09 1.6 ± 0.2 0.03

S2 −2.26 ± 0.09 1.6 ± 0.1 0.12

S3 −2.17 ± 0.08 1.2 ± 0.1 0.30

S4 −2.02 ± 0.10 1.6 ± 0.2 0.10

S5 −2.61 ± 0.12 1.9 ± 0.2 0.16

Mean −2.25 ± 0.10 1.6 ± 0.1 0.11

Table 2.  Parameters of the LAM fits to the position noise data shown in Fig. 3b. For further details see Table 1. 
In linear units, the mean equivalent internal noise is 3.0 arcmin. The efficiency is 21% of the ideal observer.
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To control for the sensitivity for discriminating fine position and orientation information at our target loca-
tions, we tested five observers on additional non-contour tasks. In the orientation control, observers had to indi-
cate which quadrant contained a wavelet that was rotated. This was done in different levels of orientation noise. In 
the position control, the task was the same but with a position shift and positional noise. These tasks were chosen 
with the aim of measuring the position and orientation noise at the level at which the features of individual wave-
lets are detected. They were designed in such a way that processing strategies involving collinearity cannot solve 
the task. Our ideal observer models allow us to make direct comparisons between the efficiencies and equivalent 
internal noises we measure for our contour and control tasks.

Subjectively, observers found the control tasks more difficult than the contour task. Results are shown in Fig. 4, 
where one can see that performance was also far more variable between observers. From the triangles one can see 
that the range of equivalent noise values found is much wider than that seen in the contour task. Tables 3 and 4 
show the fitted parameter values with bootstrapped standard errors. These equivalent noise measurements can be 
compared directly against those from the contour task. We find that the equivalent internal orientation noise in 
our contour task is 2.6× higher than that for making an orientation judgement on a single wavelet. On the other 
hand, the equivalent internal noise for the position task is 2.4× lower. Efficiency relative to the ideal observer was 
higher than for the contour tasks. For the orientation control the efficiency was 54%, for the position it was 46%.

Discussion
This novel paradigm provides a new approach, allowing investigation of contour integration at threshold. 
Applying external noise allows us to measure the equivalent noise in the mechanism responsible for contour 
integration. Previous studies using similar stimuli to measure contrast detection thresholds have found an inter-
action between collinearity and contrast processing22–26. In line with previous studies that used a contour task 
however7,28, we find that contrast noise does not interfere with contour integration. For orientation and position 
we are able to measure an equivalent internal noise. These values reflect the quality of the information at the 
processing level at which contour integration is performed. We were also able to measure efficiency relative to the 
ideal observer, indicating how effectively the observers made use of that noisy information.

The equivalent internal noise values we measure in our contour task are compared against those from two 
control tasks (one for orientation, and one for position). Although these tasks feature a different number of wave-
lets compared to our contour task, this should not affect the equivalent internal noise. This is because we apply 

Figure 4.  Thresholds (d′ = 1) from control tasks, detecting orientation and position shifts in single wavelets. 
Error bars show standard error calculated over bootstrap samples. LAM fit parameters are shown in Tables 3 
and 4. Vertical grey lines show average noise from the contour task, which can be compared against triangles 
showing the equivalent noise from this task. Diagonal grey lines indicate the efficiency of the ideal observer.

Observer log2β − log2βideal log2σint (degrees) RMSe

S1 −0.29 ± 0.53 2.8 ± 0.8 0.04

S2 −1.17 ± 0.41 1.2 ± 0.7 0.45

S4 −0.69 ± 0.44 1.6 ± 0.9 0.58

S6 −1.03 ± 0.38 0.7 ± 0.9 0.75

S7 −1.30 ± 0.44 0.0 ± 1.1 0.21

Mean −0.90 ± 0.18 1.2 ± 0.5

Table 3.  Parameters obtained by performing LAM fits to the data collected in the orientation control 
experiment (Fig. 4a). In linear units, the mean equivalent internal noise is 2.4°. The efficiency is 54% of the ideal 
observer.
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independent external noise samples to each individual wavelet (and so measure the equivalent internal noise for 
each wavelet). In line with previous studies13,16, our ideal observer models predict that the equivalent internal 
noise should not depend on the number of samples available.

In the comparison with the controls we find that more external orientation noise is required to degrade per-
formance in the contour task compared to the single wavelet task. This indicates that in contour integration there 
is a loss in the quality of the orientation information. On the other hand, the equivalent positional noise in the 
contour task is lower than that found for position discrimination with a single wavelet. Less positional noise must 
be added to affect the contour task compared to the control. This trade-off between orientation and position may 
arise from an intermediate stage where elongated receptive fields link adjacent wavelets. In that case, this trade-off 
should become more dramatic as the stimulus eccentricity increases31.

Another potential explanation for the increased equivalent orientation noise we find here can be found in 
pedestal masking studies that have been conducted on orientation variance discrimination32,33. These studies 
find a “dipper” function for their task, where small differences in orientation variance between groups of wave-
lets are easier to discriminate when both groups have a small pedestal variance (on top of which the increased 
variance to be discriminated is added). This facilitation effect can be explained by there being a “threshold” in 
the representation of orientation variance, perhaps to squelch the visual system’s internal noise. This may be 
relevant if observers identify the “good continuation” contour in this study by finding that in which the wavelet 
orientations have the smallest residual variance compared to the underlying contour. If this is the case then a 
task-dependent “squelching” of these variances would elevate the equivalent internal orientation noise. This 
would be consistent with previous reports of orientation discrimination threshold elevation within grating 
patches that form a contour34.

The novel equivalent noise approach to studying contour integration we present here bears some sim-
ilarity to a previous task that has been used to measure the effects of perceptual learning on position dis-
crimination35,36. The crucial difference however is that the task in that study was not designed to investigate 
contour integration, and could be solved by taking account of only position information. It is possible 
though that the same underlying mechanisms are responsible for performance in both tasks. When compar-
ing the equivalent position noise between the two studies it is unsurprising that the positional noise found 
in our task is much higher (3 arcmin compared to 0.35 arcmin in Li et al.36). The participants in Li et al.36 
could fixate the rows of wavelets as they pleased, and the stimuli were formed of wavelets of a higher spatial 
frequency (10 c/deg).

The comparison with Li et al.36 brings up the relationship between our study and those that have measured 
Vernier acuity. As both contour integration and Vernier acuity require discriminations to be made about the 
collinearity it is possible that there would be some overlap in how they are processed. It is thought that the con-
tour integration process is carried out by lateral connections between neurones with adjacent receptive fields 
and collinear orientation preferences37,38. Vernier acuity, on the other hand, can be explained by the responses 
of neurones with oblique orientation preferences detecting the horizontal offset between two features39–41. Both 
capacities may represent cases where nonlinear interactions reshape and refine the response properties of local 
feature detectors based on the contextual modulation from other detectors. A general overview of these nonlinear 
interactions is presented from an interesting “geometric” perspective by Golden et al.42.

Our ideal observer modelling indicates that the fitted efficiency values should be different between the 
contour and control tasks (Table 5). In Tables 1–4 we present efficiency relative to these ideal observer values, 
which factors out this effect. We find that the human observers are relatively more efficient in the control tasks 
than the contour tasks, in terms of making use of all of the information that is available from the wavelets in 
the stimulus.This could be explained by there being 7× as many wavelets in the contour task for the observer 
to make use of. This may be too much information for the observers to handle efficiently. An alternative expla-
nation would be that there are inherent inefficiencies in the way that the contour processing is performed. This 
question could be addressed by measuring efficiency relative to the ideal observer under different stimulus 
conditions.

Our novel contour task is a simplified and idealised approach to investigating how the visual system detects 
lines and edges in the outside world. Although the presented contours are formed of separate discrete elements, 
it is interesting that the percept is often of a continuous “joined up” contour. This modal completion can be 
contrasted with amodal completion, where contours implicitly join up past discontinuities. These situations are 
common in natural scenes43, and present a greater challenge to our ability to determine whether or not features 
belong to the same contour. The rules underlying amodal contour binding have been characterised by previous 
studies44,45. Future studies could explore how performance on our contour task can be used to investigate other 

Observer log2β log2σint (arcmin) RMSe

S1 −1.54 ± 0.51 1.9 ± 0.6 0.37

S2 −1.09 ± 0.86 3.5 ± 0.9 0.12

S4 −1.22 ± 0.54 2.9 ± 0.8 0.09

S6 −0.81 ± 0.77 2.8 ± 1.0 0.28

S7 −0.98 ± 0.75 3.0 ± 0.8 0.18

Mean −1.13 ± 0.12 2.8 ± 0.3

Table 4.  Parameters obtained by performing LAM fits to the data collected in the position control experiment 
(Fig. 4b). In linear units, the mean equivalent internal noise is 7.0 arcmin and the efficiency is 46%.
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limits on contour binding. For example, it should be possible to combine the performance limitations meas-
ured in this study with computational models of contour integration2,9, in order to predict performance in 
tasks with arbitrary contours presented alongside background elements. Beyond this, measurements of the 
equivalent internal noise for contour integration may be useful in conditions where we expect there may be 
deficits in visual processing. Such increases in neural variability have been reported in both autism and trau-
matic brain injury46.

Methods
Procedures were approved by the Research Ethics Board of McGill University Health Centre, and carried out in 
accordance with the relevant regulations and guidelines. All subjects gave written informed consent. The exper-
iment was programmed in Matlab using Psychtoolbox47. An Nvidia Quadro K5200 graphics card delivered a 
10-bit contrast depth. Stimuli were presented on a gamma-corrected Flatron 915FT monitor. The mean lumi-
nance was 62 cd/m2 and the resolution 96 pixels per degree at the viewing distance used (77 cm). In each stimulus 
frame, there were contours placed in the four quadrants (top-left, top-right, bottom-left, and bottom-right) sur-
rounding the fixation marker.

Contours were formed of seven log-Gabor wavelets48. The wavelets had a spatial frequency of 6 c/deg, cosine 
phase, and spatial frequency and orientation bandwidths of 1.6 octaves and ±25°. These were placed along a path 
defined by a cosine function. The u coordinates were n evenly spaced values across the length m

u m i
n

m1
1 2 (3)i = ×

−
−

− .

In this study, the first and last wavelet of each contour were 3 degrees apart (m = 3 deg). The v coordinates, per-
pendicular to the u coordinates, depend on the amplitude of the curvature (A). The amplitude gives the deviation 
between the peak of the contour and the midpoint between the first and last elements (Fig. 5a). The coordinates 
are calculated as

π
= = × ×





+






×





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2
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where the direction of curvature is controlled by d (which is either ±1 or −1). The orientations of the wavelets 
depend on whether we are generating a “valid” (t = 1) or “invalid” (t = 0) contour. For the valid case the orienta-
tions are consistent with the local path of the contour. For the invalid case the orientations are consistent with a 
contour curving in the opposite direction. We first calculate the local vector where δ′ =u 2i  and

v
u d A m u d A m t
u d A m u d A m t

V( , , , ) V( , , , ), if 1
V( , , , ) V( , , , ), if 0 (5)

i
i i

i i

δ δ
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


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+ − − =
+ − − − − =

from which the wavelet orientation θ′ is found using the atan2 function

θ ′ = ′ ′ .v uatan2( , ) (6)i i i

The coordinates (u and v) and angles θ′ are then rotated (by angle p) appropriate to the quadrant where the 
contour is being presented. In each quadrant the contours were presented at a tangent to a circle centred at fixa-
tion with radius 2.8 deg (see Fig. 5a). The x  and y  coordinates of each ith wavelet are given by

x X i d A p u p v p( , , , ) cos sin (7)i i i= = × − × .

and

y Y i d A p u p v p( , , , ) sin cos (8)i i i= = × + × .

and translated to the stimulus eccentricity. The orientations are simply

T i d A p t p( , , , , ) (9)i iθ θ= = ′ + .

This gives the final coordinates and orientations of the wavelets (the variables are barred because in the actual 
stimulus display there may be noise added to them). The contours were displayed at 60% contrast. The stimulus 
duration was 400 milliseconds.

Model log2βideal

Contour task, orientation noise 7.84 ± 0.04

Contour task, position noise 7.63 ± 0.04

Control task, orientation noise 0.16 ± 0.03

Control task, position noise 0.13 ± 0.02

Table 5.  Fitted efficiency (β) of the noisy ideal observer models for the contour and control tasks. Shown here 
are mean log2β values ± the standard deviation across the simulated internal noise levels shown in Fig. 6.
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We employed a 4-alternative forced-choice task. One random quadrant on each trial contained the valid con-
tour and the other three contained invalid contours. After stimulus presentation, the observer pressed a key to 
indicate the quadrant with the valid contour. We used a method of constant stimuli design (128 trials of 6 stimu-
lus levels, log-spaced between 2−5.5 and 2−0.5). Because the contour in each quadrant could be inflected inward or 
outward on each trial, we counterbalanced these conditions. Data were recorded to see whether either direction 
of curvature resulted in greater sensitivity.

For the orientation and position conditions we tested three noise levels, as well as testing without noise. For 
orientation, we applied a random rotation to every wavelet in the display

Figure 6.  Predictions from noisy ideal observer models. The first two columns show simulated noise masking 
functions for a range of internal noise values (each with a different colour). The rightmost column shows how 
the fitted equivalent internal noise maps on to those simulated internal noise values (which can be compared to 
the diagonal unity line).

Figure 5.  Stimulus design used in (a) the main study, and (b) the control study. Images show the stimuli 
presented to a single quadrant of the visual field. Similar stimuli were also shown (rotated about the fixation 
marker) in the other three quadrants.
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θ θ= + N , (10)i i ext

where Next was drawn from a zero-mean normal distribution with standard deviation σext, determining the exter-
nal noise level. The position noise was similar, with separate samples drawn to give random x and y coordinate 
offsets for each wavelet

= +x x N , (11)i i ext

and

= + .y y N (12)i i ext

For the contrast condition the noise samples determined the contrast of each wavelet. Pilot experiments 
showed no effect of contrast noise, so we tested only at a requested standard deviation of 32%. Due to clipping at 
0% and 100% this resulted in an effective standard deviation of only 28%.

In the control experiments, observers performed orientation and position discrimination tasks. We 
replaced the contours with single 60% contrast wavelets (same contrast as our contours), flanked by black 
dots (Fig. 5b). These dots were 1.9 by 1.9 arcmins at 100% contrast, and remained clearly visible throughout 
the control task. The contour and control stimuli are presented centred at the same eccentricity (2.8 degrees of 
visual angle). Although the contour stimuli extend diagonally such that their ends will be at a slightly greater 
eccentricity, the most useful part of the stimulus for making the judgement in the task will be at 2.8 degrees. In 
these ways our control experiment is designed to allow comparisons to be made between the equivalent inter-
nal noise for the processing of wavelets in local versus contour tasks while minimising (as much as possible) 
the differences between the stimuli.

In the orientation control, observers indicated in which of the four quadrants was the wavelet rotated clock-
wise. This was performed with different levels of orientation noise applied to all four wavelets. For the position 
control the observer indicated which of the four wavelets had its position shifted to the right. This was done in 
different levels of 2D positional noise. Because performance on the control tasks was more variable, we tailored 
the stimulus levels (target rotation or shift) and noise levels for each observer. Fewer trials were collected in these 
control conditions. The plotted masking functions are based on data from 1,000–2,000 trials, compared to the 
>3,000 trials/condition for all observers in the contour task.

The data obtained from our experiments were fit by cumulative normal psychometric functions in 
Palamedes49. For the LAM analysis, the inverse of the function was used to calculate thresholds when d′ = 1. For 
the 4AFC task in this study this was at the 55.2% correct point of the psychometric function. Parametric boot-
strapping was performed to generate a thousand bootstrap samples for each threshold. Bootstrapped estimates of 
the LAM parameters were obtained by fitting to sets of bootstrapped thresholds.

Ideal Observer Modelling
We ran simulations of an ideal observer model for the contour task20. The ideal observer operates on the 
wavelet coordinates and orientations (and therefore does not predict any effect of wavelet contrast). It knows 
that there are a set of possible stimulus conditions that vary in curvature direction, amplitude and target 
location. The ideal observer also knows that the coordinates and orientations it receives will be noisy, and 
the standard deviation of that noise for each block. Briefly, the ideal observer uses the orientations and 
positions of the wavelets in the display to calculate the likelihood of each possible stimulus type given that 
information. It then responds on the basis of which target location is consistent with the most likely stimulus 
condition50.

On each trial the stimulus is defined by matrices of coordinates X and Y, and orientations Θ. Each entry in the 
matrix (e.g. xi j, ) corresponds to the ith wavelet (of the 7 per contour) in the jth contour (of the 4 in our stimuli). From 
this the ideal observer calculates the likelihood of each stimulus condition. The conditions are defined by amplitude 
A, target location l, the curvature directions for each contour dj in D and global rotations (for the locations where the 
stimuli were presented) for each pj in P. Log-likelihoods are summed across position and orientation

σ σ| Θ = + .θ θ  A l D Plog ( , , , X, Y, , , ) log log (13)xy xy

The position likelihoods are calculated as the probability of obtaining the observed x and y coordinates under 
the considered stimulus condition with noise defined by the probability density function of the general normal 
distribution x( , , )µ σφ

 ∑ ∑σ φ σ

φ σ

| =

+

A D P x X i d A p

y Y i d A p

log ( , , X, Y, ) log [ , ( , , , ), ]

log [ , ( , , , ), ] (14)

xy xy j i i j j xy

i j j xy

where xyσ  is the effective position noise combined across internal and external sources. The orientation likelihoods 
are calculated in a similar manner, however because orientation is circular we use the Von Mises distribution 

x( , , )ω µ σ  instead of the normal, such that

ω µ σ
π σ

=
× ×

σ µ× −
x e

I
( , , )

2 (1/ ) (15)

x(1/ ) cos( )

0
2

2
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where I0() is Matlab’s besseli function, used to give the modified Bessel function (of order 0), which scales the Von 
Mises probability density function so that it integrates to 1. In the implementation of the model the Von Mises 
function occasionally fails when the value of σθ is very small as there are terms in both the numerator and the 
denominator that become too large. In these cases we fall back on using the normal probability density function. 
In testing different versions of the ideal observer model we found that this only occurs when σθ < 2.2°. For values 
of σθ this small the difference between the two distributions results in disagreement on less than 0.01% of trials. 
With the Von Mises distribution, the orientation likelihood is calculated as

A l D P T i d A p l jlog ( , , , , ) log [ , ( , , , , ), ],
(16)j i

i j j ∑∑σ ω θ σ|Θ = ==θ θ θ

where σθ is the effective orientation noise combined across internal and external sources. Note also the l j==  
comparison. This sets the value of t in Eq. (5) to 1 or 0 depending on whether the jth contour being evaluated is at 
the target location l. The log-likelihood is calculated for every combination of the possible amplitudes, target 
locations and curvature directions. The model then selects its response by finding the target location (l) for the 
most likely stimulus condition

A l D Presponse argmax[log ( , , , X, Y, , , )]
(17)l

xy
{1,2,3,4}

σ σ= | Θ .θ
∈



Although the ideal observer model usually does not feature internal noise, we ran simulations here with 
internal noise added to the model in order to demonstrate its behaviour. The predictions from this “noisy 
ideal observer” contour integration model are shown in Fig. 6a,b. Noise masking functions are shown for 
9 simulated internal noise levels. The points show thresholds obtained by fitting psychometric functions 
(as above) to 6,000 simulated trials per point. As expected, the linear amplifier model (Eq. (2)) provides an 
excellent fit to these points. Figure 6c plots the fitted equivalent internal noise values against the simulated 
internal noise levels used to generate the data, showing that the LAM fitting recovers those values. The 
efficiency (β) parameters of the fitted LAM functions (Table 5) are very similar across the different internal 
noise levels.

For the control experiments, the ideal observer model was modified to consider only a single wavelet that is 
shifted either in its orientation or its position. For the orientation case the positions are irrelevant to the task, so 
only θ  is considered. For the position case only xy  is considered. The noisy ideal observer predictions for the 
control experiments are shown in Fig. 6d–f, and mean efficiencies presented in Table 5.

Data availability.  The experiments were performed in accordance with the Declaration of Helsinki, and 
approved by the Research Ethics Board of McGill University Health Centre. All subjects gave written informed 
consent. Raw data are available from figshare, with doi: 10.6084/m9.figshare.4879580.
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