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Abstract: Ionizing Radiation (IR), especially at high doses, induces cellular senescence in exposed
cultures. IR also induces “bystander effects” through signals released from irradiated cells, and these
effects include many of the same outcomes observed following direct exposure. Here, we investigate
if radiation can cause senescence through a bystander mechanism. Control cultures were exposed
directly to 0, 0.1, 2, and 10 Gy. Unirradiated cells were treated with medium from irradiated cultures
or with exosomes extracted from irradiated medium. The level of senescence was determined
post-treatment (24 h, 15 days, 30 days, and 45 days) by 3-galactosidase staining. Media from cultures
exposed to all four doses, and exosomes from these cultures, induced significant senescence in
recipient cultures. Senescence levels were initially low at the earliest timepoint, and peaked at 15 days,
and then decreased with further passaging. These results demonstrate that senescence is inducible
through a bystander mechanism. As with other bystander effects, bystander senescence was induced
by a low radiation dose. However, unlike other bystander effects, cultures recovered from bystander
senescence after repeated passaging. Bystander senescence may be a potentially significant effect of
exposure to IR, and may have both beneficial and harmful effects in the context of radiotherapy:.
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1. Introduction

1.1. Ageing and Senescence

One major aspect of aging at the cellular level is senescence. Cellular senescence is triggered
by various factors such as telomere attrition, enhanced oxidative stress, and accumulation of DNA
damage [1]. Senescence has always been characterized as an arrest in cell growth, but the more it is
investigated, the more it becomes apparent it is a dynamic process that also impacts on development
and tissue repair [2]. Traditionally, senescence has been thought to occur in a similar manner
independent of inducing factors; however, there is emerging evidence of differences based on the
inducing agent, for example, epigenetic alterations and DNA damage responses (DDR) in response
to ionizing radiation (IR) exposure or naturally induced senescence through the recognition of short
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telomeres [3]. Senescent cells also demonstrate a secretory phenotype called a senescence-associated
secretory phenotype (SASP), which is important in relation to intracellular signaling/cell communication
and tissue effects. It has been hypothesized that as more cells in a given tissue enter the senescent state,
potentially driven by the SASP, tissue repair becomes increasingly inefficient, which may contribute to
the general loss of organ functionality that characterizes aging [3]. Recent research has demonstrated
that the SASP’s potent autocrine and paracrine activities induce inflammation and fibrosis, induce
malignant phenotypes, and attract immune cells to senescent cells themselves and the neighboring cells,
which change tissue microenvironments and lead to aging and age-related diseases [1,4-6]. Recent
study showed that senescent cells secreted bioactive factors into the blood that changed hemostasis
and drove blood clotting [7]. These SASP factors therefore could work as plasma biomarkers for aging
and age-related diseases that are distanced by the existence of senescent cells [8].

1.2. IR and Senescence

IR is known to induce cell senescence in healthy cells and therefore has the potential to accelerate
aging and the early onset of diseases associated with aging [9]. It is currently unclear if the underlying
molecular mechanisms behind radiation-induced senescence (RIS) are the same as those that occur in
senescence associated with normal aging. The molecular mechanisms involved in radiation-induced
cellular responses depend on a number of factors: radiation dose, dose rate, transformed status,
cell type, and growth rate [10].

1.3. Non-Targeted Effects of Radiation

IR is also known to induce non-targeted effects (NTE) [11-13]. Manifesting as typical radiation
effects, such as DNA damage, NTE are temporally or spatially separated from the initial radiation
exposure. Two of the more common examples of NTE are (i) genomic instability (GI), which occurs in
the descendants of irradiated cells and typically is observed as the delayed appearance of new genetic
or epigenetic alterations, and (ii) bystander effects (BE), which occur in cells that were not directly
irradiated but have been allowed to exchange molecular signals with cells that were irradiated [12].
Bystander effects are mediated through gap junction communication and/or secreted signals (bystander
signals) from neighboring irradiated cells [11,12]. The nature of secreted signals (soluble transmitting
factors) is not completely understood. However, different studies suggested that calcium fluxes, NO [14],
and ROS [15], as well as cytokines including TGF-beta [16,17], IL-8 [18,19], and TNF-alpha [20,21]
work as mediators of bystander responses. Furthermore, studies suggest that microvesicles and
exosomes are involved in radiation-induced bystander signaling [22,23]. Much like the SASP, cells
expressing a radiation-induced BE possess a distinct secretory phenotype [24]. Naive bystander cells
exposed to signals from BE-expressing cells are themselves recruited into the BE-expressing population.
In addition to direct irradiation of a progenitor cell population, GI also is inducible through exposure
to signals from BE-expressing cells. When triggered this way, Gl is considered to be a BE.

1.4. Secretion of, and Response to, Molecular Signals

Exosomes, in part, mediate radiation BE signaling [22,23,25]. Exosomes are membrane-bound
extracellular vesicles of endocytic origin. They vary in size from approximately 40 to 100 nm (the range
is still debated), and are secreted with various contents such as miRNA, protein [26,27], and DNA [28].
The release of these vesicles from BE-expressing cells induces chromosomal aberrations in unirradiated
cells through the miRNA and protein, which were shown to work in a synergistic manner [25].
As with the radiation BE, exosomes mediate signals secreted by senescent cells that transfer a stress
response to non-senescent cells [29]. Recently, Borghesan et al. reported that exosomes transmit the
senescent phenotype to other cells leading to a change in the tissue environment. The results from
a combination of different assays such as proteomic analysis, Cre-loxP reporter systems, and RNAi
screens demonstrate that exosomes form part of the senescent secretome and mediate paracrine
senescence via the activation of a non-canonical interferon (IFN) pathway [30]. These studies have
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led to the speculation that exosomes could trigger tissue degeneration during ageing and age-related
disease [30].

Senescent cell exosomes contain miRNAs shown to regulate senescence-associated gene
expression [29]. Some of these changes resemble the stress response associated with tissue trauma.
Additionally, and of particular interest here, the list of molecules released into senescent cell cultures
overlaps with that of low passage cells undergoing radiation BE. Shared molecular signaling creates the
potential for either process to influence, or be influenced by, the other. For example, radiation induces
DNA double-strand breaks (DSBs), and this DNA damage initiates cell cycle checkpoints. An identical
molecular response is triggered by unprotected chromosome ends produced by progressive telomere
shortening [31,32]. Thus, directly irradiated cells and senescent cells activate some of the same
pathways. In addition, signals from senescent cells communicate a stress response to non-senescent
cells through exosomes similar to the radiation BE [29]. Here, we show that the bystander effects
of radiation include the induction of senescence, and that exosomes play a prominent role in the
transmission of BE-inducing signals.

2. Materials and Methods

2.1. Cell Culture and Irradiation

FSF210316B are primary human fibroblasts isolated from neonatal foreskin according to a
previously published method [33] conducted under the ethical approval of Oxford Research Ethics
Committee Reference 10/H0605/1. The cells were isolated on 21 March 2016. The cells tested negative
for mycoplasma. They were authenticated by the internal validation system based on fibroblast-specific
isolation procedure followed by visual confirmation of morphology and staining with antibodies
against actin, cytokeratin, and CD31 protein, which collectively identifies fibroblasts, keratinocytes,
and microvascular endothelial cells. The cells were last tested in May 2019. FSF210316B cells were
cultured at 3 x 106 (3 million cells) cells/T175 for 38.5 h in minimal essential media (Dulbecco’s modified
Eagle’s Medium-high glucose) supplemented with 10% fetal calf serum and 1% penicillin/streptomycin
and routinely subcultured prior to confluence. Cells maintained in a humidified 37 °C incubator with
5% CO;. Cells were transported to Oxfords radiation facility in tissue culture flasks. The confluence
of the culture prior to irradiation was almost 70%. Cells were subsequently exposed to 0, 0.1, 2,
and 10 Gy X-rays before being returned to standard culture conditions described above at Oxford
Brookes University.

For experiments, the term “young cells” is applied to the cells that have ~0% senescent cells,
passage 2. In comparison, the term “older cells” applies to the cells that have ~17% senescent cells,
passage 29.

2.2. Population Doublings

Cell growth/proliferation was monitored by determining population doublings (PD). Briefly,
1.5 million cells were seeded into a T75 flask, after 48-72 h (depending on confluence) cells were
harvested and counted. Population doublings were determined using the formula PD = ¢ X (log10(f) -
log10(i)) + PDi, where (c) is the constant 3.322, f is the final cell count, (i) is the initial number of cells,
and (PDi) is the starting number of PD.

2.3. Exosome Isolation

Cell media (supernatant) were collected from cells after 1, 6, and 24 h following irradiation. Cell
media were centrifuged at 2000x g to remove dead cells and apoptotic bodies and any other larger
contaminants. The supernatant was then centrifuged at 10,000x g for 30 min to clear the sample of
microvesicles. This was followed by collection of the supernatant and ultracentrifugion at 120,000x g
for 1.5 h. The supernatant was discarded and exosome pellet collected in 200 pL of two times 0.22 pm
filtered PBS.
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2.4. Exosome Characterization

Exosome characterization for size and concentration were performed using Izons qnano transient
resistive pulse sensing platform as described in [34]. Briefly, exosomes were collected in 200 uL twice
filtered PBS. Samples were diluted 1:20 in twice filtered PBS. Samples were run through disposable
nanopores for a maximum of 10 min or until 500 exosomes have been counted.

2.5. Exosome Transfer for Bystander Experiments (Exosome Bystander)

Exosomes (from each irradiated group) were isolated and collected in 200 uL PBS as above at 24h
following irradiation (as the highest yield per flask of exosomes was observed 24 h following irradiation),
10 puL was removed and kept aside for quantification (size and concentration). The remaining exosome
sample was added to unirradiated young cell cultures and incubated for 24 h before further analysis.

2.6. Media Transfer for Bystander Experiments (Media Bystander)

The irradiated media were collected and filtered at 24 h following irradiation, and then they were
added to FSF unirradiated young cells and incubated for 24 h before subjecting to senescence analysis.
The media and exosome transfer experiments were carried out once with 3 technical repeats.

2.7. Beta-Gal Senescence Staining

Senescence was performed according to the manufacturer’s instructions. Briefly, 20,000 cells were
seeded onto sterilized cover slips in a 6-well plate with 2 mL of media in each well. After 24 h cells
were fixed (fixation buffer 10X containing 20% formaldehyde, 2% glutaraldehyde, 70.4 mM Nay HPOy,,
14.7 mM KH;,POy, 1.37 M NaCl, and 26.8 mM KCl) for 7 min followed by 3 washes with filtered DPBS.
Cells were then incubated with freshly made staining solution for a minimum of 18 h at 37 °C without
CO;. Coverslips were washed and the cells were finally incubated with 70% glycerol in the fridge.

Slides were coded and manually counted in a blind fashion. Cells were counted as senescent if
they demonstrated positive 3-Gal staining. At least 500 cells were scored per group.

2.8. Statistical Analysis

The p values of raw data from all experimental groups were compared and calculated. Data were
examined for normality. The senescence data was shown not to have normal distribution, thus it
was further subjected to Fisher’s exact test to calculate the p values. p values < 0.05 were considered
statistically significant.

3. Results

3.1. Senescence Induced by Direct Exposure to Radiation

Senescence was initially quantified in response to 10 Gy direct IR exposure. Cells were kept in
culture for an additional 5 passages (10 days) and then examined for the induction of senescence
as determined by (3-galactosidase (3-gal) staining. Less than 1% of the control cells were senescent,
this represents a background level of senescence for FSF210316B cells cultured under these conditions.
In contrast, 70.9% of the 10 Gy-irradiated cells were senescent demonstrating a high level of senescence
induction (Figure 1).
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Figure 1. Following exposure to 10 Gy irradiation, 70.9% of cells showed a senescence phenotype
compared to <1% for sham exposed cells.

3.2. Senescence vs. Dose and Time

Younger cells from cultures with ~0% senescence initially were exposed to 0, 2, or 10 Gy X-rays
and tested for senescence induction at 30 min, 24 h, 48 h, 72 h, and 10 day time points. As seen in
Figure 2 a low, but nonsignificant, level of senescence was induced by 2 Gy (~2% of the culture) at
10 days, and a much higher level in the 10 Gy/10 day cultures (~27%). Other dose and time points
were not statistically significant.
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Figure 2. Results for younger cells. The percentage senescence at different time points (30 min, 24 h,
48 h, 72 h, and 10 days) after X-ray irradiation with 2 Gy or 10 Gy is shown. There is a significant
difference in senescence in the 10 Gy samples between the 30 min sample and the 10 day sample
(p value < 0.0001).

Repeating the experiment with older cells (~17% senescence initially) resulted in higher levels
of senescence. A significant increase in senescence was observed in culture exposed to 10 Gy and
examined after 10 days, as shown in Figure 3. As with the younger cells, maximum senescence
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occurred at 10 days. Approximately 18-20% of the 0 Gy cultures had become senescent as the result of
passaging. Therefore, we estimate that of the 54% senescence seen in 10 Gy/10 day cultures, about 35%
was induced by radiation. Radiation induced only 26% of the observed senescence in younger cells
suggesting that radiation may have a somewhat greater senescence-inducing effect on older cells.
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Figure 3. Results for older cells (~17% senescent cells). The percentage senescence over different time
points (30 min, 24 h, 48 h, 72 h, and 10 days) after X-ray irradiation with 2 Gy or 10 Gy is shown.
The highest level of senescence is found in 10 Gy cells 10 days after radiation. We found a significant
difference for all three radiation groups when comparing the 30 min sample to the 10 day samples
(0 Gy p Value 0.0094, 2 Gy p Value 0.0080, and 10 Gy; p value < 0.0001).

3.3. Senescence Bystander Effect

After investigating direct induction of senescence through IR we then explored the potential
for these effects to be further mediated through bystander signaling. The production and release of
exosomes from irradiated cells into culture media was investigated. For these experiments we chose
to work exclusively with cells at a passage corresponding to the younger cells investigated above.
Medium was collected from cultures at 1, 6, and 24 h after exposure to 0, 0.1, 2, and 10 Gy X-rays.
Using tunable resistive pulse analysis, the average size of the exosomes and their concentration were
determined. As shown in Figure 4, the size of exosomes was within the expected range (30-150 nm).
Atevery dose the concentration of exosomes was found to increase with post-irradiation time compared
to the corresponding controls. This indicates that under our in vitro culture conditions cells release
exosomes into the medium at a greater rate than they are removed by endocytosis or other means.
Of all exosomes in a culture at any given time point, some were seeded into the culture at the time of
passaging and others were released into the medium after irradiation. Of the three time points, the 24 h
cultures had the most exosomes, and it also had the largest fraction of post-irradiation exosomes.
For these reasons, 24 h was chosen for further experiments.

As a test for the induction of senescence through a bystander mechanism, cell cultures were
exposed directly to radiation, to media from directly irradiated cells, or to exosomes extracted from
the media of directly irradiated cultures. Four doses were chosen for the test (0, 0.1, 2, and 10 Gy),
and cultures were examined for senescence at four post-treatment times (24 h, 15 days, 30 days,
and 45 days). Results shown in Figure 5 demonstrate an increase in the percentage of senescent cells at
24 h following transfer of irradiated media from 0.1 Gy and 2 Gy cultures when compared to the 0 Gy.
These results demonstrate the existence of a radiation-activated media transfer senescence bystander
effect, and that exosomes are one media component that contains senescence-inducing signals.
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Figure 4. Panels (A-C) show exosome diameter and the concentration of exosomes at 1, 6, and 24 h after
irradiation with doses of 0, 0.1, 2, and 10 Gy. The highest yield of exosomes was observed 24 h following
irradiation for all dose points. Therefore, the 24 h time point was chosen for exosome extraction for use

in experiments. The exosome concentration data was normalized to the corresponding control for each

time endpoint.
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Figure 5. The induction of senescence was analyzed in cells exposed directly to radiation, or to media or
exosomes from irradiated cells at 24 h (panel A) and 15 days (panel B) following irradiation. Panel (A)
shows an increase in the percentage of cells experiencing senescence following exposure to irradiated
media from 0.1 Gy (a significant increase, p = 0.0252, at p < 0.05) and 2 Gy (a significant increase,
p =0.0008, at p < 0.05) (media bystander effect) compared to their corresponding control. However,
a small increase in cells experiencing senescence was observed at 2 Gy (insignificant increase, p = 0.0558,
at p < 0.05) and 10 Gy (a significant increase, p = 0.0041, at p < 0.05) direct irradiation. Panel (B),
shows a significant increase in the level of senescent cells in the direct irradiated 10 Gy group and
media bystander 10 Gy group compared to their corresponding controls. Interestingly, cells cultured
with exosomes from irradiated cells at 10 Gy showed a reduction in the level of senescence.

As seen in our earlier results, 10 Gy direct irradiation induces substantial senescence (~46%) at
five passages (15 days) following exposure as shown in Figure 5, the highest level observed, as shown
in Figure 6. The 10 Gy media bystander cultures also had substantial senescence (~17%). Interestingly,
all four media bystander cultures displayed elevated senescence in comparison to the unirradiated
no-transfer control. Stress associated with media transfer, such as temperature and pH changes,
may activate a senescence pathway in some of the cells. Exosome transfer had a similar effect, although
in some cases less pronounced, senescence-inducing effect than in media transfer.
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By 10 passages (30 days) senescence levels had dropped under most experimental conditions as
shown in Figure 7. The drop in senescence levels in directly irradiated cultures might be explained by
the dilution of senescent cells with passaging followed by repopulation of cultures with the increase
of viable cells. Decreasing bystander senescence is possibly explained for BE persistence by that
fact that once naive/unirradiated cells are exposed to BE-inducing signals, and are recruited into
the BE-expressing population, they themselves begin to produce BE-inducing signals. Following
cell division in a culture expressing a BE, daughter cells are exposed to these BE-inducing signals
from parent cells. Thus, daughter cells are initiated early in their existence and begin producing the
bystander signal themselves. The bystander signal remains high as a culture grows and is passed on to
new cultures with each passage. Why then is the senescence BE not self-sustaining? We speculate that
the senescence BE differs in one important way: Only replicatively competent cells can become parents;
therefore, parental cells must be resistant to the senescence-inducing signal. Daughter cells may inherit
this trait. If this explanation is correct, both the number of senescent cells and the bystander-inducing
signal will be diluted at each passage.

After 15 passages (45 days), senescence levels in cultures initiated from cells directly exposed to
radiation, or from cells exposed to media or exosomes from irradiated cells, have dropped to at or near
background levels as shown in Figure 6. Thus the senescence media BE and exosome BE appear to be
transient phenomena at the cell culture level. However the conversion of a portion of clonogenically
competent cells to non-clonogenic senescent cells diminishes a culture’s replicative potential (passages
until the culture senesces) and therefore recovery of the culture is not complete.

Figure 6. FSF210316B cells, 15 days following X-ray irradiation with senescence-associated
beta-galactosidase staining (blue) in 0 Gy control (A), 10 Gy x-irradiated cells (B), 0.1 Gy (C), and 2 Gy (D).
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Figure 7. Percentage of senescent cells in control and irradiated FSF210316B cells at 10 passages,
(30 days, panel A) and 45 days (panel B) following irradiation, following irradiation. Panel (A), the data
show an increase in the level of senescent cells in the 2 Gy (a significant increase, p = 0.00001, at p < 0.05)
and 10 Gy (a significant increase, p = 0, at p < 0.05) exosome bystander groups, 2 Gy (insignificant,
p = 0.274) and 10 Gy (a significant increase, p = 0.0071, at p < 0.05) direct irradiated groups, and the
0.1 Gy (a significant increase, p = 0.016, at p < 0.05) media bystander group.

4. Discussion

Our results confirm the existence of a radiation-induced senescence bystander effect. Molecular
senescence-inducing signals were present in the media of irradiated cultures and also in exosomes
isolated from this media. Under our experimental conditions, the proportions of senescent and
non-senescent cells observed at each passage were influenced by multiple dose and time-dependent
kinetic processes acting simultaneously. Although experiments were not designed to elucidate these
dependencies, we surmise they were influenced by the following processes. First, entry into senescence,
or more precisely for our purposes the synthesis of (3-gal, does not occur immediately after irradiation.
Rather it is delayed to allow development of the senescent phenotype [8] and likely requires cell cycle
progression. Second, similarly there may be a lag between triggering of a senescence program by
exposure to BE-inducing signals and the synthesis of 3-gal in sufficient quantity to mark a cell as
senescent. Nelson et al., (2012) found that senescent human fibroblast cells can induce a bystander
effect, spreading senescence in intact neighboring fibroblasts in vitro [35]. Third, radiation-induced cell
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cycle effects, such as the G2 DNA damage block, result in both a depression of growth rate and entry
of cells into an observable senescent state. Moreover, factors in irradiated culture medium modulate
the G2 block [36]. Fourth, growth rate may be perturbed by radiation, by bystander signals, or by both.
Fifth, details of the passaging procedure, which includes dilution of both senescent and non-senescent
cells followed by division of only the non-senescent cells to repopulate culture flasks, also affect the
proportions of senescent and non-senescent cells observed at each passage. All of these processes,
and possibly others, make it difficult to construct simple mathematical expressions for the dose and
time dependencies of radiation-induced senescence.

Exosomes were found to convey a senescence-inducing signal, much as they do in the other
bystander effects of radiation [12]. However, the experiments do not rule out other means for conveying
the signal between cells such as passing through gap junctions, being transported within non-exosomal
EV, or by diffusion of unencapsulated molecules after release into the extracellular medium. Borghesan
et al. (2019) have found that the soluble fraction and small extracellular vesicles from senescent cells
are responsible for mediating paracrine senescence to nearby cells [30].

Induction of bystander senescence by low radiation doses has implications for radiation risk
assessment [37]. Accumulation of senescent cells in normal tissue is thought to be a key driver of
aging. Radiation-induced senescence, whether through direct irradiation or a bystander mechanism,
has the potential to increase the burden of senescent cells and accelerate the aging process. This type
of risk has yet to be evaluated. There may also be medical implications of bystander senescence for
patients undergoing radiotherapy. These include a beneficial contribution to the tumor sterilizing
effect of radiation, or to suppression of replication and division of damaged cells within the tumor or
in the tumor margin. However, there is a risk that organ performance may decrease as a result of an
increase in senescent cells. Further research will be required to elucidate the mechanisms of bystander
senescence as well as its impact on human health.
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