
RESEARCH ARTICLE

Predicting functional networks from region

connectivity profiles in task-based versus

resting-state fMRI data

Javier RaseroID
1,5, Hannelore AertsID

2, Marlis Ontivero Ortega2,3, Jesus M. Cortes1,4,

Sebastiano StramagliaID
5,6*, Daniele Marinazzo2

1 Biocruces Health Research Institute. Hospital Universitario de Cruces. E-48903, Barakaldo, Spain,

2 Faculty of Psychology and Educational Sciences, Department of Data Analysis, Ghent University, Henri

Dunantlaan 2, B-9000 Ghent, Belgium, 3 Neuroinformatics Department, Cuban Center for Neuroscience

(CNeuro), La Habana, Cuba, 4 Ikerbasque, The Basque Foundation for Science, E-48011, Bilbao, Spain,
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Abstract

Intrinsic Connectivity Networks, patterns of correlated activity emerging from “resting-state”

BOLD time series, are increasingly being associated with cognitive, clinical, and behavioral

aspects, and compared with patterns of activity elicited by specific tasks. We study the

reconfiguration of brain networks between task and resting-state conditions by a machine

learning approach, to highlight the Intrinsic Connectivity Networks (ICNs) which are more

affected by the change of network configurations in task vs. rest. To this end, we use a large

cohort of publicly available data in both resting and task-based fMRI paradigms. By applying

a battery of different supervised classifiers relying only on task-based measurements, we

show that the highest accuracy to predict ICNs is reached with a simple neural network of

one hidden layer. In addition, when testing the fitted model on resting state measurements,

such architecture yields a performance close to 90% for areas connected to the task per-

formed, which mainly involve the visual and sensorimotor cortex, whilst a relevant decrease

of the performance is observed in the other ICNs. On one hand, our results confirm the cor-

respondence of ICNs in both paradigms (task and resting) thus opening a window for future

clinical applications to subjects whose participation in a required task cannot be guaranteed.

On the other hand it is shown that brain areas not involved in the task display different con-

nectivity patterns in the two paradigms.

Introduction

Functional magnetic resonance imaging (fMRI) has become a powerful tool to study brain

dynamics with relatively fine spatial resolution. One popular paradigm, given the indirect

nature of the method, is the block design, alternating task blocks with blocks of passive rest.
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Task-associated brain activity can then be inferred by contrasting the level of BOLD signal

between task and resting blocks in each voxel.

In a seminal study by Biswal et al. [1], it has been shown that spontaneous low frequency

fluctuations (< 0.1 Hz) in BOLD signal, present even when subjects are not performing any

specific task, also give rise to correlated patterns. In particular, after identification of seed

regions in the sensorimotor cortex by a bilateral finger tapping task fMRI protocol, the authors

found synchronous fluctuations of BOLD time courses between these seed regions and homol-

ogous areas in the opposite hemisphere. This finding demonstrated the existence of a sensori-

motor network even at resting state. In addition to the sensorimotor network, several other

functional networks that are activated in task designed experiments have since been identified

during resting state, such as the dorsal and ventral attention networks, and the fronto-parietal

control network [2, 3]. Among these functional networks, the default mode network (DMN)

[4], including the posterior cingulate cortex, precuneus and medial prefrontal cortex is perhaps

the most ubiquitous and iconic. Regions belonging to this network exhibit a deactivation when

cognitive tasks are performed and an increase in internal connectivity during rest [5].

In order to identify these Intrinsic Connectivity Networks (ICNs) emerging from resting-

state measurements, the most common methods are seed based analysis and independent

component analysis. In seed-based analysis, voxels within a region of interest (“seed region”)

are selected and their average BOLD time course is correlated with that of all other voxels in

the brain. Voxels showing a correlation with the seed region above a certain threshold are then

considered to be functionally related to the region of interest. The main disadvantage of this

approach, however, is that it requires a priori selection of seed regions. Independent compo-

nent analysis (ICA), in contrast, is a model-free approach, requiring very few assumptions [6].

This method separates the BOLD time courses of all voxels into different spatial components

and ensures maximum statistical independence among them [7]. Since this is a pure data-

driven approach, in contrast to the “seed region” scenario, there is no clear link between the

components found and the specific brain functions. As a result, component labeling might not

be straightforward, especially at the individual subject level. Furthermore, the number of com-

ponents to be retained is an arbitrary parameter to be provided, that might be fitted by a sup-

plied criterion, such as the minimization of a cost-sensitive function that allows an optimal

match of the similarity reached by ICA predictions with respect to the observed dataset.

ICNs in resting state experimental designs can thus be regarded as identifying regions with

similar BOLD signal profiles. Therefore, different clustering methods can also be applied to

explore the structure of whole-brain BOLD time series, in an attempt to identify functional

networks on the basis of resting-state fMRI data (see [8–11] for the use of different unsuper-

vised clustering methods). In order to solve the component labeling problem, supervised

learning approaches can also be utilized, where the identification and prediction of these net-

works is accomplished after fitting the decision boundaries that separate each class by directly

supplying the instance labels. In previous studies, a multilayer perceptron was found to be the

optimal method to map the topography of ICNs in healthy young control subjects, after which

it was applied to a small sample of patients undergoing surgical treatment for intractable epi-

lepsy or tumor resection [12, 13]. The ability to reliably estimate functional networks from

resting-state fMRI data would have important clinical implications, for example in neurosur-

geons’ pre-surgical planning when patients are unable to cooperate with the task-based

paradigm [14]. Furthermore, predictions from models uniquely trained on resting state mea-

surements from healthy people have been demonstrated to robustly match activation profiles

of pre-surgical populations that usually suffer from a great deal of variability [15].

The aim of the present study is to extend previous works looking at reconfiguration of

brain networks between task and resting-state conditions, and to highlight the brain regions

Predicting functional networks from region connectivity profiles in task-based versus resting-state fMRI data

PLOS ONE | https://doi.org/10.1371/journal.pone.0207385 November 12, 2018 2 / 18

results and plots is available at https://github.com/

jrasero/Predicting-icns.

Funding: JR acknowledges financial support from

the Minister of Education, Language Policy and

Culture (Basque Government) under Doctoral

Research Staff Improvement Programme.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0207385
https://github.com/jrasero/Predicting-icns
https://github.com/jrasero/Predicting-icns


which are more affected by the change of network configurations in task vs. rest. By selecting

the most optimal model, we intend to quantify to which extent one can predict ICNs training

in task-based paradigm and predict the ICN patterns emerging purely from resting-state

fMRI data. The development of a general framework for ICN identification using supervised

machine learning methods could thus shed further light on the overlap between the patterns

emerging from both task and resting-state fMRI data.

Materials and methods

Subjects

Data used in the preparation of this work were obtained from the MGH-USC Human Connec-

tome Project (HCP) database (https://ida.loni.usc.edu/login.jsp) [16]. The HCP project (Prin-

cipal Investigators: Bruce Rosen, M.D., Ph.D., Martinos Center at Massachusetts General

Hospital; Arthur W. Toga, Ph.D., University of California, Los Angeles, Van J. Weeden, MD,

Martinos Center at Massachusetts General Hospital) is supported by the National Institute of

Dental and Craniofacial Research (NIDCR), the National Institute of Mental Health (NIMH)

and the National Institute of Neurological Disorders and Stroke (NINDS). Collectively, the

HCP is the result of efforts of co-investigators from the University of California, Los Angeles,

Martinos Center for Biomedical Imaging at Massachusetts General Hospital (MGH), Wash-

ington University, and the University of Minnesota.

We considered both resting-state and task-based fMRI data from 282 unrelated healthy

subjects provided by the s900 release in the Human Connectome Project. All images were

reconstructed using algorithm r227. This reconstruction algorithm directly performs the sepa-

ration of the multi-band multi-slice in k-space, in contrast to a previous reconstruction algo-

rithm (r177), where the separation occurred after transforming the fully acquired sampled

data to frequency space along the read-out direction.

Data acquisition and preprocessing

Data were acquired on a customized Siemens 3T “Connectome Skyra” scanner, housed at

Washington University in St. Louis, using a standard 32-channel Siemens receive head coil

and a “body” transmission coil designed by Siemens specifically (Echo Planar Imaging

sequence, Gradient-echo EPI, 1200 volumes, TR = 720 ms, echo time = 33.1 ms, flip

angle = 52˚, voxel size = 2 × 2 × 2mm3, field of view = 208 × 180mm2, 72 transversal slices).

Resting-state and task-based fMRI data were collected in two sessions. Each session con-

sisted of two resting-state acquisitions of approximately 15 minutes each, where subjects were

instructed to keep their eyes open, followed by task-based fMRI acquisitions of varying dura-

tions. For this study, we used the resting-state fMRI data acquired with Left-Right orientation

from the first session, and task-based fMRI data with the MOTOR paradigm. In this task, par-

ticipants were presented with visual cues that asked them to either tap their left or right finger,

squeeze their left or right toe, or move their tongue. Each task volume image was obtained

from 10 blocks of 12 seconds each, corresponding to 2 tongue movements, 4 hand movements

(2 right and 2 left), 4 foot movements (2 right and 2 left), and 3 fixation blocks of 15 seconds.

Each block was also preceded by a 3-second cue.

For this study, we used the preprocessed resting-state fMRI data as provided by HCP. In

particular, the ICA-FIX pipeline [17] was applied, which cleans the BOLD signal by removing

noise components given by the ICA algorithm and that has been proved to increase the quality

of the original data [18]. In the case of task data, such a denoised version was not yet available.

Therefore, we downloaded the minimally preprocessed data and ICA-FIX processed it through

the hcp_fix script that can be found in the HCP repository. This script performs a rigid-body
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head motion correction, high-pass temporal filtering, ICA decomposition of the data, FIX

identification of the ICA components corresponding to artifacts and elimination of these com-

ponents from the original data. Furthermore, we used FSL’s FNIRT command applywarp to

transform both paradigm data from MNI space back to subjects’ native space through the

appropriate matrix transformation that can be found for each subject in the HCP repository

and FSL’s FLIRT to resample the native structural image at 2mm.

Next, we registered our volume data into the Shen parcellation atlas in the subjects’ native

space, partitioning each subject’s brain in 268 functionally homogeneous and spatially coher-

ent brain regions [19]. Functional connectivity matrices for each subject were then obtained

by computing the Pearson correlation between the mean BOLD time course among all pairs of

the 268 brain regions. A row (column) i of a given matrix thus represents the correlation map

of the ith ROI with all other brain regions. Hence, these correlation maps describe the interac-

tions of a brain node, which define the intrinsic connectivity networks (ICNs) assignment.

Specifically, we considered seven cortical ICNs as proposed by Yeo and colleagues [20] (visual

(VIS), sensorimotor (SM), dorsal attention (DA), ventral attention (VA), limbic (L), fronto-

parietal (FP), and default mode network (DMN)), and two more sub-networks for the sake of

completeness, comprising subcortical (SUB) and cerebellar regions (CER). The number of

regions per network in this atlas is 30, 25, 18, 22, 22, 23, 42, 48 and 38 respectively. ICN assign-

ment to each of the 268 brain regions was performed by overlapping both Shen and Yeo atlas

with a minimal 80% threshold. As a consequence, if the number of voxels within a Shen parcel

exceeding this threshold belongs to one of Yeo’s ICNs, the parcel is assigned to that particular

ICN.

Finally, for both task and resting data separately, the 282 resulting individual 268 × 268

Pearson correlation matrices were concatenated together row-wise to obtain X task and X rest

super-matrices of 282 × 268 instances and 268 features each. Both these matrices are then later

used in the subsequent machine learning analysis. Moreover, since self correlations, i.e. values

of 1 in the Pearson connectivity matrices, would straightforwardly identify the ICN in a one-

hot encoding fashion, we set these features to zero so that we guarantee that interactions

between different regions are indeed the responsible for determining the ICN label.

Classification

Each correlation map was used to identity ICNs by means of four well known classification

algorithms in machine learning: Quadratic Discriminant Analysis (QDA), Support Vector

Machine (SVM) and Random Forest (RF) run under scikit-learn 0.18, an open source Python

library that implements a wide range of machine learning tools which include preprocessing,

cross-validation and classification algorithms [21]; and a multilayer Neural Network (NN)

using Keras in a Tensorflow backend, an API for deep learning written in Python [22].

QDA is a non-linear classifier that stands out for being computationally friendly, inherently

multiclass and very simple, with no hyperparameters to tune. In this classifier, the posterior

label conditional probability functions p(y|x) are obtained through a likelihood p(x|y) taken as

multivariate Gaussian distribution but, unlike in Linear Discriminant Analysis, covariances of

the classes are not assumed to be equal, which lead to quadratic decision boundaries.

SVM is a maximum-margin classifier, aiming to find a hyperplane that maximizes the dis-

tance to the nearest points on each side representing each class (the so-called support vectors).

It is specially suited for high dimensional problems, since it can linearly separate any dataset

by going to a high dimensional space with the aid of a kernel function.

RF, on the other hand, is an ensemble of decision trees, which split the feature space accord-

ing to the maximization of the Gini criterion, where each decision tree is trained on a random
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subset of examples and each splitting considers only a random subset of features, so that

uncorrelated trees are obtained. By doing so, and averaging over all trees, one can reduce the

variance and therefore avoid overfitting.

Lastly, multilayer neural networks are able to fit a nonlinear function by passing the exam-

ples through its architecture while minimizing a loss function. The basic setup is a first layer

with units equal to the number of features, a (few) hidden layer(s) and a final output layer that

encodes the label information. The training is performed by updating the links (weights)

among layers by back propagation in order to reduce the output error. We have explored sev-

eral network architectures varying both depth and number of units per layer. Each layer has a

ReLu activation except for the last one defining the example class which is a Softmax function.

We used a Stochastic gradient descent optimizer with a learning rate of 0.01, a decay of 10−6

and a Nesterov momentum of 0.9. Likewise, in order to prevent overfitting we adopted an

early stopping criterion on a 10% of the training dataset and a dropout rate of 0.2, which ran-

domly sets this fraction rate of input units to 0 at each update during training time.

While MLP and RF can inherently map correlation maps into a 9-dimensional space, such

an implementation is not as straightforward in SVM which is more suitable for binary classifi-

cation. In order to address this issue, a common approach is to use a one-versus-all strategy,

where one builds as many classifiers as class labels and trains each one taking one label as posi-

tive versus the rest being negative cases. Finally, classification of a test example is made by

reporting the highest confidence score predicted after applying all classifiers. We also applied

such a strategy to RF.

Out-of-sample performance has been estimated on resting fMRI data, acting thus as our

unseen test set, with the aim of addressing the question of how accurate these predictions are

when they are obtained from a classifier fitted on task fMRI, acting here as the training set.

Before that, we compared and selected the best classifier, for which we used exclusively this

training set to compute the global performance of different classifiers in a 5 times repeated

10-fold cross-validation (Setting k = 10 is an optimal choice in terms of the trade-off between

variance and bias of the classifier [23]). Each holdout piece of data of each fold within this

cross-validation on task fMRI acts therefore as a validation set.

Model selection has been carried out in two-steps. We first calculated within the mentioned

cross-validation strategy the performance for each algorithm varying their hyperparameters

defined on a grid. For the case of neural networks, we trained 20 different architectures corre-

sponding to different number of hidden units and layers. For the case of SVM, we considered

a Linear Kernel and Radial Basis Kernel approximation, taking for both seven regularization

terms C within the range [10−5 − 102] and three different values of γ between 10−2 and 10 for

the non-linear kernel case. Both Random Forest cases were searched across the same hyper-

parameters space, varying the size of trees ensemble and tuning the minimal samples required

to split an internal node, which allowed us to control the growth of the trees. QDA does not

have any parameter to tune. More details about the hyperparameters can be found in the Sup-

porting Information section.

Second, we compared the algorithms with the hyperparameters giving the best perfor-

mance, so that it allows us to finally select the classifier with the highest accuracy in its most

optimal configuration. We also assessed the significance of the averaged accuracy across the

selected algorithms by means of a Friedman test, which is a non-parametric ANOVA version

for repeated measures. If this was statistically significant, post-hoc analysis was performed,

where the best algorithm was compared to the rest using a Wilcoxon signed-rank test and then

Bonferroni corrected for multiple comparisons.

Given the nature of our data, where we have 268 observations for each subject, one could

argue that these are correlated and therefore training and test datasets would not be totally
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independent if observations from the same subject fall in both subsamples. Such an effect is

known as double-dipping and could lead to inflated association scores [24]. We thus per-

formed the 10-fold data partitions based on subjects so as to guarantee that observations from

the same subjects are exclusively either in the training dataset or the test dataset.

Once the best algorithm has been selected using exclusively task data, we sought to general-

ize its results when tested on a different fMRI paradigm. As a consequence, we followed the

same cross-validation scheme as explained before such that for each iteration we used 90% of

the subjects’ task fMRI data as the training set to make predictions relying on the 10% of the

remaining subjects, but now taking their resting fMRI data as test set. As such, one could infer

whether intrinsic connectivity networks from a model fitted exclusively on task data could be

recovered even when the subject is not able to perform the task.

Results are reported in several ways: (1) global accuracy (i.e. proportion of correctly classi-

fied instances); (2) a confusion matrix, where each row represents the instances in a predicted

class and each column the examples in an actual class; (3) and Receiver operating characteristic

(ROC) and Precision-Recall (PR) curves which exhibit model behaviour affected by different

thresholds on the decision function predicted for each class. ROC curves represent the true

positive rate (TPR) versus false positive rate (FPR), where in binary classification TPR = TP/P

= #(pred==pos—pos)/(# pos) and FPR = FP/N= #(pred==pos—neg)/ (# neg), where # indi-

cates number of examples. Precision is defined as the ratio of positive predictions that are

indeed positive and Recall as the proportion of positive instances that are classified so.

Workflow

The different steps taken for the obtainment and use of the matrix of features within the

machine learning algorithms analysis is shown in Fig 1, which can be summarised as follows:

1. Formation of the matrix of feature vectors for both task and resting fMRI data.

2. 5 times repeated 10-fold cross-validation on task data to select the best predictive model.

The data partition is based on subjects so that observations from the same subject do not

fall in both training and test data.

3. Results generalisation following the same cross-validation technique explained before but

now with the test samples containing only resting data whereas the model is still trained on

the task data.

Computing resources

All the calculations have been performed using the High-performance Computing Cluster of

BioCruces Bizkaia. For computing, such a platform consists of 4 Servers Dell PowerEdge

R430, each 96 GB RAM DDR4, 2 CPU Intel E5-2660 v3 (10 cores c/u), 2 HDD 1TB hot swap

in RAID1, OS CentOS 7.1 and workload manager SLURM; 120 TB are reserved for storage.

Results

Performance on task fMRI

Global averaged accuracy after cross-validating the different methods for the most optimal

hyperparameter scenario can be seen in Table 1. The performance for the rest of hyperpara-

meters tried across the different folds for the different algorithms are depicted in S1, S2, S3 and

S4 Figs, which exhibit the stability of the results w.r.t different shufflings of the data.
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First, statistically significant differences across the six classifiers in their most optimal con-

figuration were found (p = 7.25 � 10−52). Second, the neural network classifier by far outper-

formed both Support Vector Machine (p = 3.77 � 10−9 for both kernels) and Random Forest

algorithms (p = 3.77 � 10−9 in the multiclass case and p = 3.76 � 10−9 in the OVR scheme), popu-

lar choices in literature when dealing with machine learning problems. In addition, neural net-

works also improved the decent results of about 77% provided by Quadratic Discriminant

Analysis classifier (p = 4.02 � 10−9), as a consequence of the added complexity. Moreover,

within the set of neural network models, there seems to be a tendency of better performance as

the neural network becomes deeper, as well as with increasing number of hidden units, which

Fig 1. Workflow. The connectivity matrices for each subject were manipulated to obtain a matrix of features for both task and resting data

separately and both these matrices were used subsequently to fit different machine learning algorithm and make predictions.

https://doi.org/10.1371/journal.pone.0207385.g001

Table 1. Classification accuracy scores. Basic statistics of the algorithms’ performance across the 5 × 10 folds for the

most optimal hyperparameter configuration in parenthesis.

Classifier Mean (%) Var (%) Min (%) Max (%)

NN (512, 256, 128, 64) 80.90 0.01 78.24 83.10

RF MULTI (750 trees, 10 min_samples) 67.21 0.01 65.00 69.32

RF OVR (750 trees, 2 min_samples) 71.62 0.01 69.04 73.63

SVM linear (C = 0.01) 57.74 0.01 55.62 59.80

SVM RBF (C = 1, γ = 0.01) 54.23 0.01 51.53 56.58

QDA 76.89 0.02 74.63 79.37

https://doi.org/10.1371/journal.pone.0207385.t001
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exhibits the demand for a higher number of parameters to define the decision boundaries sep-

arating each class. Notably, a decreasing complexity in architecture seems to capture better the

intrinsic structure of the data, with a neural network with four hidden layers of 512, 256, 128

and 64 units, respectively, providing the best performance with a global accuracy of * 81%. In

the following, we will concentrate on the results given by this model.

Since we are dealing with a multi-class problem, it is important to calculate the classification

performance of each ICN. This can been accomplished by means of the confusion matrix, that

is depicted in Fig 2 for our best model. As one can see, all ICNs exhibit a good performance,

specially for those networks whose activation is usually demanded during our task perfor-

mance such as motor, visual and dorsal attention areas, achieving all rates above 90%. The lim-

bic system however stands out of this behaviour, since its accuracy drops to approximately

66%, with a remarkable 18% of examples misclassified as subcortical regions.

Fig 2. Confusion matrix for the best model in task fMRI. Confusion matrix using exclusively task fMRI data for the

selection of the best classification model, which in this case corresponds to a NN with 4 hidden layer with 512, 256, 128

and 64 units.

https://doi.org/10.1371/journal.pone.0207385.g002
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This difference in performance by each ICN might be addressed by looking at the similarity

among the ICNs in more detail. In Fig 3, we show the Pearson cross-correlation matrix

between pattern connectivities of the 268 nodes from the subjects-averaged connectivity

matrix on the left, whereas on the right we depict the dispersion of the off-diagonal terms

within each class (the bold boxes on the correlation matrix) in order to account for the intra-

group similarity specifically. As it can be noticed, examples from the limbic and subcortical

networks are more distant from each other, leading to an increase of similarity variance, which

explains why the classifier struggles to build a decision function that distinguishes them effi-

ciently. Likewise, the between-networks terms in the correlation matrix (those out of the black

boxes) reflect the vicinity of subcortical regions to other networks and it also shows that, while

having higher intra-group similarity, examples belonging to the cerebellar network are more

misclassified than those of DMN ad FP, as a consequence of a smaller inter-group distance

with other networks, especially with subcortical regions.

Generalisation to resting-state fMRI data

Next, we investigated how well the best neural network model generalised the results found so

far when testing is performed on resting-state fMRI data from a model which was only trained

using task-based data. In other words, we examined whether intrinsic connectivity networks

can be successfully predicted in experiments where no active collaboration of the subjects is

required.

Fig 4 shows the mean confusion matrix in a 5 times repeated 10-fold cross-validation based

on subjects where the training has been performed after using the task-based fMRI dataset and

testing on resting-state fMRI data. Results demonstrate a similar performance pattern com-

pared to that of the previous section, with high prediction rates in both VIS and SM network,

of approximately 92% and 91% of sensitivity (also known as recall) respectively. Similarly,

quick visual identification within the studied task to conditionally perform a specific move-

ment encodes a bottom-up process which demands activation of ventral attention areas. Such

areas are also well predicted by our fitted model with a 84% sensitivity. In contrast, dorsal

attention areas attached to top-down stimuli drastically decrease their performance to 79%,

Fig 3. Pearson similarity between brain regions. Representation of correlations amongst the 268 pattern connectivities from the subjects-averaged

connectivity matrix. On the left, the full correlation matrix, ordered according to their group label, whose members’ interactions are outlined by a bold

rectangle. On the right, the intra-group correlation distribution corresponding to the upper off-diagonal entries in each bold rectangle.

https://doi.org/10.1371/journal.pone.0207385.g003
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with a moderate proportion being misclassified into the visual network, possibly reflecting

some characteristic of the task paradigm in study. On the other hand, DMN regions whose

activity negatively correlates with that of the other networks during rest also exhibit a decent

performance of about 79%, which suggests that these areas maintain an intrinsic correlation

that allows them to be optimally fitted by a model even during task. Finally, limbic and cerebel-

lum systems involved in learning, memory and behaviour suffer from variability and hence are

poorly replicated by our model.

The results obtained so far predict one and only one class for each instance, corresponding

to the class assigned with the highest probability. Instead, we can directly look into this class

probability prediction for each example and see how the model performs when changing the

threshold of class assignment. We show this in Figs 5 and 6 through the ROC curves and the

Precision-Recall curves. We can see that both representations describe the performance of the

Fig 4. Confusion matrix using resting data as test. Confusion matrix for the best classification model, which

corresponded to a neural network with four hidden layer of 512, 256, 128 and 64 units, but now using task-based fMRI

data as training set and resting-state fMRI data as testing set.

https://doi.org/10.1371/journal.pone.0207385.g004
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Fig 5. ROC curves for each class separately. The areas under these curves can be found in the legend located on the

right side. Grey crosses display the model with the specific threshold yielding the results shown before. Those curves

above the red dashed line represent exhibit a discriminating power.

https://doi.org/10.1371/journal.pone.0207385.g005

Fig 6. PR curves for each class separately. The areas under these curves can be found in the legend located on the right

side. Grey crosses display the model with the specific threshold yielding the results shown before. Those curves above

the red dashed line exhibit discriminating power.

https://doi.org/10.1371/journal.pone.0207385.g006
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model when generalised to different settings, with most of the networks occupying large areas

in both spaces and with a clear prominence from areas belonging to the SM and VIS networks.

In addition, had we solely relied on results provided by the confusion matrix of Fig 4, which

represents a particular point of these curves, we would not have appreciated for example that

the poorest performance of the cerebellar network depended on a subpotimal threshold and

could be improved beyond the performance of the limbic and subcortical system.

Finally, it is reasonable to assume that performance from correlation patterns of different

regions depend on the location of these latter in the brain. In order to address this issue, we

show in Fig 7 the mean classification rate of each region across the different folds of the cross-

Fig 7. Classification accuracy of each node. The best model is used to average each node’s accuracy performance across all subjects contained in the

resting fMRI test set in each fold of the cross-validation scheme.

https://doi.org/10.1371/journal.pone.0207385.g007
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validation procedure. This figure shows that, for instance, regions in the cerebellum display

rather polarised results. Areas strictly in the right hemisphere within the posterior of the crus

cerebellum I/II and lobes VI, VIIb and VIII have a successful accuracy greater than 80%,

whereas anterior areas, lobes in the left hemisphere along with the vermis exhibit poorer per-

formance than chance, being mainly mislabelled as subcortical regions. The cerebellum takes

part in motor and attention tasks, where there is for example a clear asymmetry in the foot,

hand, and tongue movement activation maps for intrinsic functional connectivity (left hemi-

sphere) and task functional connectivity (right hemisphere) [25]. On the other hand, being

mainly involved in emotional and long-term cognitive functions, the limbic network is a priori
the most detached system in relation with the task under exam here. Nonetheless, limbic

regions located in the inferior and middle temporal gyrus and pole have decent classifying

power, specially in the left hemisphere, whereas accuracy in orbital parts of the left frontal

gyrus and rectus drastically drops below 50%. In addition, default mode network and fronto-

parietal regions, which both yield a decent performance, exhibit interesting features. In gen-

eral, they both have regions with prediction accuracies well above 90%, with higher incidence

on the middle and posterior cingulum in both hemispheres and the left precentral and middle

frontal gyrus, and poorly classifying parts depicted in yellow that correspond to the frontal

gyrus orbital part, the olfactory cortex, rectus, hippocampus, calcarine and precuneus in the

left hemisphere for default mode networks nodes; and the anterior and middle cingulum for

both networks.

Discussion

We have fitted different models on the whole-brain functional connectivity patterns obtained

from the Pearson correlation matrices from a large population of healthy subjects, and quanti-

fied how well they could predict Intrinsic Connectivity Networks. We obtained the highest

accuracy with a neural network of four hidden layers and 512, 256, 128 and 64 intermediate

units each. Given the models trained, this result suggests that the complexity of the target func-

tion plays an important role with a demand of going deep in architecture, but also that map-

ping to decreasing numbers of intermediate units seems to better capture the inherent

properties of the data, in accordance with the behavior of other well known machine learning

algorithms such as autoencoders and convolutional neural networks. This behaviour could be

even more evident if we considered a representation at the voxel level due to the increase of

dimensionality, and therefore more complex models would likely be required. Moreover, well-

established algorithms such as Random Forest (RF) and Support Vector Machines (SVM)

were not capable of reaching a performance similar to the one obtained by neural networks.

Two hypotheses might be formulated to explain this phenomenon. First, RF splits the space

taking a subset of features, so this model fails to capture the optimal splitting out of the correla-

tion maps since one would expect the whole pattern to be important. Second, both SVM and

RF in general find it more challenging to build the decision boundary in high dimensional

multi-class settings. On the other hand, the benefits of neural networks, that are well known

for their capability to model accurately any arbitrary function [26], allow to improve the decent

performance provided by the other attempted classifier QDA, suggesting that observations can

be to some extent approximated by a multivariate Gaussian function.

Resting state can be regarded as an intrinsic alternate resonance between different brain

areas connected at large scale, in contrast to the more isolated activation of the corresponding

brain areas during task. Even though this difference in paradigm, the underlying interactions

at the neural level are the same, so one would expect both to match to some degree. We have

adopted a machine learning approach to prove this. Following the findings of a previous study
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[27], it is remarkable how accurately intrinsic connectivity networks can be identified using

only task data, which reflects the high degree of correspondence between both modalities.

Not only could visual and sensorimotor regions be clearly represented by both paradigms, as

expected, but also other functional networks turned out to have correlation maps which lie

within well defined decision boundaries. For example, time series of default mode network

regions, though having lower participation during cognitive tasks, when cross-correlated with

the average time series of all other brain regions, demonstrated that their integration and par-

ticipation make them differentiable (in the end, Pearson correlation is unaltered by a change

of scale). Owing to their well known strong internal connectivity, one expects characteristics

of such networks to be susceptible to hold across different paradigms. In contrast, the limbic

system showed the worst performance, with limbic regions often miscategorised as belonging

to the subcortical network, reflecting the lack of organization due to its weak internal connec-

tivity. This was caused by some areas of both networks showing a similar pattern of activity,

forcing the classifier to lean towards the subcortical network, the majority class over the limbic

group.

The connection of task-evoked experiments with resting-state becomes even clearer if one

looks at the results presented in Figs 4, 5 and 6, where VIS and SM networks in particular

(which are mainly involved in the MOTOR task), are recovered exclusively from resting data

with great accuracy. This apparent correspondence between both modalities is being thor-

oughly investigated. In a seminal work, Smith et al. [27] demonstrated the existence of a high

similarity between the ICA-analysis results extracted independently from a resting-state fMRI

dataset consisting of 36 healthy subjects and activation maps from BrainMap database of func-

tional imaging studies across nearly 30,000 human subjects. This suggests that the brain at rest

is continuously active so as to be a composition of all the inherent possible tasks, such that a

model trained based on a specific task will emerge naturally as one of its components when

tested on resting state. On the other hand, in [28] an exhaustive study of this was carried out

showing that the same networks that mostly discriminate individuals were also most predictive

of cognitive behaviour. In [29] prediction of activation maps by resting-state fMRI were over-

lapped with maps used to fit a wide range of task-based models and demonstrated that individ-

ual differences in brain response are inherently linked to the brain itself rather than to a

specific manifestation given a certain task. Nonetheless, our work rather embraces the spirit of

[13] in terms of the methodology used. We have aimed at successfully building the decision

surfaces that separate the different ICNs by performing an exhaustive machine learning algo-

rithm search in a large cohort of subjects. It is also worthwhile to stress that individual task-

rest correspondence and between-subject reproducibility of patterns are different and possibly

orthogonal problems, and that the cognitive relevance of these networks is mainly expressed

on the subject-specific level [30].

Regarding the results obtained, one might be tempted to take the outcome of the ROC

curves in Fig 5 as outstanding, where all the classes exhibit a ROC area greater than 0.9. How-

ever, as noted in [31], plotting ROC curves separately for each label might not be appropriate

in multi-class settings where negative examples far exceed the number of positive instances. In

this case FP� TN, so changes in the number of false positives hardly affect the False Positive

Rate, which continues to hold small and therefore the area obtained is usually large. As a con-

sequence, it is better to use Precision-Recall curves, which concentrate only on the positive

class and therefore do not suffer from these issues. As it can be seen in Fig 6, the areas found

go more in concordance with the findings discussed previously, where the VIS and SM net-

works seem to be identified most accurately. In addition, we can see two interesting features

from carefully inspecting these curves. Firstly, having both VIS and SM systems the largest

areas, their observed thresholds (depicted in the figures as grey crosses) lie on a slightly non-
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optimal point on their respective curve. If we look at their performance in the diagonal of the

confusion matrix of Fig 4, which is nothing less than the Recall measure, we therefore notice

that this is accompanied by a loss of precision. Secondly, even though CER network seemed to

behave extremely poor when testing the model on resting fMRI, we can see that this is an effect

of the threshold used. In fact, when we vary this quantity, we can see that this group performs

much better than the limbic and subcortical systems. Finally, it is also remarkable how well

areas in DMN can be predicted from a model that was trained exclusively on task data, during

which its activation would not be expected. One possible explanation might be that the func-

tional connectivity within this network has a precise mapping with its structural connectivity

[32] and therefore, the integration in DMN might preserve across different tasks.

Limitations

The interpretation of the results of the present study should be seen in the light of the following

limitations. These are mainly related to the construction of the matrix of features and the defi-

nition of the labels to be classified.

First, the use of the correlations pattern of a given node to the whole brain as feature that

determines the ICN of that node should be treated carefully. In particular, setting all the terms

but the self-correlation in the feature vector to zero, the resulting vector would directly provide

the ICN label of the node with a 100% of accuracy since each node vector would be unique and

orthogonal to the rest and therefore classification would not be needed whatsoever. However,

our hypothesis is that ICN assignment should be predicted by the whole pattern connectivity

of the node. As a consequence, and given that we are limited by the fixed dimensions of the fea-

ture vectors (these can not change across subjects), we set self-correlations values to zero so as

to diminish their effect and allow the rest terms to truly determine the label of each example.

Second, the labels used to fit the model are not fully and uniquely defined since they are

threshold dependent when matching Shen with Yeo’s atlas. As a result, this spatial variability

might somewhat blur the connectivity maps and therefore reduce the performance.

Third, for this study we have not considered performing global signal regression (GSR)

when preprocessing the data. Such a step is still controversial among the neuroimaging com-

munity given the increase of negative correlations and exhibits the fact that there is not a single

“right” way to process resting state data [33].

Finally, it is worthwhile mentioning a subtle technical limitation regarding hypothesis test-

ing adopted when comparing between the different algorithms. It is well known that the usual

10-fold cross-validation strategy violates the independence assumption of a paired t-test and as

a consequence, some authors have suggested adopting a 5x2 CV to alleviate this problem [34].

However, such a pessimistic biased strategy lacks power and replicability, which has led other

authors to propose to use multiple runs of 10-fold cross-validation where their results amongst

pairs of classifiers are testing using a paired t-test with fewer degrees of freedom, but this appli-

cation is limited to binary data [35]. In our case, non-parametric testing along with multiple

runs of 10-fold cross-validation tries to approximate such a situation.

Conclusion

Successfully delineating intrinsic connectivity networks of the brain is of key importance to

fully understand its behaviour and the patterns emerging during evoked activity (and vice-

versa). Multivariate methods in machine learning turn out to be promising techniques in suc-

cessfully identifying ICN networks from both task and resting-state fMRI data. As usual, the

selection of the optimal algorithm is a crucial step. Obviously the optimal algorithm depends

on the complexity of the problem. In our case, we have seen that a simple neural network with
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just one layer yields the best results. Whether a higher resolution or different parcellation

might require to go deeper calls for future investigation.

As mentioned, the accurate prediction of the different baseline functions of the brain even

when the model has been fitted using a different protocol (in our case a visual-tapping task)

might be relevant for important future applications in clinical neuroscience. Localization of

functions that are questionable due to the incapability of subjects to perform specific tasks

could easily arise in this proposed scenario and could therefore help clinicians isolate the areas

demanding a correct treatment for subject recovery. Moreover, future studies using the strat-

egy followed in this work can address how brain regions in patients who have undergone neu-

rosurgery change their connectivity pattern and therefore specialise in performing new tasks.
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