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Abstract: Nanopore sensors provide a unique platform to detect individual nucleic acids, proteins, and
other biomolecules without the need for fluorescent labeling or chemical modifications. Solid-state
nanopores offer the potential to integrate nanopore sensing with other technologies such as field-effect
transistors (FETs), optics, plasmonics, and microfluidics, thereby attracting attention to the development
of commercial instruments for diagnostics and healthcare applications. Stable nanopores with ideal
dimensions are particularly critical for nanopore sensors to be integrated into other sensing devices
and provide a high signal-to-noise ratio. Nanopore fabrication, although having benefited largely
from the development of sophisticated nanofabrication techniques, remains a challenge in terms of
cost, time consumption and accessibility. One of the latest developed methods—controlled breakdown
(CBD)—has made the nanopore technique broadly accessible, boosting the use of nanopore sensing in
both fundamental research and biomedical applications. Many works have been developed to improve
the efficiency and robustness of pore formation by CBD. However, nanopores formed by traditional
CBD are randomly positioned in the membrane. To expand nanopore sensing to a wider biomedical
application, controlling the localization of nanopores formed by CBD is essential. This article reviews
the recent strategies to control the location of nanopores formed by CBD. We discuss the fundamental
mechanism and the efforts of different approaches to confine the region of nanopore formation.

Keywords: nanopore sensing; nanofabrication; controlled breakdown; single-molecule sensing;
plasmonic nanopores

1. Introduction

Nanopore sensing has been attracting attention rapidly over the past decades due
to its appealing applications in label-free, real-time biosensing of single molecules in
aqueous solutions [1–6]. A nanopore sensor detects the ionic current through an electrolyte-
filled nanochannel connecting two reservoirs. Taking a synthetic nanopore as an example
(Figure 1a), when an electrical potential is applied between these two reservoirs, the ions
flow through the nanochannel and induce a measurable current that is directly dependent
on the size of the nanochannel. A biomolecule diffusing through this nanochannel partially
blocks the ionic flow, resulting in a detectable reduction in the ionic current. The red trace on
the bottom of Figure 1a demonstrates an example signal of proteins translocating through
a synthetic nanopore. Each blockade-current pulse corresponds to the translocation of the
analyte through the nanopore. Figure 1b illustrates the current trace of a single protein
transiting through the nanopore. The amplitude of the blockade current, ∆I, connects to
the volume of the electrolyte solution displaced by the particle, thereby revealing the size
of the target analyte. The duration of the current drop, or dwell time (td), corresponds to
the diffusion coefficient of the particle, providing information about the charge and size
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of the particle. With rigorous analysis, one can obtain information related to the particle
shape, volume, charge, dipole moment, and diffusion coefficient [7–20]. Many reviews
have discussed the applications and the full potential of nanopore techniques in DNA
sequencing, protein fingerprinting, and virus detection [1–5,21–29].
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Figure 1. Single molecule detection by a synthetic nanopore. (a) Illustration of the concept of
nanopore sensing. An electrical potential applied across a nanoscale pore creates a constant ionic
current, and proteins passing through the sensing volume (indicated by the black arrow) produce
resistive pulses. The red trace represents a typical measured current trace over time. Each spike
represents a translocation of a protein through a nanopore. (b). Expanded trace (marked by * in
panel (a)) representing a single protein translocating though a nanopore. The amplitude of current
change, ∆I, is proportional to particle volume and the dwell time, td, correlates to the particle charge
and diffusion coefficient.

There are two major categories of nanopores—biological nanopores and synthetic,
solid-state nanopores. Biological nanopores consist of single transmembrane proteins
inserted in lipid bilayers or polymer membranes. Commonly used biological pores, such as
α-hemolysin (αHL) [30–35], mycobacterium smegmatis porin A (MspA) [36–38], aeromonas
hydrophila Aerolysin (AeL) [39,40], and bacteriophage phi29 (Phi29) [41,42], have relatively
small constrictions with diameters smaller than 4 nm. The small constrictions of biological
nanopores make them a perfect candidate for detecting small analytes such as metal
ions, single polymer chains [35], DNA molecules [31–33,36,41,42], peptides [38,43,44], and
unfolded proteins [30]. Moreover, these biological nanopores have a well-defined pore
shape that is highly reproducible, and the proteins used to create biological nanopores can
be harvested using synthetic biology techniques [2,3,6]. Since 2012, biological nanopores
have been developed into portable and commercially available devices for DNA and RNA
sequencing by Oxford Nanopore Technologies [45], and their potential has been further
explored in the field of clinical and environmental research [46,47].

Despite these attractive advantages, biological nanopores suffer from several draw-
backs [3,6]. Firstly, biological nanopores need to be inserted into suspended membranes
formed by lipid bilayers or polymers. These membranes are usually mechanically frag-
ile, allowing experiments to be performed only for a limited time. Moreover, biological
nanopores are not suitable to be used in harsh environments such as extreme pHs, temper-
atures, or high electric fields. Lastly, the small diameter and fixed pore size of biological
nanopores exclude their applications in analyzing large biomolecules such as proteins.

On the other hand, the diameter and geometry of synthetic nanopores can be tuned
depending on the user’s requirement. These nanopores can be fabricated in a wide range of
materials including silicon nitride [48–56], silicon dioxide [57], HfO2 [58], and polymers [59],
as well as 2D materials including graphene [60,61], MoS2 [62,63], and BN [64]. The inherent
advantages of solid-state nanopores make them suitable for integrating into nanodevices



Nanomaterials 2022, 12, 2384 3 of 22

and offer flexibility in experimental conditions, even in extreme physical and chemical
environments. In addition to the flexibility in material and size, a low-noise nanopore setup
is crucial to detect the current drops (typically hundreds of picoamperes to nanoamperes)
from each translocation event [65–70]. Such low noise is especially important at high
bandwidth (>10 kHz), since most proteins and DNA bases translocate through a nanopore
within several microseconds [6,11,67,71,72]. An ideal nanopore should be fabricated in a
low-noise, low-capacitance substrate with adjustable size to match the analyte in order to
optimize the signal-to-noise ratio.

Recent developments in nanofabrication allow a wide variety of approaches to fab-
ricate such pores, including but not limited to transmission electron microscopy (TEM)
drilling [48–50], focused Helium/Gallium ion beam drilling [51–54], fused silica capillary
shrinking [73,74], gold nanoparticle heating [75,76], ion-beam sculpting [55,56], reactive-ion
etching [77,78], and ion track etching [59]. Several reviews have discussed the fabrication
of nanopores in depth [27,79,80]. Despite the diverse approaches in fabricating nanopores,
obtaining ideal synthetic nanopores remains one of the most time consuming and expensive
processes in the field of nanopore sensing. All the abovementioned approaches require
special expertise, cleanroom facilities, and expensive equipment to fabricate nanopores and
most of them cannot control the pore size precisely.

Due to the barriers to fabricating nanopores mentioned above, the controlled break-
down (CBD) method of nanopore fabrication immediately attracted wide attention since it
was reported in 2014 by the Tabard-Cossa group [81]. CBD uses the configuration of the
nanopore setup to apply a high voltage/electric field across a thin insulating membrane
that, at first, contains no pores. The electrical stress introduces defects randomly in the
insulating membrane and eventually, the defects connect to form a physical path at the
nanometer scale [82]. By monitoring the current across the membrane as these defects
accumulate, CBD can detect this pore-formation event. This breakdown principle allows
CBD to generate nanopores precisely using a DC voltage generator and current feedback,
which significantly reduces the price of nanopore fabrication. Moreover, the nanopores are
fabricated in situ, so the resulting nanopores are immediately ready to use for biosensing.
In 2021, a commercially available nanopore fabrication system, named Spark-E2, was cre-
ated to generate nanopores automatically with sub-nm precision of the target size. This
device, from Northern Nanopore Instruments, can generate pores with diameters of 1 nm
to 20 nm within 1 h, with a success rate larger than 85% [83].

Despite of all these advantages, CBD nanopore fabrication comes with some disad-
vantages in comparison to other fabrication techniques. Firstly, multiple nanopores can
be formed by CBD. During the past five years, several works have attempted to reduce
the formation of multiple nanopores by different approaches [10,83–92]. The recent review
by Fried et al. has summarized the progress in this area thoroughly [93]. In addition
to the randomness in the nanopore numbers, CBD offers no control over the nanopore
location in the membrane [10,87,88,90,94,95]. The random location of nanopores in the
membrane, however, does not matter for traditional nanopore sensing due to its sensing
principle—resistive pulse sensing.

In recent years, combining nanopore sensing with fluorescence and plasmonic op-
tical measurements has drawn more and more interest, because optical signals provide
additional depth of information without interfering with the electrical signal [22,96–108].
In addition, the research field of plasmonic optical sensing, or fluorescence-based single-
molecule sensing, could benefit from the electrical signal of nanopore sensing. Nanopores
can assist the capture rate of biomolecules for nanophotonic sensing, while at the same
time, the electrical signal from nanopore sensing can reinforce the single-molecule signal
from optical measurements [95,100,109–112]. CBD, however, faces challenges in forming
nanopores in a precise position for optical sensing. In this review, we discuss the state-
of-the-art of how CBD is used to fabricate nanopores for various sensing applications.
The review focuses on recent strategies to improve the local confinement of nanopores
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formed by controlled breakdown. We review these approaches with an insight into their
advantages, challenges, and applications.

2. CBD Nanopore Fabrication
2.1. Principle of Forming Nanopores by Breakdown

When a dielectric material is under high electric field stress for a certain duration,
the material loses its insulating properties locally. This process, or the failure of dielectric
materials under electric field stress, is known as dielectric breakdown [113,114]. Most
research has focused on understanding the mechanism and the dynamics of breakdown to
improve the reliability and the performance of electronic devices. Two types of breakdowns
can occur in thin membranes: (i) high external voltage breakdowns and (ii) low external
voltage breakdowns. The high voltage breakdowns are an intrinsic process related to the
defects building up to a critical level under external stress, which is a stochastic process.
On the other hand, low external voltage/electric field breakdown is generally attributed to
extrinsic defects, such as extended defects in the substrate that produce localized property
changes in the material. These localized changes could be due to dielectric thinning,
temperature differences, oxide defects, or other properties that locally increase conductivity.

Similar to the breakdown of thin films in a dry atmosphere, breakdown can occur in a
liquid environment when a thin membrane is under external electric field stress. Instead
of aiming to avoid breakdown, Tabard-Cossa’s group took advantage of this stochastic
process for nanopore fabrication, which is now widely known as controlled breakdown
(CBD) [81]. Figure 2a illustrates the steps of the CBD process in a SiNx membrane. An
external electric field across the membrane, typically 0.6–1 V/nm, induces defects inside the
membrane due to electric field stress. These defects increase the leakage current tunnelling
through the dielectric membrane and accelerate the accumulation of defects (also known
as charge traps). When the density of defects is high enough to form a connecting path
in the insulating membrane, the current tunnelling through this path locally removes
the membrane material in a short time, creating an open channel inside the membrane.
Nanopores with an initial size distribution from 0.5 to 3 nm can be formed if the external
electric field is removed immediately after the sudden increase of current. This process is
the fabrication phase of CBD, and only one nanopore is expected to form during this phase.

For protein characterization, there is a need for a vast variety of nanopore sizes,
ranging from several nanometers to one hundred nanometers. After the initial breakdown,
further applying an electric field with feedback control allows for the expansion of and
precise control over the nanopore size. During this conditioning phase of CBD (Figure 2a),
the applied electric field strength is typically one-third of the electric field strength during
the breakdown, and it should never exceed this [83]. The channel shape can also be
adjusted slightly during this phase [115]. It is expected that the nanopore will expand
to the desired size during the conditioning process. However, the enlargement process
is fundamentally different from the breakdown one [92]. Multiple nanopore formation
has been reported during this conditioning phase. In addition, soft breakdown without
thorough pore generation can also occur, leading to so-called “fake” nanopores [90,116,117].
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Figure 2. Controlled breakdown (CBD) applied in nanopore fabrication. (a) Schematic illustration of
CBD-forming nanopore process Ref. [83] (not to scale). The red and blue curves represent the applied
voltage and measured current, respectively. (b) CBD nanopores in SiNx membrane ranging from
1.65 nm to 70 nm in diameter. Reprinted with permission from Ref. [10]. Copyright 2018 American
Chemical Society. Reprinted with permission from Ref. [91]. Reprinted with permission from
Ref. [118]. (c) CBD nanopores in different 2D membranes including Graphene, black phosphorus (BP),
molybdenum disulfide (MoS2), and tungsten diselenide (WSe2), along with a nanopore formed in a
gold-coated SiNx membrane. Reprinted with permission from Ref. [119]. Copyright 2018 American
Chemical Society. Adapted with permission from [120]. Copyright 2014 John Wiley & Sons, Inc.

CBD has been rapidly applied in fabricating nanopores within different materials and
in different sizes. Figure 2b shows that CBD can fabricate nanopores in SiNx membranes
with diameters ranging from single nanometers to several tens of nanometers [10,91,118]. By
forming nanopores slightly larger than the target analytes, CBD could efficiently optimize
the signal-to-noise ratio of nanopore sensing. In addition to size control, CBD also makes it
possible to generate nanopores in several materials that are otherwise challenging to use
with traditional nanopore fabrication techniques such as energetic nanoparticle drilling. For
instance, it is difficult to drill nanopores in a SiNx membrane on a fused-silica substrate,
because the charged particles used for drilling cannot be conducted away. CBD, on the
other hand, can easily form nanopores in this substrate, which enables the production
of low-noise nanopore devices [72]. CBD has proved its ability to form nanopores in
membranes composed of various materials such as SiO2 [57], HfO2 [58], and metal-insulating
layers [120,121], as well as in 2D materials including graphene, BN, and MoS2 [119,122–129].

2.2. Approaches to Controlled Breakdown

Despite its many applications, fabricating nanopores by CBD comes with drawbacks
due to the intrinsically random nature of the breakdown process. The issues of the CBD
technique that need to be addressed include: (1) the possibility of a long and uncertain
amount of time necessary to fabricate a nanopore; (2) false breakdown events due to soft
breakdown; (3) the potential to form multiple nanopores in the membrane that are difficult
to identify using electric current feedback; (4) pore formation in random locations in the
membrane; and (5) the impossibility of using CBD to form nanopore arrays.

An ideal controlled breakdown protocol would meet the following criteria to allow re-
searchers to benefit from its low cost and broad accessibility: (1) a short time-to-breakdown
to allow efficient pore fabrication; (2) precise size control of the generated nanopore, in-
cluding both a tight and small size distribution of initial nanopores in the fabrication phase,
as well as an efficient feedback control over the pore size during the conditioning phase;
(3) the production of single nanopores in the membrane rather than forming multiple
nanopores; (4) a smooth surface and regular nanopore shape to allow a high signal-to-noise
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ratio for nanopore sensing; and (5) control over the localization of nanopores formed in
the membrane.

In the context of dry membranes, the time-to-dielectric breakdown is strongly depen-
dent on the parameters of the material used, including the thickness of the membrane,
the composition of the material, and the thin-film deposition process. In addition to the
intrinsic nature of the materials, several external conditions also contribute to the time-to-
breakdown of the thin membrane, including the electric field strength, external induced
defects, and temperature. Tabard-Cossa’s group analyzed the stochastic breakdown process
of SiNx membranes with different thicknesses by applying a high constant electric field
while measuring the time-to-breakdown [81]. The distribution of breakdown time indicates
that the probability of forming a nanopore with randomly generated defects throughout
the membrane can be described using the Weibull distribution [116]. Thus, two identical
membranes can break down at different times when subjected to the same electric field. To
control the efficiency, quality, and quantity of the nanopores formed by CBD, all parameters
that influence the breakdown and enlargement process should be considered.

Here, we discuss the parameters influencing the breakdown in both dry and liquid
conditions, as well as the parameters that only apply to the liquid environment, such as the
pH and salt concentration of the electrolyte.

2.2.1. Material Composition of Membrane

Research on thin membranes of electronic devices shows that different materials
exhibit different breakdown properties [113,114,130–134], the stoichiometry of the SiNx
thin film affects the breakdown process strongly due to the changes in electrical conductivity
associated with the Si content [86,130–132]. Such material-dependent breakdown has also
been observed in nanopore fabrication via CBD [81,85,91,120]. Si-rich SiNx is often used
for nanopore sensing due to its excellent mechanical stability, allowing it to be fabricated
into large-area free-standing membranes [135,136]. The use of Si-rich SiNx membranes is
favorable for CBD fabrication, because high silicon to nitride ratios lead to a high density
of charge traps [81,85,91,120]. As a trade-off, nanopores in Si-rich SiNx membranes tend
to expand and grow over time when immersed in a salt solution [137]. Recently, Fried
et al. [121] studied the breakdown process of different compositions of SiNx membranes
when voltage is applied via electrolyte solution, electrodes, and the combination of both.
For Si-rich SiNx membranes, a high voltage is required to induce breakdown, because
the electrochemical reaction between the electrolyte and dielectric interface limits the
conduction across the membrane.

In addition to the SiNx, CBD has been used for fabricating nanopores in other in-
sulating materials such as SiO2 [57] and HfO2 [58]. Yun et al. compared the kinetics of
breakdown for SiO2, SiNx, and HfO2 by investigating their breakdown potential using
linear sweep voltammetry [138]. They found that the electrochemical nature of different
materials influences their breakdown kinetics. The breakdown potential of SiNx is not
sensitive to cations such as sodium or silver ions. These ions, however, have a significant
influence on the breakdown potential of SiO2 membranes. HfO2, on the other hand, is
resistant to sodium ions but strongly affected by silver ions, likely due to the intrinsic
oxygen vacancies. In addition to pure insulating materials, CBD has demonstrated its
ability to generate nanopores in metal-insulating layers [120,121]. This capability provides
a new path for integrating nanopores into nanodevices with a solid-state nanopore perfectly
aligned with the on-chip electrodes [84], which is otherwise challenging for traditional
approaches of nanopore fabrication.

2.2.2. Membrane Thickness

Most nanopores fabricated by CBD are in SiNx membranes with a thickness between
10 to 30 nm with a breakdown field strength typically between 0.6 to 1 V/nm [55,64,66,67,
70,75–77,111,132,139]. The breakdown process can be characterized overall by monitoring
the leakage current due to the charge transport through defects in the dielectric material.
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This tunnelling current accelerates the defect accumulation and ultimately leads to a
breakdown, which is indicated by a sudden increase in current. The charge transport
can only tunnel through thin membranes, so a thick membrane might not be suitable
for nanopore formation via CBD. The thickest membrane reported for CBD without any
additional assisting technique is 50 nm [94]. Beyond that thickness, it is difficult to form
a tunnelling current for a breakdown unless defects are introduced locally via external
assistance. The leakage current across thinner membranes, on the other hand, is easy to
form when applying an external electric field. Yanagi et al., reported the gradual increase
in leakage current across thin membranes with a thickness thinner than 5 nm [140], which
is similar to “soft breakdown”. A slow increase in the current during CBD allows the
formation of small nanopores with diameter of 1 to 2 nm [118,140].

2.2.3. Electrolytes

In addition to the above parameters, liquid-contacting membranes have some unique
parameters that also affect the breakdown process. When the solid material is in contact
with liquid, the electrostatic field on the surface of the solid material attracts the counterions
in the liquid, forming an electrical double layer at the solid–liquid interface. When there is
a potential difference across the interface, electrochemical reactions occur at the interface,
which induces the injection and/or removal of charges in the material [121]. The interface
between the electrolyte and the insulating membrane is the cause of the complexity of CBD.
Matusi et al., reported that a membrane that initially did not have defects exhibited defect
formation after an electrolyte was brought into contact with the membrane [82]. Several
research works have demonstrated the correlation between the breakdown kinetics of the
membrane and the pH of the solution [85,91,116]. Breakdown happens faster in extreme
pH conditions, either strongly acidic or strongly alkaline, indicating the strong involvement
of the hydrogen and hydroxide ions in the breakdown kinetics.

Other parameters, such as solute concentration and solvent type, have also been shown
to affect the breakdown process [81,87,89,116,138,141]. A recent report has pointed out
that, during the conditioning phase, nanopore enlargement exhibits weaker dependence
on the pH of the electrolyte, because the high ionic current in the formed pore accelerates
the electrochemical reactions on the nanopore wall [92]. Using a high salt concentration
in the conditioning process can increase the ionic current through the nanopore and,
therefore, could expand the nanopore efficiently while not risking the generation of another
breakdown path [83,92].

2.2.4. External Electric Field and Feedback Controls

There are two feedback controls required in CBD nanopore fabrication. One is the
detection of the breakdown, and the other is the termination of the external electric field
during nanopore enlargement. Depending on the applications, different approaches are
used and/or combined with feedback control to optimize nanopore fabrication by CBD.

Detection of a breakdown event. An efficient feedback control system allows a high
yield rate of nanopore fabrication and a tight size distribution of initial nanopores. The
simplest feedback control is to use a cut-off threshold when applying constant electric field
stress [81,142]. This threshold feedback allows one to stop the applied electric field as soon
as the measured current (or voltage in the case of applying constant current) exceeds the
pre-set value. This approach requires minimal programming and simple instrumentation.
During this process, the time-to-breakdown is the only parameter changed and, therefore, is
often used to test the mechanism of breakdown across different conditions such as different
pHs and salt concentrations of the solution. The drawback of this threshold cut-off is that
the distribution of the resulting pore sizes is wide if the feedback time is not fast enough
or if the external electric field is high. Moreover, a soft breakdown could be picked up as
a breakdown event. An alternative feedback control method is to use a sudden increase
of current as a criterion for nanopore generation. Such feedback control can avoid the
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problem of overgrowing the nanopore, but soft breakdown could still be falsely detected as
a pore generation [85,90].

To differentiate a soft breakdown from a hard breakdown, Roshan et al. [117] devel-
oped an algorithm called the moving-z-score-based CBD, to detect the anomalous points in
the current–time trace while applying the voltage. The reported value, or z-score, consid-
ers the standard deviation and the mean value of the measured current within a certain
window size. Compared to the threshold cut-off, this method minimizes the detection of
false breakdowns and hence increases the yield rate. It also generates a tight distribution of
the pore sizes since it detects a sudden change of current rather than a cut-off value.

Instead of applying a constant electric field across the membrane, other protocols use
ramping voltage pulses or constant currents to create an external electric field stress. The
strategy of ramping the voltage can be very useful and efficient for membranes from different
batches, e.g., batches with different thicknesses or material compositions [10,83,140]. This
process is often combined with leakage feedback to stop the increase of the voltage. Note
that there is no conclusive correlation between the shape of the applied electric field with
the initial pore size, although this parameter can have a large impact on the fabrication time.

Termination of the breakdown process when the pore meets the desired size. After
the detection of the initial breakdown, a CBD protocol usually reduces the applied electric
field to slowly expand the nanopore to the desired size. To estimate the pore size during the
enlargement process, one can measure the resistance across the membrane by measuring
one of the current, the voltage, or the IV curve during the breakdown. The accuracy of
the pore size and the time of the feedback are two key features to ensure the size control
of nanopores.

This conditioning phase carries the risk of potentially generating multiple nanopores
in a membrane [10,58,90,94,143]; hence, an efficient protocol at this conditioning phase is
essential to achieve relatively large nanopores (i.e., >10 nm). Many groups have demon-
strated that low electric fields have a higher success rate than high electric fields in forming
single nanopores in a membrane [10,81,83,85,94,116]. The electrical feedback methods,
however, assume that only one nanopore is formed in the membrane. One of the major
concerns in CBD nanopore fabrication, however, is the formation of multiple nanopores in
the membrane. For this reason, being able to detect the quantity of nanopores in a single
membrane in situ is highly useful.

2.2.5. Additional Non-Electrical Feedback Controls

Several approaches have been proposed to monitor the nanopore enlargement process
in addition to the electrical signal feedback. Measuring the conductivity change after
coating the membrane with a self-assembled layer can report whether a single pore is
formed in the membrane [10,122]. This approach not only reveals the pore number, but also
indicates the shape of the formed nanopores [10,144]. However, although this approach can
be used for in-situ examination for pores right after the breakdown, the “resolution” of the
discrimination is quite coarse due to the possibility of the partial coating of the nanopore
wall or complete occlusion of the nanopore entrance by the coating layer.

On the other hand, optical signals can report the exact number of pores formed in
a membrane. Optical measurements also have no interference with the electrical signal
and hence can be implanted in a system as an orthogonal source of information. Three
different optical signals have been explored for monitoring nanopore formation during the
breakdown in real time: (1) photoluminescence (PL) intensity [86,88,89,145], (2) measuring
ionic current while laser scanning [87,95], and (3) Ca2+ ions and Ca2+ indicator [10,88,90].
We will discuss these optical feedback controls in Section 3.2.

All optical measurements as feedback controls come inherently with low spatial
resolution due to the optical diffraction limit. This resolution cannot discriminate multiple
nanopores that are formed in the focus area, e.g., Figure 4 of Ref. [85]. In addition, an
optical signal cannot reveal the shape nor the channel length of nanopores. Therefore, TEM
and AFM remain important tools to characterize nanopores at nanometer resolution.
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3. Localized Nanopore Fabrication by CBD

Optical nanopores [96] can benefit from the high bandwidth of optical measurements,
as well as the ease of monitoring optical signals at high throughput [22,96–108,146–148]. On
the other hand, nanopore techniques can actively deliver target molecules into the optical
sensing area instead of relying on diffusion or tethering [95,105,110,112,149]. Given the
advantages of CBD nanopore fabrication, it could be very attractive if CBD could generate
nanopores at specific positions in a membrane. Since the CBD technique is relatively
new compared to nanopore sensing, attempts to generate localized nanopores for optical
measurements are still in progress. As discussed in Section 2.1, the extended defects in the
substrate produce localized property changes in the material, promoting the probability of
nanopore formation in this region. Such localized changes of material could be introduced
by dielectric thinning, temperature differences, oxide defects, or other properties that locally
increase in conductivity. This section will discuss the approaches that assist the formation
of nanopores in a specific region, including laser-assisted breakdown [86,88,89,144], pre-
thinning [150], local high electric field [151,152], and local liquid contact [153–156].

3.1. Laser-Induced Breakdown for Localized Nanopore Fabrication

One year after CBD was reported, the Dekker group first reported a self-aligned
nanopore formation at an optical hotspot using laser-induced breakdown [95]. They
demonstrated that the laser-assisted breakdown formed a nanopore locally at the area where
the optical field was enhanced, which they created using a plasmonic bowtie structure.
Since then, laser-assisted breakdown has attracted dramatic attention. In 2018, three
different groups reported the localization of pore formation by using laser etching or
laser-assisted breakdown [10,88,89]. Further research focused on the fundamentals of laser
breakdown or applying laser-assisted breakdown to fabricate nanopore arrays [86,87].

Fundamentally, the laser-induced breakdown process involves three different effects
accelerating pore formation: (1) laser-accelerated defect accumulation, (2) laser thinning,
and (3) thermal-assisted etching/breakdown. Although the fundamentals of laser-assisted
breakdown can vary between experiments, the setup of laser-assisted breakdown remains
similar. Figure 3a illustrates schematically a typical laser-assisted breakdown setup. In gen-
eral, a laser beam is focused on the SiNx membrane with a spot size of a micrometer or less.
An additional optical feedback control (discussed in Section 3.2) either photoluminescence
from the SiNx membrane, or Ca2+ flux fluorescence microscopy can be added to monitor
the pore-formation process.

Whether we detect a thinned membrane or defect accumulation of the membrane
depends on which fundamental mechanism governs the pore-formation process. The gov-
erning mechanism for accelerated pore formation with the assistance of laser illumination
depends on the laser wavelength, the material of the membrane and its surrounding envi-
ronment. Through different characteristic approaches, one can figure out which mechanism
governs pore formation.

Laser-accelerated defect accumulation. When a laser illuminates the dielectric mem-
brane, it promotes the rate of defect accumulation and hence induces a higher leakage
current [10]. Such laser-accelerated defect accumulation promotes pore formation in the
region of the membrane that is illuminated by the laser. As illustrated in Figure 3b(i), laser
irradiation increases the free-electron density in the conducting band of dielectric materials,
thereby increasing the density of the defect locally in the laser spot [157]. These defects are
visible in the TEM image as a dark spot in the membrane where the laser spot was focused,
as shown in Figure 3b(ii) [10]. Both the reflective microscopy image (Figure 3b(iii)) and
the transmission microscopy image (Figure 3b(iv)) exhibit a dark spot on the membrane
where the laser was focused, indicating a change in the material’s optical properties after
laser illumination rather than a thickness change. Since the defects inside the membrane
facilitate the leakage current and hence the breakdown process, the time-to-breakdown
will be dramatically reduced.
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Figure 3. Laser-assisted breakdown to form nanopores locally. (a) Schematic of the experimental
setup for laser-assisted breakdown. A collimated laser beam is focused on the membrane by an
objective during the CBD process. The optical feedback signal, either PL intensity or Ca2+ flux
fluorescence, is collected by the objective and received by a camera. Adapted with permission from
Ref. [10]. Copyright 2018 American Chemical Society. (b) Laser-induced defect accumulation. The
laser illumination enhances the defect density locally as (i) white dots. This defect accumulation
appears as a dark spot in a TEM image (ii). This region has a lower reflection and transmission
due to the high absorbance, therefore appears black in both reflected (iii) and transmitted (iv) light
microscopy images. (c) Laser thinning. The focused laser illumination etches the membrane on
both sides (i). The thinned region appears white in a TEM image (ii). Light microscopy images
show a dark spot in reflection (iii) and a white spot in transmission (iv). Adapted with permission
from Ref. [10]. Copyright 2018 American Chemical Society. Adapted with permission from Ref. [88].
Adapted with permission from Ref. [89]. Copyright 2018 American Chemical Society.

Laser thinning. The laser etching of a SiNx membrane is a well-established technique
for nanopore fabrication. This approach relies on the photochemical destabilization of
Si–Si bonds in a Si-rich SiNx membrane. Combining CBD setup with laser thinning
provides in-situ nanopore formation, which can be beneficial for integrating the nanopore
with microfluidics and biosensing (this aspect is well summarized in a recent review by
Fried et al. [93]). During the laser thinning process, Si forms transition compounds with
the anions in the solution and quickly becomes oxidized to SiO2 that hydrolyzes to silicic
acid and dissolves in the electrolyte solution. Therefore, laser-thinning CBD has a strong
dependence on the Si:N composition and is accelerated in alkaline solutions [86,87,158].
This photo-active etching results in a locally thinned membrane, where the electric field
strength is much higher than that in other regions, promoting the breakdown in this laser-
thinned region [86,88–90,145,159]. Figure 3c(i) illustrates the CBD process in combination
with laser thinning. The thickness of the membrane during the laser-thinning process can be
monitored by the photoluminescence (PL) of the SiNx detected by an avalanche photodiode
(APD), as shown in Figure 4a. In addition to the PL intensity, the thinned region appears
bright in TEM images (Figure 3c(ii)), opposite to the observation for laser-accelerated defect
accumulation. The resulting reflective microscopy image in Figure 3c(iii) shows a dark
spot in the laser-thinned region, while the transmission microscopy image shows a bright
spot due to the thinner area. The AFM profile of the membrane surface also confirms the
existence of this thinned region on the SiNx membrane [87,89].
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Figure 4. Additional approaches to provide feedback control in CBD. (a) Photoluminescence (PL)
intensity provides the information of the membrane thickness. The PL intensity decreases over time
indicating gradually reduced thickness of the membrane. A sudden drop of the PL intensity suggests
the formation of the nanopore. Adapted with permission from Ref. [88]. (b) (i) Temperature profile
of a 30 nm thick silicon nitride membrane when illuminated by a focused laser beam at 12 mW.
(ii) The ionic current increases when the laser is focused on the nanopore due to the decreased
viscosity at high temperatures. This increase in conductivity is reversible by turning the laser on
and off. (iii) The ionic conductivity map when scanning laser position. The dashed circles highlight
the regions where nanopores are located. Adapted with permission from Ref. [10]. Copyright 2018
American Chemical Society. Adapted with permission from Ref. [87]. Copyright 2021 American
Chemical Society. (c) Schematic illustration showing that the Ca2+ gradient and Ca2+-indicator report
nanopore position. The cis chamber contains Fluo-8 and the trans chamber contains Ca2+ ions. The
fluorescence intensity increases locally when the Ca2+ ions are electrophoretically driven through
a nanopore (+100 mV). The fluorescence microscopy images on the bottom show a bright spot at
the nanopore position (indicated by a yellow arrow) at positive applied potential. Adapted with
permission from Ref. [10]. Copyright 2018 American Chemical Society.

Thermal-assisted etching/breakdown. Both laser-induced defect accumulation and
laser-thinning processes are accompanied by a temperature increase due to laser heating.
When the nanopore is illuminated by a laser beam, the membrane absorbs the laser radiation
and converts it to joule heating. This localized laser-induced heating accelerates the
reaction rate of either the breakdown process or the thinning process. In addition to its
role in thermal-assisted etching/breakdown, laser heating has been used for nanopore
fabrication, e.g., the photon-to-heat graphene nanopore sculpting [160] and the thermal
shrinking/annealing of nanopores [161,162].

Electron and light microscopy images indicate an irreversible change in the membrane
material after laser illumination, either due to laser-induced defect cumulation or laser
thinning. The dominant mechanism varies among experimental conditions, e.g., the laser
wavelength, applied voltage, and electrolyte solution. Generally, laser thinning occurs
when the membrane is illuminated by a blue or green laser (488 or 532 nm), while a near-
infrared laser normally introduces defect cumulation inside the membrane. The dominant
mechanism for pore formation can be characterized by transmission light microscopy—a
laser-thinning region appears bright while laser-induced defect accumulation appears dark,
as shown in Figure 3b,c(iv). TEM and AFM images can also provide information regarding
the fundamental mechanism of pore formation. These methods, however, remove the
in-situ nature of laser-assisted CBD. Tang et al. proposed a statistical model to discuss
the efficiency of using a laser to confine the location of a breakdown nanopore [87]. Their
model predicted that the combination of high laser power and a low electric field generally
exhibits the highest confidence of forming a nanopore at the laser-focused spot.

In addition to the localized pore formation, laser-assisted breakdown also allows the
fabrication of nanopore arrays [86–90,159] and self-aligned nanopore formation [95]. Laser-



Nanomaterials 2022, 12, 2384 12 of 22

assisted breakdown for nanopore array fabrication, in particular, will be of use for plasmonic
nanopore applications [95,99,100,109–111,163–170]. For example, the use of a zero-mode
waveguide is often hindered by a low capture rate [171]. A nanopore could help deliver the
target DNA to the sensing zone and increase the fluorescent detection efficiency. Another
example of how optical measurement can benefit from the nanopore technique is the
plasmonic optical tweezer, which has a low trapping rate on proteins but shows improved
trapping efficiency when a nanopore is introduced to the hotspot [100,110,172,173].

3.2. Optical Readout to Characterize the Localization of CBD Nanopores

The integration of an optical setup with CBD provides a unique platform to char-
acterize nanopores formed by CBD in real time. As discussed in Section 2.2.5, there are
three major approaches to monitoring the laser-assisted CBD process in situ, as illustrated
in Figure 4.

Photoluminescence (PL) intensity. The photoluminescence (PL) is the light emission
from materials [174]. The PL from a SiNx membrane covers a spectral range from UV to
IR [175–177]. The emitted PL intensity corresponds to the local thickness of the membrane.
During a laser-thinning experiment, the photon count of the PL intensity collected either by
a spectrometer or by an EMCCD offers real-time feedback of the membrane thickness at the
laser-focused spot [88,89]. When a nanopore is formed (i.e., the thickness of the membrane
is zero), the photon count of the PL drops dramatically. As shown in Figure 4a, a drop
in PL photon counts and an increase of the current through the membrane indicate the
formation of a nanopore. Although the PL intensity provides additional feedback on the
pore-formation process, it does not indicate any information on the pore size, since the
laser spots are typically of the order of several hundred nanometers. By scanning the PL
over the membrane, one can obtain the location as well as the number of nanopores formed
by laser etching [86,88,89,145,159].

Measuring ionic current by laser scanning. This approach relies on the increased ionic
conductivity of the electrolyte due to local heating when a laser is focused on
the nanopore location. The membrane, often silicon nitride, absorbs the partial laser en-
ergy and converts it to heat. This heat cannot disperse well due to the boundary between
the membrane and the liquid, resulting in local temperature enhancement. Figure 4b(i)
depicts the temperature profile when the laser is focused on a membrane with a nanopore.
Laser-induced heating can establish a well-controlled temperature inside the
nanopore [145,162,163,166,178–188]. This temperature control can be used for increasing
the capture rate of the nanopore [166,183,184,187], studying the behavior of biomolecules
at controlled temperature levels [163,167,178,180,181,183,184,186,189], and characterizing
laser profiles with nanoscale resolution [168,185]. The laser heating of the SiNx membrane
increases the temperature of the electrolyte in the nanopore. As the temperature increases,
the viscosity of the electrolyte decreases [10,87,89,95,190,191], resulting in high conductivity
across the membrane. Figure 4b(ii) shows that the ionic conductivity of a nanopore increases
upon laser illumination and drops to a baseline level in the absence of laser illumination [10].
Therefore, an increase in the ionic current during laser scanning indicates the overlapping
of the laser spot with the nanopore [87,95]. Since the temperature of the electrolyte in the
nanopore only increases when the nanopore is within the focus point, this method can only
detect a nanopore with a spatial resolution of one µm [86–88,95,145].

Ca2+ flux detection. Monitoring the Ca2+ concentration near the nanopore by using a
Ca2+ indicator provides an optical signal to detect ion flux through a nanopore [99,192–194].
This approach detects the fluorescence intensity of a Ca2+ indicator dye (Fluo-8 or Fluo-4)
changing in response to the concentration of Ca2+ ions [195]. The fluorescence efficiency
of the Ca2+-indicator increases when it binds to the freely diffusing Ca2+ ions, providing
information about the local concentration of Ca2+ ions near the nanopore. Figure 4c
illustrates the concept of the Ca2+ nanopore detection method. Ca2+ ions and Ca2+ indicator
dyes are separated by the membrane with the nanopore as the only connection. When
the applied voltage is negative, the electrophoretic force pulls Ca2+ ions by diffusion from
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the trans to cis chambers through the nanopore. When the polarity is reversed, the Ca2+ is
driven from cis to trans through the nanopore and binds to the Ca2+ indicator dyes on the
other side of the reservoir. The Ca2+ indicator then emits fluorescence that is localized near
the entrance of the nanopore. Monitoring the Ca2+ ion flux through nanopores enables
an optical readout to provide real-time, widefield feedback of the quantity of nanopores
formed in the membrane [10,90]. This approach has been reported for revealing the location
of nanopores formed during CBD, as well as multiple nanopore formation.

3.3. Tip-Induced Breakdown (AFM, Pipette)

In addition to the above methods, tip-induced breakdown offers another way to
generate nanopores locally in a membrane and reduces the possibility of forming multiple
nanopores. This group of methods relies on pre-defining a small region with either HIM,
an AFM tip, or a micropipette. This small region limits the area of pore formation to a much
smaller space than the whole free-standing membrane.

Using a pre-defined area to form nanopores locally by CBD was first reported by
Carlsen et al. [150]. They used HIM to create a thinned area as small as 100 × 100 nm2

on a low-stress SiNx membrane with a window size of 100 × 100 µm2 (Figure 5a). A
90% thickness reduction makes the electric field 10 times higher in the thinned region
than the electric field strength across the rest of the membrane. This method can not only
control the pore positioning, but also largely reduces the pore formation times for a given
applied voltage. Such CBD at a pre-thinned membrane would be especially significant for
a membrane that was originally quite thick. Though this method offers high-precision pore
positioning for CBD fabrication, the use of helium ion beam milling counteracts two of the
main advantages of CBD, which is its low cost and ease of accessibility.
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region. Adapted with permission from Ref. [150]. Copyright 2017 IOP Publishing. (b) 3D schematic
of an experimental setup for AFM tip-controlled local breakdown (TCLB). Nanopore arrays are
formed by controlling the position and the voltage of the AFM tip. Reprinted with permission
from Ref. [153]. Copyright 2019 John Wiley & Sons, Inc. (c) Schematic of experimental setup
of local breakdown introduced by micro-liquid conduction using a micropipette. Adapted with
permission from Ref. [154]. Copyright 2017 American Chemical Society. (d) Transient high electric-
field breakdown by the meniscus contact of a micropipette with the SiNx membrane [151,152]. Figures
reprinted with permission from Ref. [151]. Scale bars are 10 nm. (e) A five-channel microfluidic
system allows the formation of nanopores at precise locations on the membrane by controlling the
electric field and electrolyte [155,156]. Reprinted with permission from Ref. [155]. (f) A schematic
illustration of the tip of an inverted pyramid along with an SEM image showing a nanopore formed
in the tip region. Adapted with permission from Ref. [196]. Copyright 2021 Elsevier.
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Zhang et al. [153] further pushed the precision of the pore position to tens of nanome-
ters using an AFM tip-controlled local breakdown (TCLB) (Figure 5b). An AFM tip (around
10 nm in diameter) is first set over the membrane. Then, the tip approaches the membrane
at a speed of ≈5 µm s−1, and finally engages the membrane surface with a small loading
force of 1 nN. After applying a voltage pulse with an amplitude of 24 V and a pulse duration
of 100 ms, a nanopore is formed at the tip location. A log-normal probability distribution
of the time of pore formation reveals that TCLB allows a lower degree of randomness
for pore formation compared to the classic CBD. More interestingly, AFM provides an
immediate characterization of the newly formed pores in situ (in the case of forming a pore
diameter larger than the tip diameter). This method offers the most precise position control
of any currently known CBD technique and largely reduces the possibility of forming
multiple nanopores. The use of AFM, however, increases the cost of pore fabrication, and
the alignment processes can be time consuming.

Similarly, liquid meniscus contact using a glass pipette can also form nanopores in a
precise position [154]. As illustrated in Figure 5c, a glass micropipette filled with electrolytes
is held by a micromanipulator above the membrane in an air environment. The pipette
then moves down until liquid contact with the membrane is formed. This liquid contact
generates a contact area of 1 µm in diameter, which can be confirmed by capacitance
feedback. A nanopore is formed within the contact area by applying a breakdown voltage
between the electrolyte in the pipette and the electrolyte beneath the membrane. The
micromanipulator makes it possible to repeat the CBD process many times per membrane,
therefore enabling the fast preparation of nanopore arrays. Based on this principle of pipette
tip positioning, Yin et al. developed a transient high-electric-field controlled breakdown
(THCBD) [151] by applying a high voltage before establishing the liquid contact (Figure 5d).
Their work demonstrates that pore-forming time is inversely dependent on the applied
voltage, while pore diameters have a linear relationship with breakdown voltage. Benefiting
from the high voltage (several V/nm), they achieved pore-forming times in the range of
several milliseconds, offering a new strategy for the fast fabrication of nanopore arrays.
Despite these advantages, the contact area of 1 µm in diameter is relatively large compared
to the nanopore size, which limits the pore positioning ability in this method.

In addition to using tip-based confinement, the electric field can also be confined by
electrolytes within microfluidic systems to fabricate nanopores precisely, as illustrated in
Figure 5e. Such a microfluidic system can select the fluidic channel to apply a voltage
across different areas, allowing nanopores to form in selective channels [155,156]. By using
this approach, Tahvildari et al. demonstrated the fabrication of five nanopores inside
the microfluidic system. This liquid contact can also be introduced by a droplet using a
pipette tip. Recently, Wang’s group demonstrated that the applied voltage can be controlled
across different membranes and generate nanopores at a specific position in the flow
system [155,156,197]. They also reported that CBD nanopores formed in a localized manner
at the cross-disjoint mortise structures generated by Ga-FIB etching [198].

Linaro’s group combined chemical etching with CBD to fabricate high aspect ratio
silicon nanopore arrays [196]. They deposited a silicon wafer with a thickness of 2 µm on
a thick support (around 500 µm) and then mounted it between two chambers, filled with
5% HF: H2O: C2H5OH (1:8:3) solution (cis) and NaCl solution (9 mg/mL) (trans), respec-
tively. The high external electric field accelerates the generation of holes (h+) in silicon,
which collides with the crystal lattice to free the bound electrons. When the current density
is high enough, the following electrochemical reactions occur:

Si + 2F− + 2h+ → SiF2

SiF2 + 2HF→ SiF4 + H2

As illustrated in Figure 5f, a pyramid shape is formed by the chemical etching. Then
the voltage is decreased and maintained at a constant low level. The constant voltage
maintains the breakdown etching selectively at the sharpest tip to ensure a minimized pore
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size. The pore diameter can be controlled by the applied bias profile to satisfy different
applications. This method opens a new way to fabricate single nanopores and nanopore
arrays with a low chance of having multiple nanopores. The high aspect ratio of the formed
nanopores, however, limits their sensitivity in biomolecule sensing.

Very recently, Fried et al. demonstrated the pore formation locally at the area of
metal electrodes by locally injecting electrons into the membrane. They deposited metal
electrodes on the surface of the SiNx membrane [121]. These metal electrodes provide the
electrons locally to assist nanopore formation in the area covered by the electrodes. Their
work provides a fundamental understanding of the mechanism of nanopore formation
during CBD, as discussed in Section 2.2. Fried et al. [84] have also reported a new CBD
strategy to fabricate multiple nanopores locally using on-chip electrodes. The nanopores
are self-aligned at the position where an on-chip electrode and electrolyte solution are in
contact with the opposite side of the membrane.

4. Conclusions and Outlook

Since the nanopore-sensing concept was proposed 20 years ago, the nanopore tech-
nique is now at the stage of moving toward real-world applications and marketing. One
main challenge to this progress, however, remains the fabrication of ideal nanopores with
precisely controlled sizes, shapes, and locations. Controlled breakdown (CBD) has greatly
improved the nanopore-sensing field by providing a low-cost and broadly accessible ap-
proach. Localized nanopore fabrication via CBD will further push the nanopore technique
to the broader biosensing community. Future development of CBD techniques might focus
on addressing questions/obstacles of CBD techniques such as the breakdown mechanism
of different membrane materials, improving the long-term stability of CBD nanopores, and
minimizing the surface roughness of the pore channel. All the above aspects are crucial
for CBD techniques to be integrated into different nanodevices. Combining CBD with
advanced techniques, such as nanofluidics, nanophotonics, AFM, or field transistors with
2D materials, will allow nanopore sensing to move closer to being a ready-to-use tool on the
market, not only in DNA sequencing, but also in monitoring environmental pollution and
ultra-sensitive biomarker detection. We believe that, in the future, the fields of biomedical
and bioengineering, biosensing, nanofluidics, and integrated sensing devices will benefit
significantly from the nanopore technique.
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137. Chou, Y.C.; Masih Das, P.; Monos, D.S.; Monos, D.S.; Drndić, M. Lifetime and Stability of Silicon Nitride Nanopores and Nanopore

Arrays for Ionic Measurements. ACS Nano 2020, 14, 6715–6728. [CrossRef]
138. Yun, J.; Lee, J.G.; Oh, K.; Kang, K.; Chung, T.D. Aqueous Ionic Effect on Electrochemical Breakdown of Si-Dielectric–Electrolyte

Interface. Sci. Rep. 2020, 10, 16795. [CrossRef]
139. Kwok, W.W.H.; Tabard-Cossa, V.; Briggs, K.A.Z. Fabrication of Nanopores Using High Electric Fields. U.S. Patent

WO2013167955A1, 14 November 2013.
140. Yanagi, I.; Fujisaki, K.; Hamamura, H.; Takeda, K.I. Thickness-Dependent Dielectric Breakdown and Nanopore Creation on

Sub-10-Nm-Thick SiN Membranes in Solution. J. Appl. Phys. 2017, 121, 045301-1–045301-10. [CrossRef]
141. Yanagi, I.; Takeda, K.I. Current-Voltage Characteristics of SiN Membranes in Solution. ACS Appl. Electron. Mater.

2020, 2, 2760–2771. [CrossRef]
142. Goto, Y.; Yanagi, I.; Matsui, K.; Yokoi, T.; Takeda, K.I. Integrated Solid-State Nanopore Platform for Nanopore Fabrication via

Dielectric Breakdown, DNA-Speed Deceleration and Noise Reduction. Sci. Rep. 2016, 6, 31324. [CrossRef]
143. Xie, W.; Tian, H.; Fang, S.; Zhou, D.; Liang, L.; He, S.; Wang, D. Direct Optical Observation of DNA Clogging Motions near

Controlled Dielectric Breakdown Silicon Nitride Nanopores. Sens. Actuators B Chem. 2021, 349, 130796. [CrossRef]
144. Bandara, Y.M.N.D.Y.; Karawdeniya, B.I.; Dwyer, J.R. Real-Time Profiling of Solid-State Nanopores during Solution-Phase

Nanofabrication. ACS Appl. Mater. Interfaces 2016, 8, 30583–30589. [CrossRef] [PubMed]
145. He, X.; Tang, Z.; Liang, S.; Liu, M.; Guan, W. Confocal Scanning Photoluminescence for Mapping Electron and Photon Beam-

Induced Microscopic Changes in SiN Xduring Nanopore Fabrication. Nanotechnology 2020, 31, 395202. [CrossRef] [PubMed]
146. Liu, Y.; Chen, Y.; Wang, F.; Cai, Y.; Liang, C.; Korotkova, O. Robust Far-Field Imaging by Spatial Coherence Engineering.

Opto-Electronic Adv. 2021, 4, 210027. [CrossRef]
147. Zheng, Y.; Wu, Z.F.; Shum, P.P.; Xu, Z.L.; Keiser, G.; Humbert, G.; Zhang, H.L.; Zeng, S.W.; Dinh, X.Q. Sensing and Lasing

Applications of Whispering Gallery Mode Microresonators. Opto-Electron. Adv. 2018, 1, 180015. [CrossRef]
148. Xia, T.F.; Cao, W.Q.; Cui, Y.J.; Yang, Y.; Qian, G.D. Water-Sensitive Multicolor Luminescence in Lanthanide-Organic Framework

for Anti-Counterfeiting. Opto-Electron. Adv. 2021, 4, 200063. [CrossRef]
149. Alexandrakis, G.; Peri, S.S.S.; Subnani, M.K.; Raza, U.M.; Ghaffari, S.; Lee, J.S.; Kim, M.J.; Weidanz, J. Quantification of Low-

Affinity Kinetics between Cancer Immunity Relevant Ligands and Natural Killer Cell Receptors with a Self-Induced Back-Action
Actuated Nanopore Electrophoresis (SANE) Sensor. In Optical Trapping and Optical Micromanipulation XVII; Dholakia, K., Spalding,
G.C., Eds.; SPIE: Bellingham, WA, USA, 2020; Volume 1146306, p. 4.

150. Carlsen, A.T.; Briggs, K.; Hall, A.R.; Tabard-Cossa, V. Solid-State Nanopore Localization by Controlled Breakdown of Selectively
Thinned Membranes. Nanotechnology 2017, 28, 085304. [CrossRef]

151. Yin, B.; Fang, S.; Zhou, D.; Liang, L.; Wang, L.; Wang, Z.; Wang, D.; Yuan, J. Nanopore Fabrication via Transient High Electric
Field Controlled Breakdown and Detection of Single RNA Molecules. ACS Appl. Bio Mater. 2020, 3, 6368–6375. [CrossRef]

http://doi.org/10.1021/acsnano.6b08028
http://www.ncbi.nlm.nih.gov/pubmed/28125779
http://doi.org/10.1021/acs.nanolett.7b01091
http://www.ncbi.nlm.nih.gov/pubmed/28592108
http://doi.org/10.1038/s41596-019-0131-0
http://www.ncbi.nlm.nih.gov/pubmed/30903110
http://doi.org/10.1021/acs.nanolett.5b00768
http://doi.org/10.1038/s41578-019-0126-z
http://doi.org/10.1088/1361-6463/abe07b
http://doi.org/10.1109/TED.2010.2089057
http://doi.org/10.1063/1.344202
http://doi.org/10.1063/1.3065477
http://doi.org/10.1109/relphy.1998.670439
http://doi.org/10.3390/nano11092450
http://www.ncbi.nlm.nih.gov/pubmed/34578767
http://doi.org/10.1023/A:1014275913962
http://doi.org/10.1116/1.580239
http://doi.org/10.1021/acsnano.9b09964
http://doi.org/10.1038/s41598-020-73880-w
http://doi.org/10.1063/1.4974286
http://doi.org/10.1021/acsaelm.0c00479
http://doi.org/10.1038/srep31324
http://doi.org/10.1016/j.snb.2021.130796
http://doi.org/10.1021/acsami.6b10045
http://www.ncbi.nlm.nih.gov/pubmed/27709879
http://doi.org/10.1088/1361-6528/ab9bd4
http://www.ncbi.nlm.nih.gov/pubmed/32526718
http://doi.org/10.29026/oea.2021.210027
http://doi.org/10.29026/oea.2018.180015
http://doi.org/10.29026/oea.2021.200063
http://doi.org/10.1088/1361-6528/aa564d
http://doi.org/10.1021/acsabm.0c00812


Nanomaterials 2022, 12, 2384 21 of 22

152. Fang, S.; Yin, B.; Xie, W.; Zhou, D.; Tang, P.; He, S.; Yuan, J.; Wang, D. A Novel Dielectric Breakdown Apparatus for Solid-State
Nanopore Fabrication with Transient High Electric Field. Rev. Sci. Instrum. 2020, 91, 093203. [CrossRef]

153. Zhang, Y.; Miyahara, Y.; Derriche, N.; Yang, W.; Yazda, K.; Capaldi, X.; Liu, Z.; Grutter, P.; Reisner, W. Nanopore Formation via
Tip-Controlled Local Breakdown Using an Atomic Force Microscope. Small Methods 2019, 3, 1900147. [CrossRef]

154. Arcadia, C.E.; Reyes, C.C.; Rosenstein, J.K. In Situ Nanopore Fabrication and Single-Molecule Sensing with Microscale Liquid
Contacts. ACS Nano 2017, 11, 4907–4915. [CrossRef] [PubMed]

155. Tahvildari, R.; Beamish, E.; Tabard-Cossa, V.; Godin, M. Integrating Nanopore Sensors within Microfluidic Channel Arrays Using
Controlled Breakdown. Lab Chip 2015, 15, 1407–1411. [CrossRef] [PubMed]

156. Tahvildari, R.; Beamish, E.; Briggs, K.; Chagnon-Lessard, S.; Sohi, A.N.; Han, S.; Watts, B.; Tabard-Cossa, V.; Godin,
M. Manipulating Electrical and Fluidic Access in Integrated Nanopore-Microfluidic Arrays Using Microvalves. Small
2017, 13, 1602601. [CrossRef] [PubMed]

157. Rethfeld, B.; Krutsch, H.; Hoffmann, D.H.H. Tracing Laser-Induced Dielectric Breakdown in Solids. Contrib. Plasma Phys.
2010, 50, 16–20. [CrossRef]

158. Robertson, J.; Warren, W.L.; Kanicki, J. Nature of the Si and N Dangling Bonds in Silicon Nitride. J. Non. Cryst. Solids
1995, 187, 297–300. [CrossRef]

159. Zvuloni, E.; Zrehen, A.; Gilboa, T.; Meller, A. Fast and Deterministic Fabrication of Sub-5 Nanometer Solid-State Pores by
Feedback-Controlled Laser Processing. ACS Nano 2021, 15, 12189–12200. [CrossRef] [PubMed]

160. Nam, S.; Choi, I.; Fu, C.C.; Kim, K.; Hong, S.; Choi, Y.; Zettl, A.; Lee, L.P. Graphene Nanopore with a Self-Integrated Optical
Antenna. Nano Lett 2014, 14, 5584–5589. [CrossRef]

161. Asghar, W.; Ilyas, A.; Billo, J.A.; Iqbal, S.M. Shrinking of Solid-State Nanopores by Direct Thermal Heating. Nanoscale Res. Lett.
2011, 6, 372. [CrossRef]

162. Huang, P.H.; Lai, H.Y. Pressure-Induced Solid-State Lattice Mending of Nanopores by Pulse Laser Annealing. Nanotechnology
2008, 19, 025602. [CrossRef]

163. Crick, C.R.; Albella, P.; Kim, H.-J.J.; Ivanov, A.P.; Kim, K.-B.B.; Maier, S.A.; Edel, J.B. Low-Noise Plasmonic Nanopore Biosensors
for Single Molecule Detection at Elevated Temperatures. ACS Photonics 2017, 4, 2835–2842. [CrossRef]

164. Assad, O.N.; Gilboa, T.; Spitzberg, J.; Juhasz, M.; Weinhold, E.; Meller, A. Light-Enhancing Plasmonic-Nanopore Biosensor for
Superior Single-Molecule Detection. Adv. Mater. 2017, 29, 1605442. [CrossRef] [PubMed]

165. Belkin, M.; Chao, S.-H.H.; Jonsson, M.P.; Dekker, C.; Aksimentiev, A. Plasmonic Nanopores for Trapping, Controlling Displace-
ment, and Sequencing of DNA. ACS Nano 2015, 9, 10598–10611. [CrossRef]

166. Nicoli, F.; Verschueren, D.; Klein, M.; Dekker, C.; Jonsson, M.P. DNA Translocations through Solid-State Plasmonic Nanopores.
Nano Lett 2014, 14, 6917–6925. [CrossRef]

167. Ying, C.; Karakaci, E.; Bermudez-Urena, E.; Ianiro, A.; Foster, C.; Awasthi, S.; Guha, A.; Bryan, L.; List, J.; Balog, S. Watching
Single Unmodified Enzymes at Work. arXiv 2021, arXiv:2107.06407.

168. Jonsson, M.P.; Dekker, C. Plasmonic Nanopore for Electrical Profiling of Optical Intensity Landscapes. Nano Lett.
2013, 13, 1029–1033. [CrossRef] [PubMed]

169. Li, Y.; Chen, C.; Kerman, S.; Neutens, P.; Lagae, L.; Groeseneken, G.; Stakenborg, T.; Van Dorpe, P. Harnessing Plasmon-Induced
Ionic Noise in Metallic Nanopores. Nano Lett 2013, 13, 1724–1729. [CrossRef]

170. Verschueren, D. Plasmonic Nanopores for Single Molecule Sensing. Ph.D. Thesis, Delft University of Technology, Delft, The
Netherlands, 2018. [CrossRef]

171. Hashemi Shabestari, M.; Meijering, A.E.C.; Roos, W.H.; Wuite, G.J.L.; Peterman, E.J.G. Recent Advances in Biological Single-
Molecule Applications of Optical Tweezers and Fluorescence Microscopy. In Methods in Enzymology; Academic Press Inc.:
Cambridge, MA, USA, 2017; Volume 582, pp. 85–119. ISBN 1557-7988.

172. Gordon, R. Biosensing with Nanoaperture Optical Tweezers. Opt. Laser Technol. 2018, 109, 328–335. [CrossRef]
173. Crozier, K.B. Quo Vadis, Plasmonic Optical Tweezers? Light Sci Appl 2019, 8, 35. [CrossRef]
174. Beliaev, L.Y.; Takayama, O.; Melentiev, P.N.; Lavrinenko, A.V. Photoluminescence Control by Hyperbolic Metamaterials and

Metasurfaces: A Review. Opto-Electron. Adv. 2021, 4, 08210031. [CrossRef]
175. Deshpande, S.V.; Gulari, E.; Brown, S.W.; Rand, S.C. Optical Properties of Silicon Nitride Films Deposited by Hot Filament

Chemical Vapor Deposition. J. Appl. Phys. 1995, 77, 6534–6541. [CrossRef]
176. Parkhomenko, I.; Vlasukova, L.; Komarov, F.; Milchanin, O.; Makhavikou, M.; Mudryi, A.; Zhivulko, V.; Żuk, J.; Kopy-
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