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Abstract

Background: Chinese soft-shell turtle (Pelodiscus sinensis) is an important commercial species for their high
nutritional value and unique taste, but it has been a vulnerable species due to habitat loss. In this study,
homologous juvenile turtles were allocated to lake, pond and paddy field to investigate the habitat effects on
turtles.

Results: The growth, morphology and gut microbial communities were monitored during the 4 months cultural
period. It showed higher growth rate of turtles in paddy field and pond. The appearance, visceral coefficients, gut
morphology and microbial communities in turtles were distinct among different habitats. The microbial community
richness on Chaol was obviously lower in initial turtle guts from greenhouses, whereas it was relative higher in
turtle guts sampled from paddy fields than ponds and lake. Significant differences on dominant microbes were
found among initial and subsequent samples from different habitats. Firmicutes was the most abundant phylum in
the guts of turtles sampled from the greenhouse initially, while Proteobacteria was the most abundant phylum
after cultivation in different habitats, followed by Bacteroidetes. The microbial composition were distinct in different
habitats at 60d, and the appearance of dominant phyla and genera was more driven by sampling time than habitats at
120d. Both the sampling time and habitats affected the appearance of dominant phyla and genera during the
cultivation. The functional predictions indicated that both habitat type and sampling time had significant effects on
metabolic pathways, especially amino acid and carbohydrate metabolism.

Conclusions: The turtles could adapt to natural lakes, artificial ponds and paddy fields. The gut microbial abundance
was different among the habitats and sampling time. The species of microbes were significantly more diverse in paddy
field specimens than in those from ponds and lakes. Rice-turtle coculture is a potential ecological and economic
farming mode that plays important roles in wild turtle protection and food security.

Keywords: Gut microbial variation, Diversity, Habitat, Rice-turtle coculture.

* Correspondence: hejixiangah@sina.com

'Key Laboratory of Aquaculture & Stock Enhancement of Anhui Province,
Fisheries Research Institute, Anhui Academy of Agricultural Sciences, No.40
Nongkenan Road, Luyang District, Hefei 230031, Anhui Province, China
Full list of author information is available at the end of the article

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12866-021-02209-y&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:hejixiangah@sina.com

Wu et al. BMC Microbiology (2021) 21:142

Background

Owing to their high nutritional value and unique taste, the
consumption of wild animals is popular in many countries
and areas, which has accelerated the recession of wild re-
sources. However, some of the wild animals that are con-
sumed may carry highly pathogenic viruses and bacteria
that pose a potential threat to humans. Moreover, wildlife
conservation has become an impending issue in recent de-
cades. Chinese soft-shell turtle (Pelodiscus sinensis, herein-
after referred to as turtle) is an important commercial
aquatic species in Southeast Asia, including China, and is
commonly considered a tonic food due to its high nutri-
tive and medicinal value [1, 2]. P. sineunsis has become a
vulnerable species due to habitat loss and overfishing [3].
These turtles live in water and have been traditionally cul-
tured in lakes, rivers or reservoirs at low stocking dens-
ities. Currently, several modes of captive culture have
been promoted to satisfy market demand; greenhouses
and artificial ponds are commonly selected as sites for
high production turtle aquaculture [4]. Intensive cultiva-
tion can significantly increase the production of commer-
cial turtles while shortening the culture period; however,
it is also accompanied by problems such as a high risk of
disease, defective appearance and low quality. Further-
more, the high energy consumption of these rearing pat-
terns is not conducive to sustainable agricultural
development and has aroused increasing public concern
[4, 5]. Intensive breeding can cause diseases such as bac-
terial infection and mesenteritis in aquaculture species
due to the associated crowded living spaces and superflu-
ous but simple food sources [6—8]. Consequently, antisep-
tic medicines and antibiotics have been abused leading the
rise in antibiotic resistance [9, 10], thus leading to more
serious environmental and health problems that affect
both the quality of the product and animal welfare [11-
13]. Probiotics have been developed for both cultured ani-
mals and humans as immunopotentiators [14, 15], but
their positive effects are limited and temporary; thus, more
healthy culture modes should be applied for high-quality
aquatic products [16, 17].

Turtles from different habitats generally show obvious
differences in appearance, morphology, textural proper-
ties, chemical composition and flavor substance contents
[5, 18]. Physiological disorders are associated with marked
changes in gut microbial communities. The gut micro-
biota is a protective barrier of organisms to prevent patho-
gen invasion and is affected by both the internal and
external environment for mammals as humans and
mouses [19-21]. The diversity and variation of gut micro-
bial communities have been considered indicators of the
health status of cultured fishes [22]. In recent years, the
coculture of rice and aquatic animals, such as rice-fish,
rice-crayfish and rice-turtle systems, has been rapidly de-
veloped in Southeast Asian regions, especially in South
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China [23]. Paddy fields can provide capacious space, shel-
ter and natural food for cultured animals. Cultured ani-
mals prey on pests, and the activities of the cultured
animals could loosen the soil and provide organic fertilizer
for paddies, thus significantly decreasing the utilization of
chemical fertilizers and pesticides [24, 25]. Therefore, the
coculture mode has been considered an economic and
ecological culture mode in rice-growing regions.

Host genetics, diets and ambient environmental condi-
tions could affect the composition of the complex gut
microbiota in fish [26, 27]. But it is difficult to fully un-
ravel the diversity and dynamics of gut microbiota and
identify keystone species for specific functions [16]. In
the present study, homologous juvenile turtles with simi-
lar genotypes and early life conditions were allocated to
different habitats to investigate their differences in
growth and morphology and analyze the diversity and
variation in their gut microbial communities within cul-
tural periods. Efforts were also made to identify func-
tional microbes or representative communities as
biomarkers of the physiological status of turtles in differ-
ent habitats.

Results

Turtle growth and morphology under different habitats
Mortality was negligible in both paddy fields and ponds
during the experimental period. However, only a small
number of turtles were caught from the lake at 60 d,
and no marked turtles were recaptured at 120 d, result-
ing in incomplete statistics for mortality and growth for
turtles in the lake. No wild turtles were caught during
sampling. A relatively small sample size (n =3) for each
group was designed for turtle resource protection pur-
poses, and it was difficult to sample from natural lakes.
There were significant differences in growth among the
different groups; the body weights of turtles in paddy
fields and ponds were obviously higher than those in
lakes (p <0.05), and divergence occurred in the early
days. The growth rates of turtles were 0.76 %/d, 0.68 %/d
and 0.40 %/d for those from paddy fields, ponds and
lakes, respectively, in the first 60 d. The rate was 0.72 %/
d and 0.62 %/d for turtles from paddy fields and ponds,
respectively, during the whole 120 d. The hepato-
somatic index and clumpy fat index were highest in
ponds, second in paddy fields and lowest in lakes (p <
0.05). The gut-somatic index of weight (DSLy) for tur-
tles from ponds was significantly higher than that for
turtles from lakes and paddy fields (p < 0.05). Conversely,
the gut-somatic index of length (DSI;) was higher for
turtles from paddy fields and lakes than those from
ponds. Measured values are presented as the mean +
standard deviation, and the different superscript letters
in the same row indicate significant differences (p < 0.05)
(Table 1).
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Table 1 The anatomical indices of turtles from different habitats and cultured days
Indices od 60d 120d

Field Pond Lake Field Pond Lake Field Pond
BW 3358+222  3413+326  3449+268  5297+355°  5122+393°  4388+274° 7966+ 582° 7172+ 646°
CcL 12.89+0.09 1291 +0.06 1292 +0.07 1596+ 0.26° 15.87 +030° 1530+028 ° 17.71+£035° 17.13+038°
Cw/CL 0.909 + 0.006 0914 +0.002 0.914 £+ 0.003 0.768 + 0.006” 0.766 +0.08° 0.779 + 0.005° 0.782+0.010 0.786 + 0.008
CLw/CL 0.150 £0.002 0.149 £ 0.002 0.149 £ 0.002 0.164 + 0.006° 0.178 + 0.005° 0.174 +0.008° 0.203 +0.06 0217 £0010°
SGR - - - 0.76 0.68 0.40 0.72 0.62
HSI 29402 29+02 29402 30+03° 31+02° 28+03° 26+02° 27+02°
FSI 38+0.2 38+02 38+02 36+02° 42+02° 29+02° 36+0.1° 39+02°
GSly 26+0.1 26=+0.1 26+0.1 21+01° 23+0.1° 21+0.1° 21+00° 24+0.1°
GSIp 40402 40402 40+£02 40+0.1 39+0.1 40+0.1 37+02° 35+£02°

BW (g): body weight

CL (cm): carapace length

CW (cm): carapace width

CLW (cm): calipash lateral width

SGR (Specific Growth Rate,%/d):100x(Ln(BW+)-Ln(BW,))/T

HSI (Hepatosmatic Index,%) = 100xliver weight / BW

FSI (Clumpy Fat Index,%) = 100xclumpy fat weight/ BW

GSl,, (Gut-smatic Index on Weight,%) = 100xgut weight/BW

GSI, (Gut-smatic Index on Length) = gut length/ Carapace length

There was no obvious trauma experienced by most
turtles from the lake except occasional parasitic leeches
observed on the calipash. However, more bruises or
scars were observed for the turtles from ponds than
those from paddy fields. The appearance, such as the
color, of the carapace and plastron were different among
turtles from different habitats. The carapace of turtles
cultured in ponds presented a bottle green color, but the
individuals from paddy fields presented a bottle green
color with a slight golden yellow color, which was simi-
lar to turtles from lakes. There were significant differ-
ences in carapace width/carapace length (CW/CL) and
calipash lateral width/carapace length (CLW/CL) values
at 60 d and 120 d (p < 0.05), and the CW/CL value was

relatively higher for turtles from lakes, and CLW/CL was
higher for turtles from lakes and ponds than for those
from paddy fields (p < 0.05) (Table 1).

Composition and diversity of turtle gut microbiota

The grouping details for samples from different habitats,
culture days and intestinal segments are listed in Table 2.
For gut samples, a total of 1 723 158 valid bacterial 16 S
rRNA gene reads were obtained, and 4 901 OTUs were
identified from all samples. The observed total OTUs
varied from 64 ~ 822. The total number of OTUs was
significantly lower in initial groups IF and IL and higher
in groups F1F and F1L from paddy fields at 60 d. The
number of OTUs was 17 ~ 48, representing more than

Table 2 Grouping details for samples from different habitats, cultured days and intestinal segment

Groups Body weight(g) Living habitats Cultured days Sampled gut segment
IF 3405+6.7 Greenhouse od (1) Foregut (F)
IL Greenhouse od (1) Hindgut (L)
F1F 5303+56 Paddy Field(F) 60d(1) Foregut (F)
FIL Paddy Field(F) 60d(1) Hindgut (L)
F2F 806.6 + 10.2 Paddy Field(F) 120d(2) Foregut (F)
F2L Paddy Field(F) 120d(2) Hindgut (L)
P1F 5150+73 Artificial Pond(P 60d(1) Foregut (F)
P1L Artificial Pond(P 60d(1) Hindgut (L)
P2F 7204 £33 Artificial Pond(P 120d(2) Foregut (F)
P2L Artificial Pond(P 120d(2) Hindgut (L)
L1F 3503 +5.1 Natural Lake(P) 60d(1) Foregut (F)
L1L Natural Lake(P) 60d(1) Hindgut (L)

The letters or numbers in groups names indicated “Habitat”, “Sampling time"and “Gut segment”, respectively, which were also shown in the parentheses. Body

weight here was average body weight of the three sampled turtles for each groups
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0.01 % of the total OTUs (Table S1). Significant differ-
ences were found in OTU composition among groups
(Fig. S1). Guts sampled at 120 d had few unique OTUs,
both in the foregut and hindgut. Rarefied OTUs (with
reads normalized to 35,000 for each sample) was
adopted to do diversity and richness analysis. We picked
Chaol and Shannon as richness and evenness indicator,
respectively. The index of Chaol was higher in the hind-
gut than those in the foregut at 60d, whereas it was
higher in turtle guts sampled from paddy fields than
ponds and lakes. In addition, the Chaol index was sig-
nificantly lower in initial turtle guts from greenhouse
compared to the samples from the three different habi-
tats (p < 0.05) (Fig. 1a). The shannon index was relative
higher in foregut than hindgut samples, whereas it was
also relative higher in foregut samples from paddy field
than pond and lake at 60d (Fig. 1b). The species and
number of OTUs varied significantly at 60 d, different
from the relatively similar results across groups obtained
at 120 d. The microbial abundance was higher in sam-
ples from paddy fields than in samples from lakes and

Page 4 of 15

ponds during the experiment. The microbial community
presented relatively high similarity in guts sampled at
the same time. The PCoA (principal coordinate analysis)
of the Bray-Curtis dissimilarity showed high microbial
community similarity in guts from the same individual
or group and significant discrepancy in samples from
different habitats, sampling times and gut sections (Fig. 2,
Fig. S2). Generally, both sampling time and habitat af-
fected the variation in the gut microbial communities.

Dominant microbes

The recognized microbes belonged to 27 phyla, 59 clas-
ses, 97 orders, 151 families, and 219 genera from all the
samples based on GreenGene. The phylum and genus
levels were emphasized in the analysis. Bacteroidetes,
Firmicutes, Fusobacteria and Proteobacteria were the
most dominant phyla, accounting for more than 95 % of
the total bacteria in all samples. Firmicutes was the most
abundant phylum in the guts of turtles sampled from
the greenhouse initially, while Proteobacteria was the
most abundant phylum after cultivation in different
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habitats, followed by Bacteroidetes. Firmicutes and Fuso-
bacteria commonly existed at 60 d but were rarely
present at 120 d in turtles from all three habitats
(Fig. 3a). Additionally, the unidentified bacteria were
more abundant in turtles from lakes than those from
paddy fields and ponds.

There was a significant difference in dominant genera
among initial samples and subsequent samples from dif-
ferent habitats. The dominant genera in the initial samples
were an unclassified genus belonging to Bacteroidales,
Romboutsia, Cetobacterium, Weissella, Lactococcus, Lacto-
bacillus, Clostridium, Edwardsiella, Plesiomonas, and
Sarcina. For samples from the three habitats mentioned
above, the dominant genera were Cetobacterium, Chryseo-
bacterium, Clostridium, Epulopiscium, Flavobacterium,
Helicobacter, Pseudomonas, Stenotrophomonas and an-
other unclassified genus belonging to Xanthomonadaceae.
The abundance of dominant genera varied with habitat,
sampling time and gut location. For turtles sampled from
paddy fields, the most dominant genus in foregut samples
taken at 60 d was Clostridium, and in the hindgut, it was
Cetobacterium, while at 120 d, the most dominant genus
was Stenotrophomonas both in the foregut and hindgut.
For turtles sampled from ponds, the most dominant gen-
era at 60 d were Flavobacterium and Cetobacterium in the
foregut and hindgut, while at 120 d, the most dominant

genus was also Stenotrophomonas. For turtles sampled
from the lake, the most dominant genera at 60 d were Fla-
vobacterium and Cetobacterium in the foregut and hind-
gut, respectively (Fig. 3b).

The dominant species in different gut locations were
also distinct. In the foregut, the dominant species were
Weissella cibaria, Enterococcus durans, Lactobacillus
sakei, Lactococcus lactis, Lactococcus garvieae, Sarcina
sp. and Pseudomonas sp., whereas in the hindgut, Clos-
tridium sensu stricto, Romboutsia sp., Weissella cibaria,
Escherichia coli, Plesiomonas shigelloides, Edwardsiella
tarda, Paeniclostridium sp., Cetobacterium sp., Terri-
sporobacter sp. and two other unclassified species be-
longing to Bacteroidales were the most abundant.

Microbial communities in turtles from different habitats
and at different sampling times

The microbial community was relatively complex at
60 d, especially in the foregut. At 60 d, the species of
microbes were significantly more abundant in turtles
from the fields, followed by those from ponds and
lakes. There were 140 common species (8.2 %) in the
foreguts of turtles from the three different habitats
(Fig. 4a); Flavobacterium sp., Pseudomonas sp., Chry-
seobacterium sp. and two species belonging to
Xanthomonadaceae = were  relatively  abundant.
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Cetobacterium somerae was more abundant in turtles
from paddy fields than in those from ponds and
lakes. For the hindgut, there were 205 common spe-
cies (8.1 %) in turtles from the three different habitats
(Fig. 4b). Among these, one species belonging to

Bacteroidaceae was abundant in all habitats. Cetobac-
terium somerae, Epulopiscium sp., Pseudomonas sp.,
Stenotrophomonas sp. and Flavobacterium sp. were more
abundant in turtles from paddy fields and lakes than in
ponds, while Clostridium sp. and Epulopiscium sp. were
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relatively abundant in specimens from ponds. Moreover,
Chryseobacterium sp., Parabacteroides sp., Sphingobacter-
ium faecium, Clostridium perfringens, Pseudomonas sp.,
Bacteroides sp. and Pseudomonas sp. commonly existed in
samples from lakes and paddy fields but did not appear in
pond samples. At 120 d, specific foregut microbes were
more abundant in pond turtles (74 %) than paddy field
turtles (33.4 %), and the common species accounted for
18.6 %; for the hindgut, specific microbes were more
abundant in paddy field turtles (44 %) than pond turtles
(344 %), and the common species accounted for 26.1 %
(Fig. S3).

LEfSe analysis was also conducted to identify representa-
tive microbes among various groups. For the initial groups,
representative genera were Weissella, Cetobacterium, Chry-
seobacterium, Epulopiscium, Escherichia, Flavobacterium,
Lactococcus, Leuconostoc, Plesiomonas, Romboutsia, Sarcina
and Stenotrophomonas. For groups cultured in different
habitats, FIL contained more different species than the
other groups, including members of Cetobacterium, Lacto-
bacillaceae, Bacteroides, Parabacteroides, Plesiomonas, and
several species belonging to the phylum Firmicutes
presented higher LDA scores than those of the other
groups. For F1F, the representative taxa were Sutter-
ella, Bacteroides and Clostridiales. For samples from
the lake, Xanthomonadaceae and Pseudomonadales
were representative taxa, especially at 60 d. The rep-
resentative microbes in pond turtles were numerous
and belonged to various phyla, especially the phylum
Proteobacteria, and some unassigned species were
found turtles from this habitat (Fig. 5).

Functional predictions

The nearest sequenced taxon index (NSTI) was devel-
oped to quantify the availability of nearby genome repre-
sentatives for groups (Table S2). In total, 39 predicted

functional categories that represented 7 pathway maps
in level 2 were indicated by PICRUSt, including 275
functions on level 3. Culture period and habitats had sig-
nificant effects on metabolism such as amino acid and
carbohydrate metabolism, environmental and genetic in-
formation processing such as membrane transport, repli-
cation and repair, especially at 60d (Fig. S4). At 60 d, the
functional microbiota in foregut related to amino acid
and carbohydrate metabolism was distinct higher in
paddy field samples compared to those from ponds and
lake, while in hindgut, the functional microbiota were
more abundant in pond samples than lake and paddy
field (Fig. 6, Fig. S4).

Discussion

Turtles had the same general microbiota regardless of
origin, body size and habitat and presented fast adapta-
tion after allocation to different habitats [28]. The differ-
entiation of growth, behavior and physiology of the
homologous turtles appeared under different living habi-
tats in a short period. Environmental changes can sub-
stantially influence the intestinal microbiome of
mammalian and aquatic animals [29, 30]. The differ-
ences might be attributed to living space[6], water qual-
ity, food composition and abundance [31, 32], and prey
and predation conditions for different habitats [33].
Considering the similarity of natural conditions, such as
geographical location, climate, rainfall and temperature,
among the mentioned three habitats, the food intake
and relative living space might be the main factors deter-
mining the growth and physiology of turtles in this
study, referring to the researches of aqutaic animals as
perch (Perca fluviatilis), crucian carp (Carassius aura-
tus) and African cichlid fishes [34—36]. Wild turtles are
predominantly carnivorous and prey on small fish, mol-
lusks, crustaceans, insects or their larvae, and
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occasionally some plant seeds, but food abundance is af-
fected by the aquatic environment, competitors and nat-
ural enemies in different habitats [37, 38]. In the present
study, turtles in paddy fields and ponds were regularly
fed artificial feeds, but no such feeds were provided for
turtles in the lake during the experiment. In addition,
gastropods and insect larvae commonly exist as supple-
mentary food in lakes and paddy fields but rarely exist in
ponds [39]. The stocking density in lakes was undoubt-
edly lower than that in paddy fields and ponds, and the
lake environment was relatively stable with capacious
water and less disturbance. However, more competitors,
predators and parasites existed in the lake, but negligible
interspecific competition occurs in this habitat [40]. The
paddy field in this study was a complicated habitat with
environmental features such as common fields and
ponds. The paddy field provided spacious living space,
and rice plants served as shelter for turtles. The high
growth rate of turtles in this habitat might be attributed
to the relatively low stocking density and sufficient food
in paddy fields. He et al. (2017) demonstrated that the
taste of turtles cultured in paddy fields was better than
that of turtles in cultured ponds based on the texture
and chewiness of the meat, which might also be due to
the broad space of paddy fields for turtle activities [18].

All of these results indicated that the extensive living
space of paddy fields could promote growth and quality
with proper amounts of food.

Food and feeding strategies obviously affected the
morphology and function of the digestive system [41],
and a previous study on perch demonstrated that the
relative gut length was shorter under stress conditions
such as food shortage [34]. For cultured fishes as gilt-
head sea bream (Sparus aurata) and rare minnow
(Gobiocypris rarus), sufficient feeds might enhance di-
gestive function and promote the development of the
gut at an earlier feeding stage, but continuous regular
feeding with sufficient food might decrease appetite and
digestive activities, along with changes in gut morph-
ology and structure [42, 43]. The gut presented obvious
adaptation to habitat, and the relative length of the gut
was significantly lower in ponds than in paddy fields and
lakes. This might be related to the complicated food
composition in lakes and paddy fields, and increased nu-
trient absorption and prolonged intestinal transit time
for turtle [44], which was also found in gibel carp (Car-
assius auratus gibelio) [45]. Although the turtles in
ponds were apparently fed to satiation during the experi-
ment, the fixed and simple artificial feed might not be
compatible with the ingestion habits of the turtles, and
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the food species or types also influenced the internal en-
vironment and gut microbial communities [46].

The gut microbiota was closely associated with host
physiological metabolism, nutrient utilization, nutri-
tional status, immunity, and even health for aquatic an-
imals [47, 48]. The microbes originally derived from
previous generations of experimental animals as mouse
and human beings in previous studies played important
roles in the formation of gut microbial communities
and microecological systems [21, 49]. The habitats
would also affect the gut microbiota and there were sig-
nificant differences in gut microbial composition under
different habitats for zebrafish (Danio rerio), mice and
Antarctic seals in previous studies [50, 51]. In general,
the microbial population is less diverse in diseased or-
ganisms than in healthy organisms. The gut microbial
species were more abundant in paddy fields and ponds
than in lakes at 60 d, while the species were fewer, and
no obvious differences were found among the three
habitats at 120 d. This might be due to an obvious re-
duction in feed intake at 120 d. The dominant phyla
and genera were relative similar regardless of the habi-
tats at 120d, and the appearance of dominant phyla and
genera was more driven by sampling time than habitats.
But the microbial composition were distinct in different
habitats at 60d, and both the sampling time and habi-
tats affected the appearance of dominant phyla and
genera during the cultivation (Fig. 3). The study on
threespine stickleback (Gasterosteus aculeatus) showed
the composition and abundance of gut microbial com-
munities varied under different habitats to adapt to
habitat heterogeneity [52]. In previous studies on zebra-
fish and dogs, food was deemed as a main factor that
influenced gut morphology, homeostasis and micro-
biota, providing nutrients for the body and acting as a
fermentation substrate for gut microbes [53, 54]. The
microbial gut communities varied greatly when the At-
lantic salmon (Salmo salar) were fed diets of different
compositions [55]. Therefore, the gut microbita of tur-
tles would be also affected by food supply in various
habitats.

Ambient water conditions such as temperature and
dietary changes affect the microbiome composition in
Atlantic salmon [56, 57], and a suitable diet is conducive
to improve the intestinal environment and increase the
abundance of probiotics [48]. The PICRUSt functional
predictions revealed that both the cultural periods (dif-
ferent seasons) and habitats had significant effects on
metabolism, especially amino acid and carbohydrate me-
tabolism, which also indicated the key role of food intake
on the gut microbial community in mouse [58]. More-
over, the gut microbiota further influences the metabolic
activity of the host as African turquoise killifish (Notho-
branchius furzeri) [59].
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Most previous studies on fish, poultry and mammals
have focused on factors that affect the gut microbial
community, such as genotype, rearing conditions and
diet [60—62]. However, the causality between the micro-
bial community and specific diseases is ambiguous, such
as obesity in rodents and humans [63, 64]. Healthy indi-
viduals often have intricate and stable gut microbial
communities, and pathogenic bacteria might disturb
homeostasis and microbial balance, which may manifest
as a reduction in gut microbial species and richness. In
contrast, in recent studies on grass carp (Ctenopharyno-
don idellus), more bacteria and higher alpha diversity
were observed in diseased intestines than healthy intes-
tines, and the richness of bacteria could not fully indi-
cate health status [65]. The representative microbes that
could reflect the balance of microbial communities and
contribute to intestinal health should be considered, and
they might also vary in different species or life stages.

For the turtles in this study, the dominant phyla were
Proteobacteria, Bacteroidetes, Firmicutes and Fusobacteria
in different habitats, which were similar to the taxa in fresh-
water fish such as crucian carp, grass carp, and bighead
carp (Hypophthalmichthys nobilis) [66] and marine turtles
such as green turtles (Chelonia mydas) [28]. Previous stud-
ies indicated that there was a clear difference in compos-
ition between aquaculture-reared and wild aquatic animals:
in the wild species, Proteobacteria was always the most
abundant phylum, whereas Firmicutes was the most abun-
dant phylum in the aquaculture-reared species [67, 68]. For
the turtles in this study, it was also found that Firmicutes
was the most abundant phylum in the guts of turtles sam-
pled from the greenhouse under the initial intensive aqua-
cultural conditions, whereas Proteobacteria was the most
abundant phylum after cultivation in ponds, lakes and
paddy fields, especially at 120d. The results also indicated
that the gut microbiota of turtles had both intrinsic and dis-
tinct environmental characteristics. Aeromonas, Chryseo-
bacterium and Citrobacter commonly exist in European
pond turtles kept in breeding centers, and there were obvi-
ous differences in bacterial composition and abundance for
turtles of different ages [69]. The composition and abun-
dance of gut bacteria also varied with different physical sta-
tuses, and the virulence and prevalence of pathogens were
suppressed in healthy individuals [70]. Cetobacterium,
Cyanobacterium and Clostridiaceae were more abundant in
healthy fish, whereas Aeromonas, Vibrio and Shewanella
OTUs were more abundant in diseased individuals [71]. En-
terococcus spp. and Citrobacter spp. were the dominant
bacteria in healthy turtles, while Citrobacter spp., Aeromo-
nas spp. and Bacillus spp. were predominant in diseased
turtles [72]. Lactococcus garvieae, Citrobacter freundii and
Edwardsiella tarda were commonly pathogenic bacteria in
aquatic environments [73]. In this study, Edwardsiella spp.
was occasionally found in samples from ponds but rarely
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found in those from paddy fields and lakes. Aeromonas spp.
and Citrobacter spp. were absent in almost all samples.
Bacillus spp. were more abundant in paddy fields than in
lakes and ponds at 60 d. Pseudomonas spp. existed widely
and were rich in most samples except hindgut samples
from pond turtles at 60 d. In addition, the nonpathogenic
bacteria Enterococcus faecium, Enterococcus hirae, Hae-
mophilus segnis, Ochrobactrum anthropi and Pseudomonas
spp. could also induce carapace and plastron damage when
the cultural environment became poor. The relationship
between gut microbial communities and bodily health was
not static, and the gut microbial community was mutually
adapted to the internal and external environments. There-
fore, the relationship among microbial communities in the
gut, culture water and soil should also be detected to reveal
the adaptation of turtles to different habitats.

It is necessary to optimize feeding regimes and cultural
conditions to improve the economic and environmental
sustainability of aquaculture. Burgeoning culture modes
in reconstructive outdoor ponds and paddy fields have
been developed to replace hothouse cultivation, espe-
cially in the later life stages before coming into the mar-
ket. In this study, the turtles cultured in paddy fields
presented the maximum growth rate. The rice produc-
tion was relative stable or increased under a low area of
furrow or ponds in field paddy (< 10 % of the total plant-
ing area) and the mutual promotion of rice and aquatic
animals. Moreover, coculture could increase the value of
rice and turtles with a marked decrease in fertilizer and
pesticide utilization. The rice-turtle coculture modes
were widely developed and were suitable in both single
and double cropping rice cultivation area. All of these
results indicated that the coculture mode was economic
and ecological. The coculture mode could be optimized
by reasonable soil, water and fertilizer management, es-
pecially nitrogen fertilization and creating a feeding re-
gime of turtles on the basis of digestibility, which could
minimize nutrient outputs and decrease the environ-
mental impacts of intensive culture [74, 75]. Rice-turtle
coculture is an economic and ecological integrated cul-
ture mode that might play important roles in paddy field
environmental protection and food security due to the
sharp decrease in the utilization of chemical fertilizers
and pesticides with this method compared to that under
traditional planting modes. The mutual promotion of
the field environment and turtle health were preliminar-
ily detected in the present study, but the effectiveness
and potential of this method should be investigated
more systematically in future work.

Conclusions

The juvenile Chinese soft-shelled turtles could adapt to
different habitats, including natural lakes, artificial ponds
and paddy fields. The divergence in growth, appearance,
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physiological characteristics and gut microbial commu-
nities was observed within a relatively short term. The
species of microbes were significantly more diverse in
paddy field specimens than in those from ponds and
lakes. The diversity and abundance of gut microbes were
also higher for turtles from paddy fields than for those
from lakes and ponds. Significant divergence was found
in summer, whereas relatively less diversity was detected
in late autumn. The abundances of dominant phyla and
genera were obviously different in various habitats at
specific sampling times. Sampling time and habitat had
significant effects on turtle metabolism, especially amino
acid and carbohydrate metabolism. Rice-turtle coculture
is a potential ecological and economic farming mode
that plays important roles in wild turtle protection, food
security and paddy field environment improvement.

Methods

Experimental habitats and turtle rearing

The turtles (Pelodiscus sinensis, Japanese strain) were in-
tensively bred in a standardized aquafarm of Xijiang
Aquaculture Co., Ltd,, located in Anqing, China. The tur-
tles were stocked in cement tanks in hothouses with rela-
tively stable conditions (temperature was 30.0 + 1.0 °C and
water depth was approximately 0.5 m) before being allo-
cated to different experimental habitats. The turtles were
fed to apparent satiation once a day with commercial feed
containing 46 % crude protein (Haihuang, Hangzhou,
China). Thereafter, thousands of juvenile turtles of a simi-
lar size of approximately 340 g were purchased and ran-
domly divided into three groups that were allocated to
different experimental culture habitats as follows. Natural
Lake (L): Bohu Lake is located in Anqing, Anhui Province,
China (E116°22°, N30°13’) and belongs to the Yangtze
River basin. It covers 217 km? and the average water
depth is approximately 3.5 m from July to October. The
lake is abundant in fish, shellfish and other aquatic species.
Two thousand marked turtles were released to the lake,
and no artificial feeds were provided. The artificial release
was conducive to the recovery of the wild turtle popula-
tion. Artificial Pond (P): The quadratic artificial ponds
equipped with feeding and basking facilities were located
in the above mentioned standard aquafarm (116°54'E,
30°28'N). The experimental ponds were approximately
2000 m* and 1.5 m deep. One thousand turtles were allo-
cated to the pond. The turtles were fed commercial feed
that contained 43 % crude protein (Haihuang, Hangzhou,
China) twice daily at 09:00 AM and 16:00 PM, and the
daily feeding ration was 4 % during the experiment. Paddy
Field (F): The experimental paddy fields (E116°21°,
N30°18") were approximately 2000 m* and surrounded by
facilities to prevent escape. The area was modified for tur-
tle cultivation with a 200 m* pond (1.5 m deep), which
was approximately 10% of the total field area. Two
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hundred turtles were allocated to each paddy field. The
turtles were fed commercial feed twice a day like those in
ponds, but the feeding ration was 3 %. The rearing experi-
ment was conducted for 120 days from July to November.
Air temperature was monitored at 11:00 AM every day
during the experiment, which varied in the range of
22.5 °C ~ 35.8 °C. Water temperature, pH and dissolved
oxygen were monitored daily with a multiparameter water
quality analyzer (YSI ProPlus, Yellow Springs, Oh, USA).
In addition, ammonium nitrogen and nitrite nitrogen were
measured weekly. During the experiment, the water
temperature was 21.8 °C~33.6 °C, pH 7.8 ~82, DO >
5.0 mg/L, ammonium nitrogen < 0.5 mg/L, and nitrite ni-
trogen < 0.2 mg/L. Partial water changes were performed
when the water quality became poor in the ponds and the
small ponds in paddy fields. The change interval was ap-
proximately 20 days in summer and 30 days in autumn.

Measurement and sampling

Turtles were randomly collected at 0 d and 60 d, and
then as many as possible were collected at 120 d for
measurement. The turtles collected from different habitats
were randomly numbered, the investigator who selected
individuals for analysis was unaware of the grouping de-
tails, and another investigator (also unaware of grouping
details) conducted the anesthetic and anatomical proce-
dures. Every three male individuals with no trauma,
bruises or scars from each habitat and cultural periods
were collected for sampling. The turtles were anesthetized
and euthanized during measuring and sampling. The
turtles were anesthetized after 48 h of fasting by intramus-
cular injection with tiletamine and zolazepam (1:1) at a
dosage of 30 mg/kg. The turtles were under deep
anesthesia and unconscious within 15-20 min after injec-
tion from the left foreleg. The somatotype index, including
body weight, carapace length, carapace width and calipash
lateral width, was measured. Then, turtles were quickly
decapitated in an unconscious state and dissected by sharp
bone shears. The livers, clumpy fat, and guts were care-
fully removed on ice and weighed under sterile conditions.
Gut length, i.e., the length from the end of the esophagus
to the end of the rectum were separated and made straight
and then measured without tensile force by using an
electronic Vernier caliper (Guanglu. Guilin, China). The
gastrointestinal tract of turtle is structurally complex and
the morphology, digestive function are different in differ-
ent intestine parts. In consideration of the potential differ-
ences on morphology, digestive function and microbial
communities for different gut sections, we chose both
foregut and hindgut as objects to compare the differences
on microbial composition and dynamic variation in
different habitats and sampling time. The gastric area
(expressed as foregut “F”) and rectum (expressed as hind-
gut “L”) were separated, rapidly frozen in liquid nitrogen,
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and then stored at -80 °C until DNA extraction for micro-
bial analysis. The grouping details are listed in Table 2.
The specific growth rate (SGR), hepato-somatic index
(HSI), fat-somatic index (FSI), and gut-somatic index of
weight (DSLy) and length (DSI;) were calculated. All op-
erations on turtles were conducted in accordance with the
institutional animal care guidelines and the supervision of
Anhui Academy of Agricultural Sciences committees.

Bacterial DNA extraction and 16 S rRNA gene amplicon
sequencing

Bacterial DNA extraction was conducted using a TIA-
Namp Stool DNA Kit (DP328, TIANGEN, Beijing,
China) according to the manufacturer’s instructions.
The V4 ~ V5 variable region of the 16 S rRNA gene was
amplified by the bacterial primers 515 F (5-GTGCCA
GCMGC CGCGGTAA-3) and 907R (5-CCGTCAAT
TCMTTTRAGT TT-3') with overhang adapters at-
tached. The PCRs (25 pL) contained approximately 2.5
puL DNA templates (5 ng/pL), 5.0 uL reverse/forward
primer (1 pM), and 12.5 pL 2xKAPA HiFi HotStart
Ready Mix. PCR was performed on a Step One Plus
Real-time PCR System (Thermo Fisher Scientific,
Waltham, MA, USA) with the following program: 95 °C
for 3 min, followed by 25 cycles of 30 s at 95 °C, 30 s at
55 °C, and 30 s at 72 °C with a postamplification extension
of 10 min at 72 °C. The products were confirmed by agar-
ose gel electrophoresis (Peiqing, Shanghai, China). AMPure
XP beads (Beckman Coulter, Indianapolis, IN, USA) and
fresh 80 % EtOH were used to purify the 16 S V4 and V5
amplicons away from free primers and primer dimer spe-
cies for index PCR. Dual indices and Illumina sequencing
adapters were attached by using the Nextera XT Index Kit
(FC-131-1002, Mlumina, San Diego, CA, USA). PCR was
performed on a thermal cycler using the following program:
95 °C for 3 min, followed by 8 cycles of 30 s at 95 °C, 30 s
at 55 °C, and 30 s at 72 °C with a postamplification
extension of 5 min at 72 °C. AMPure XP beads were
used to clean up the final library before quantifica-
tion, normalization and pooling. The purified bacterial
DNA samples were sent to Sangon Biotech Co., Ltd.
(Shanghai, China) for Illumina MiSeq sequencing.

16 S Metagenomics sequencing analysis

The sequencing analysis methods were mainly as de-
scribed by Campos et al. (2018) and Abdelrhman et al.
(2016) [28, 76]. The obtained DNA reads were compiled
in FastQC version 0.11.5 for further processing. QIIME
version 1.9.1 was used for microbiome analysis of raw
DNA sequencing data, including demultiplexing and
quality filtering, OTU picking, taxonomic assignment,
phylogenetic reconstruction, diversity analyses and visu-
alizations. The barcode and primer sequences were cut
off after the samples were loaded, read pairs were
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merged using PANDAseq assembler version 2.10 for raw
tags, and the sequences were filtered if there was no
overlap between them. Then, the chimeras and host se-
quences were further filtered for clean tags. Singletons
were removed before operational taxonomical unit
(OTU) clustering (with an identity threshold of 97 %).
The valid data were clustered into OTUs using UPARSE.
The rarefaction curves for each sample were produced,
and diversity values were estimated on rarefied OTUs
[77]. The distances among samples were calculated ac-
cording to the abundance, and the samples were clus-
tered on OTUs to evaluate the similarity. The cluster
dendrogram and a phylogenetic tree were also built.
Specific differences in community composition were de-
termined using PCoA based on the Bray-Curtis distance
matrix. OTUs were taxonomically classified using
USEARCH (a unique sequence analysis tool) version
5.2.236 against GreenGenes databases and compiled into
each taxonomic level. The composition, abundance and
diversity analyses of OTUs were conducted for the spe-
cies richness and evenness and mutual or proper traits
of OTUs for various samples or groups. A test of the sig-
nificance of differences in OTU composition was con-
ducted using LEfSe analysis to identify the various
species. The prediction of microbial community function
was conducted by using PICRUSt to evaluate the abun-
dance of functional genes in the samples [78].

Statistical analysis

All differences among biometric measurements were de-
termined by analysis of variance (ANOVA) using SPSS
20.0. The measured data were subjected to one-way
ANOVA. Differences among treatments were tested by
Tukey’s multiple range test, and p < 0.05 indicated statis-
tically significant differences. Duncan’s multiple com-
parison was carried out to determine the difference
among repeated groups. All statistics on gut microbiota
were conducted by using R (version 3.2.2).
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