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Abstract: Venoms are a complex cocktail of biologically active molecules, including peptides, proteins,
polyamide, and enzymes widely produced by venomous organisms. Through long-term evolution,
venomous animals have evolved highly specific and diversified peptides and proteins targeting
key physiological elements, including the nervous, blood, and muscular systems. Centipedes are
typical venomous arthropods that rely on their toxins primarily for predation and defense. Although
centipede bites are frequently reported, the composition and effect of centipede venoms are far from
known. With the development of molecular biology and structural biology, the research on centipede
venoms, especially peptides and proteins, has been deepened. Therefore, we summarize partial
progress on the exploration of the bioactive peptides and proteins in centipede venoms and their
potential value in pharmacological research and new drug development.
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1. Introduction

‘Struggle for survival’, a linchpin of Darwinian evolution theory, is an incessant natural
phenomenon where all living organisms must adapt to diverse environmental factors, cope
with competition, and ultimately win in natural selection [1]. In natural ecosystems, organ-
isms with advantageous mutations or traits are conferred better survival abilities. Such
abilities might be due to environmental pressure, climatic changes, or extreme competition,
where organisms that can withstand such challenges are selected for survival. One such im-
portant consequence of natural selection is venom production from single-cell protozoans
to metazoan primates [2]. This phenomenon, whereby distantly related organisms adapt to
similar requirements, can be referred to as convergent evolution. For example, centipedes
envenomate their enemies or prey as a defensive and offensive strategy.

In the animal kingdom, venomous organisms are represented in a broad range of
phyla, both invertebrates and vertebrates occupying different ecological habitats [2–5].
Venom production marks a vital adaptation and survival strategy in natural ecosystems
riddled with strenuous competition for limited resources [2]. Venom comprises a complex
cocktail of active pharmacological peptides and/or proteins produced by an animal’s
specialized venom system [6,7]. Such peptides serve defensive or predatory roles through
a range of actions, including killing cells (cytotoxins, necrotoxins), targeting and damaging
muscles (myotoxins), and impairing the nervous system (neurotoxins).

Centipedes are terrestrial, predatory arthropods belonging to the phylum Arthro-
poda, subphylum Myriapoda, and class Chilopoda. As one of the four major lineages
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of the myriapod, centipedes include 3300 to 3500 species belonging to five extant orders,
namely Scutigeromorpha, Lithobiomorpha, Craterostigmomorpha, Geophilomorpha, and
Scolopendromorpha, and an extinct fossil order, Devonobiomorpha [8,9]. They are present
on every continent except Antarctica, with the greatest diversity occurring in the tropics
and warm temperate regions [10]. Most centipedes live in rotten leaves and soil in wooded
areas or under stones, bark, or wood, although some live in grasslands, deserts, caves, and
coastal regions [10].

Centipedes are excellent predators. Although centipede bites rarely cause death in hu-
mans, it is fatal to insects and crustaceans. Similar to many spider toxins, centipede venoms
show good insecticidal activity [11]. Four neurotoxins, µ-SLPTX-Ssm1a, κ-SLPTXSsm1a, 2a
and 3a, isolated and characterized from Scolopendra paucifera, have apparent insecticidal tox-
icity to blowfly larvae, adult blowflies, cockroaches, and mealworms [12]. Centipedes can
kill and feed on vertebrates, such as bats, rats, amphibians, and reptiles [13,14]. In addition,
the toxicity varies among centipedes. For instance, mice’s median lethal dose (LD50) values
were 0.16 and 0.012 g/kg for Scolopocryptops ferrugineus and Otostigmus scabricauda, respec-
tively, a difference of more than 10-fold [8]. Although human death from centipede bites is
rare, they can still induce severe complications, such as severe pain, swelling, hemorrhage,
tissue necrosis, nausea, vomiting, general rash, myocardial ischemia, and infarction [10,15].
These pathological symptoms induced by centipede envenomation indicate that centipede
venoms are rich in diverse bioactive components acting on several systems.

In the last 30 years, with the highly developed methods of venom research, includ-
ing cDNA library construction, protein sequencing, mass spectrometry, genomic analysis,
transcriptome analysis, proteome analysis, and structural biology techniques, venoms
from many animals have been intensively studied [15,16]. Recently, a new venom-peptide
family named HAND toxins and a recombinant toxin named Cryptoxin-1 from centipedes
were successively identified [17,18]. Centipede venoms have recruited gene families by
horizontal gene transfer between bacteria, fungi, and oomycetes [19]. Centipede venom
composition between male and female have abundance differences that show significant
sex-based variation [20]. These studies presented discoveries about biochemical characteris-
tics and novel centipede venom genetic evolution mechanisms. The in-depth exploration of
toxins is not only beneficial to understanding the survival strategies of venomous animals
but also helpful in screening the leading molecules with potential therapeutic uses. Here,
we describe the peptides/proteins from centipede venoms with pharmacological activities
targeting the nervous, blood, and immune systems. The representative centipede venom
components noted herein are summarized in Table 1.

Table 1. Representative functional components derived from centipede.

Venom Components Centipede Species Activities Component Source References

µ-SLPTX-Ssm1a S. subspinipes mutilans TTX-S NaV channel inhibitor Venom [12]

µ-SLPTX-Ssm6a S. subspinipes mutilans NaV1.7 channel inhibitor Venom [21]

ω-SLPTX-Ssm1a S. subspinipes Activator of Cav channels in DRG Venom [12]

ω-SLPTX-Ssm2a S. subspinipes Inhibitor of CaV channels in DRG Venom [12]

κ-SLPTX-Ssm1a S. subspinipes mutilans Inhibitor of KV channels in DRG Venom [12]

κ-SLPTX-Ssm2a S. subspinipes mutilans Inhibitor of KV channels in DRG Venom [12]

κ-SLPTX-Ssm3a S. subspinipes mutilans Inhibitor of KV channels in DRG Venom [12]

SSD559 S. subspinipes dehaani Inhibitor of KV channels in DRG Venom [22]

SsTx S. subspinipes mutilans Inhibitor of KCNQ4 and KV1.3 channel Venom [15]

SsTx-4 S. subspinipes mutilans Inhibitor of Kir1.1, Kir4.1 and
Kir6.2/SUR1 channels Venom [23]

SSD1052 S. subspinipes dehaani Inhibitor of CaV channels in DRG Venom [22]

RhTx S. subspinipes mutilans TRPV1 channel activator Venom [24]
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Table 1. Cont.

Venom Components Centipede Species Activities Component Source References

RhTx2 S. subspinipes mutilans TRPV1 channel activator Venom [25]

Scolopendrin I S. subspinipes mutilans Antimicrobial activity Venom [26]

Scolopin 1 S. subspinipes mutilans Antimicrobial activity Venom [27]

Scolopin 2 S. subspinipes mutilans Antimicrobial activity Venom [27]

LBLP S. subspinipes mutilans Antifungal activity Whole centipede [28]

Scolopendin 1 S. subspinipes mutilans Antimicrobial activity Whole centipede [29]

Scolopendin 2 S. subspinipes mutilans Antimicrobial activity Whole centipede [30]

Scolopendrasin I S. subspinipes mutilans Antimicrobial activity Whole centipede [31]

Scolopendrasin II S. subspinipes mutilans Antimicrobial activity Whole centipede [32]

Scolopendrasin V S. subspinipes mutilans Antimicrobial activity Whole centipede [33]

Scolopendrasin VII S. subspinipes mutilans Antimicrobial activity;
Anticancer activity Whole centipede [34]

Scolopendrasin IX S. subspinipes mutilans Anti-inflammatory activity Whole centipede [35]

TNGYT S. subspinipes mutilans FXa inhibitor Venom [36]

SSD14 S. subspinipes dehaani γ-Glutamyl Transpeptidase, platelet
aggregation and hemolytic activities Venom [22]

Trypsin-like S1 family S. subspinipes dehaani Serine peptidases, potentially involved
in activation of toxins Venom [37,38]

Subtilisin-like S8 family
E. rubripes
C. westwoodi
S. subspinipes dehaani

Serine peptidases, potentially involved
in activation of toxins Venom [37,38]

β-pore-forming toxins Scolopendrids
In cell membranes, it has the potential to
cause cytotoxicity by forming polymeric
pores structures in cell membranes

Venom [37,38]

CAP (cysteine rich
proteins) protein Scolopendrids Unknown (CAP1, CAP3); CaV channel

antagonist and trypsin inhibitor (CAP2) Venom [37,38]

Serotonin S. viridicornis Analgesic activity Venom [39,40]

Histamine S. subspinipes Analgesic activity Venom [41,42]

Transferrin E. rubripes
S. morsitans Potential antimicrobial activity Venom [37,38]

Polysaccharide–
protein

complex
S. subspinipes mutilans Inhibitor of tumor cells Whole centipede [43]

Hyaluronidase Scolopendrids
Glycosaminoglycan degradation;
potential for spreading of venom
components

Venom [37,44]

Cystatin type-1 E. rubripes Potential peptidase inhibitors Venom [37,38]

Antithrombotic peptide
SQL E. rubripes Inhibitor of platelet aggregation Whole centipede [45]

Lysozyme C Scolopendrids Potential antimicrobial activity Venom [37,38]

Scolonase S. subspinipes mutilans Fibrinolytic activity;
Serine peptidase Whole centipede [46]

Phospholipase A2
S. viridis
S. subspinipes dehaan
S. viridicornis
O. pradoi

Hydrolysis of glycerophospholipids;
involved in anti-inflammatory,
hemolysis, neurotoxicity, and
cardiotoxicity

Venom [15,47,48]

CentiPAD T. longicornis
L. forficatus

Peptidylarginine deiminase, potentially
involved in post-translational
modification of toxins

Venom [19]

LDLA protein Scolopendrids Unknown Venom [37,38]
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2. Centipede Toxins Acting on the Nervous System

Centipedes are excellent predatory arthropods. They deploy a broad set of bioactive
peptides to capture prey or defend against predators [23,38,47–50]. Neurotoxins are the
primary predation and defense peptides in centipede venom and also important ingredi-
ents that have made significant progress in revealing the biological activities and action
mechanisms in recent research. These components act on a wide array of targets, mostly
the ion channels, either by activating or inhibiting their electric activity.

2.1. Toxins Targeting Voltage-Gated Sodium Channels

Voltage-gated sodium channels (NaV) are critical molecular determinants of electri-
cal impulses (action potentials) initiation and propagation, which underlie the electrical
hyperexcitability characteristic of chronic inflammatory and neuropathic pain [51,52]. We
have made in-depth research on the venom of the Chinese red-head centipede, Scolopendra
subspinipes mutilans L. Koch. µ-SLPTX-Ssm1a was a selective TTX-sensitive (TTX-S) NaV
channel inhibitor with the complete amino acid sequence ADNKFENSLRREIACGQCRD-
KVKCDPYFYHCG [12]. Interestingly, another selective NaV channel inhibitor with an
almost identical N-terminal sequence of µ-SLPTX-Ssm1a was further discovered from
the S. subspinipes mutilans. µ-SLPTX-Ssm6a consists of 46 amino acid residues, yielding a
molecular mass of 5318.4 Da. By using whole-cell patch-clamp recordings, this peptide
potently inhibited the NaV1.7 channel with a half-maximal inhibitory concentration (IC50)
of ~25 nM, which showed a much higher selective than other human sodium channels
subtypes (Figure 1). In addition, µ-SLPTX-Ssm6a exhibited an analgesic effect than mor-
phine in formalin-induced pain models. Moreover, µ-SLPTX-Ssm6a showed an almost
equal analgesic effect with morphine in thermal and acid-related pain models [21]. Many
neurotoxins from venomous animals such as scorpion, spider and snail also target NaV1.7.
For instance, ProTx-II, a tarantula toxin, selectively targets the NaV1.7 channel, yielding an
IC50 of 0.3 nM [53]. Similar to the effect of µ-SLPTX-Ssm6a on rat DRG neurons, ProTx-II
shifted the conductance–voltage relationship in a depolarizing direction [53] despite their
different structures. µ-SLPTX-Ssm6a is composed of three α helix structures, while ProTx-I
contains two anti-parallel β-folds, which belong to the inhibitory cystine knot family [54].
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By the venomic and transcriptomic analysis of centipede Scolopendra subspinipes dehaani,
Liu et al., identified only one group of peptides with five members coding for an identical
mature peptide [22]. The Mexican centipede Scolopendra viridis crude venom was also
reported to weakly inhibit hNaV1.2 and hNaV1.6 channel subtypes, indicating the existence
of sodium channel inhibitors in S. viridis [55]. With the help of peptidomics combined
with the cDNA library, we uncovered another precursor that has activity on the sodium
channel [56].

2.2. Toxins Targeting Voltage-Gated Potassium Channels

Voltage-gated potassium channels (KV) distinctively modulate firing action potentials
with the NaV channel. The NaV channel depolarizes the membrane potential while the KV
channel repolarizes the membrane potential. The KV modulators account for a considerable
portion in centipede venom. For instance, 10 families of KV inhibitors were identified from
the S. subspinipes dehaani [22]. Moreover, the selectivity and potency of KV modulators
are variable. SSD559, the most potent KV inhibitor, dose-dependently inhibits potassium
channels in DRG neurons, and the IC50 for potassium channel inhibition was 10 nM [22].
In contrast, κ-SLPTX-Ssm3a was a weaker KV inhibitor. Application of 200 nM κ-SLPTX-
Ssm3a on KV channels of dorsal root ganglion (DRG) neurons inhibits 25 ± 5% currents,
and κ-SLPTX-Ssm3a does not entirely diminish the potassium peak currents even up to
5 µM, indicating that κ-SLPTX-Ssm3a is a weak inhibitor of potassium channel [12].

Based on centipede toxicity tracking, we isolated Ssm spooky toxin, SsTx, from the
S. subspinipes mutilans. The structure of SsTx is polarized, with basic amino acids of arginine
(position 12) and lysine (position 13) forming a positively charged surface. Further analyses
showed that SsTx potently inhibited the KCNQ family with R12 and K13 on SsTx, and
formed two pairs of salt bonds with residues 288 (aspartic acid) and 266 (aspartic acid) on
KCNQ4, respectively (Figure 1). In addition, SsTx potently disrupts the cardiovascular,
nervous, respiratory and muscular systems in rodent and mammal models [15]. In a
further study, we showed that SsTx also inhibits the KV1.3 channel, amplifying the broad-
spectrum destructive effect by inhibiting the KCNQ family, and shows that SsTx plays
a key role in centipede defense and predation [57]. Yajamana et al. reported that SsTx,
alone with three identified peptides (SsdTx1-3), could also inhibit the pore of the human
Kir6.2 channel [58]. Another analog of SsTx, SsTx-4, effectively inhibits Kir1.1, Kir4.1, and
Kir6.2/SUR1 channels, which are candidate targets for treating hypertension, depression,
and diabetes, respectively [23]. Similar peptides were also discovered from other venomous
species, including cone snails. κ-, κA-, κM- and I- superfamilies of conotoxins were reported
to inhibit KV channels by interacting with the voltage-sensing or pore domains [59]. In
comparison, most of the KV channel modulators from the centipede venoms target the
pore region.

2.3. Toxins Targeting Voltage-Gated Calcium Channels

Both activators and inhibitors of the CaV channel have been discovered in centipede
venoms. We found that ω-SLPTX-Ssm1a potently activated voltage-gated calcium channel
(CaV) in rat DRG neurons. Functionally, 10 µM ω-SLPTX-Ssm1a increased the calcium
channel currents by ~120%, while ω-SLPTX-Ssm2a inhibits calcium channels in a dose-
dependent manner. Functionally, 500 nM and 2.5 µMω-SLPTX-Ssm2a inhibited the calcium
channel current’s amplitude by 45% and 80%, respectively, yielding an IC50 of about
1590 nM [12]. SSD1052, a calcium channel inhibitor, was isolated from S. subspinipes dehaani
crude venom. Ten nanometers of SSD1052 reversibly blocks the CaV current amplitude by
8.6% [22]. To date, most CaV modulators from centipedes are antagonists, andω-SLPTX-
Ssm1a is the only agonist. These peptides are structurally diverse with variable disulfide
bonds, and all possess similar molecular mass (about 6 kDa). CaV modulators from other
venomous animals, such as cone snails, have been extensively studied. Representative
conotoxins,ω-GVIA andω-MVIIA, potently inhibit N-type calcium channels. ω-MVIIA
has been approved by the U.S. Food and Drug Administration to treat chronic pain. Thus,
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further detailed investigation of the pharmacological properties of centipede venoms
is essential.

2.4. Toxins Targeting TRPV1 Channel

As we exhibited earlier, centipede toxins are rich in neurotoxins. The Transient
Receptor Potential Vanilloid 1 (TRPV1) channel mediates the heat and pain sensation
in the periphery nervous system [60]. Yang et al. reported the discovery of a compact
toxin from S. subspinipes mutilans. The gene encoding this toxin translated into a 69 aa,
which yielded a toxin with 27 amino acids after post-translation modification. RhTx binds
tightly to the charge-rich outer pore region of TRPV1 to induce severe pain and provides
crucial structural information on the channel’s heat activation machinery (Figure 1) [24].
In addition, RhTx was used as a probe to investigate the heat-induced desensitization
mechanism of the TRPV1 channel [61]. RhTx2 is an analog of RhTx with four more
amino acids at the N-terminal. Functionally, RhTx2 desensitized the TRPV1 channel upon
application to the extracellular domain, indicating that RhTx2 is also a good tool for the
investigation of TRPV1 desensitization and a promising candidate for the development of
new analgesics [25].

3. Centipede Toxins Acting on the Immune System

The immune response involves a complex myriad of biological processes that respond
and protect against foreign factors. Several venom peptides attack the immune system,
and as a defensive mechanism, the immune system is activated to recognize and counter
their effect. One of the main responses against venom components is the release of anti-
inflammatory agents to counterbalance toxin-induced inflammation [62]. Inflammation
involves a series of immune responses, including inflammatory cytokine release, vascular
changes, and recruitment of immune cells (dendritic cells, mast cells, neutrophils, and
eosinophils). Until recently, the immune-related components from centipede venoms are
rarely studied, except for 5-hydroxytryptamine and histamine [41,63]. Through N-terminal
sequencing, allergen-related proteic venom components were identified from Scolopen-
dra viridicornis nigra and Scolopendra angulate [64]. With the improvement of sequencing
and mass spectrometry platforms, various antimicrobial peptides and anti-inflammatory
peptides were discovered from the venom of the centipede.

Antimicrobial peptides (AMPs) derived from venoms have proven clinical efficacy in
combating multidrug-resistant pathogens. Amphibians and insects are believed to be good
resources for developing AMPs. Arthropods, especially centipedes, are also rich in various
bioactive peptides. Scolopendrin I, the first antimicrobial peptide from a centipede, had
no hemolytic or agglutination activity at concentrations lower than 30 µM [26]. Scolopin 1
and scolopin 2, with molecular masses of 2593.9 and 3017.6 Da, respectively, were also
purified and characterized from the S. subspinipes mutilans. Both scolopin 1 and 2 exhibited
potent antimicrobial activities against Gram-positive and Gram-negative bacteria and
fungi, with moderate hemolytic activity [27]. LBLP, a lactoferricin B-like peptide from the
whole bodies of adult centipedes, S. s. mutilans, shows potent antifungal activity. The
antifungal mechanism revealed that LBLP changes membrane permeabilization by forming
pores in the membrane with radii between 0.74 and 1.4 nm [28]. Other AMPs, such as
scolopendin 1 and 2, were discovered from the whole centipede S. subspinipes mutilans by
RNA sequencing [29,30]. Similar to the general antibacterial mechanism of most AMPs,
scolopendin 2 forms pores in the microbial plasma membrane, then releases the cytoplasmic
matrix, depolarizes the membrane potential, and eventually leads to microbial death [30].
The scolopendrasin I, II, V and VII peptides from the whole S. subspinipes mutilans, displayed
antimicrobial and anticancer activities, of which scolopendrasin V exerted antimicrobial
activities by binding the surface of the microbial cell membrane [31–34]. With the emergence
of novel AMPs, more investigations on antibacterial mechanisms are in progress.

The whole-body extracts of centipede were reported to exert anti-inflammatory activi-
ties in rheumatoid arthritis and antitumor and immunostimulant [43,65]. Scolopendrasin
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IX, an antimicrobial peptide from S. subspinipes mutilans, targets the formyl peptide receptor
2 and mediates neutrophil activation. Functionally, scolopendrasin IX controls rheumatoid
arthritis by inhibiting inflammatory cytokine synthesis [35].

4. Centipede Toxins Acting on the Blood System

An efficient blood circulation system, including in humans, is paramount for verte-
brates’ survival. It serves as a key biological process for the survival of living organisms,
such as transporting nutrients and oxygen to tissues and removing waste products. It
also plays an essential defense role by transporting immune cells to target sites. Thus, a
homeostatic balance is necessary for the general well-being of the organism. The coag-
ulation cascade comprising key processes such as platelet aggregation, vasoconstriction,
coagulation, and fibrinolysis activated immediately upon injury is a vital component that
maintains the integrity of the immune system and maintains a hemostatic balance between
clotting and excessive loss of blood. Through years of co-evolution, several animals have
evolved elaborate strategies targeting and impairing the hemostatic system. For example,
hematophagous organisms such as vampire bats, ticks, leeches, and mosquitoes inject saliva
rich in peptides to prevent blood coagulation and ensure a continuous blood supply [66,67].
Although centipedes are not blood-feeding arthropods, proteic venom components that
affect the blood system have also been found in centipede venom. For instance, the venoms
of both centipede species, Scolopendra viridicornis and Otostigmus pradoi, had hemolytic
activity on human erythrocytes [44].

Factor Xa (FXa) is essential in both extrinsic and intrinsic pathways for blood coag-
ulation, which is also a candidate target for exploring and developing anti-thrombotic
drugs [68]. TNGYT, a mature peptide with five amino acids, dose-dependently inhib-
ited FXa, yielding an IC50 of 41.14 mg/mL. The TNGYT prolonged the activated partial
thromboplastin time (aPTT) and prothrombin time (PT) both in vivo and in vitro [36].
Another short peptide SQL (Ser-Gln-Leu) was also isolated from the whole centipede
S. subspinipes mutilans. SQL potently prolonged the aPTT and inhibited platelet aggre-
gation [45]. Centipede acidic protein showed significant anti-atherogenic effects and im-
proved hemorheological disorders and histopathological changes in rats fed an atheroscle-
rotic diet [69]. Scolonase was isolated and characterized from the whole-body extract of
S. subspinipes mutilans. As a serine peptidase, scolonase showed potent fibrinolytic activity,
which converted Glu-plasminogen to plasmin by specific cleavage of the peptide bond
Arg(561)-Val(562) [46].

5. Centipede Toxins Acting on Other Systems

Mohamed et al. reported for the first time that the enzymatic activity is present
in Scolopendra morsitans venom [41]. Other enzymes, such as metallopeptidases, serine
peptidases, γ-Glutamyl transpeptidase and phospholipase A2, are also rich in centipede
venoms. Although centipedes could use their mandibles to help chew solid food before
swallowing [38,50], these abundant enzymes may also favor extra-oral digestion of prey.

5.1. Metallopeptidases

By employing activity tests and sequence analysis, various studies have revealed that
centipede venoms are rich in metallopeptidases [8,44,70,71]. The astacin-like metallopep-
tidases accounted for approximately 10% of all proteins in Thereuopoda longicornis. The
astacin-like family of metallopeptidases is widely recruited in many animals, including
cnidarians, cephalopods, hymenopterans, ticks, spiders, reptiles, and platypus [37,72–77].
With the improvement of transcriptomics and venom proteomics, four metallopeptidases
were identified from the Scolopendra viridis, which all showed high sequence identity with
the astacin-like family of metallopeptidases (M12A family) [70]. Likewise, adamalysin-
like metallopeptidases were identified from the centipede Scolopocryptops sexspinosus,
supporting the convergent recruitment of venom proteins [71]. To date, no putative metal-
lopeptidase has been found in the Scolopendra subspinipes dehaani and S. subspinipes mutilans,
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possibly due to limitations of the analytical method employed. Jenner and Undheim pro-
posed that some toxin families could be lost from centipede venoms during evolution
by comparative proteo-transcriptomic analyses, which could explain the deficiency of
metalloproteases [78].

5.2. Phospholipase A2

Phospholipase A2 (PLA2) enzymes are 13–14 kDa polypeptides composed of
115–133 amino acid residues conserved to 15 cysteine residues stabilized by 7-disulfide
bridges [50]. PLA2s have been characterized by several organisms, including insects,
arachnids, and reptiles. They induce various pathologies such as neurotoxicity, hemo-
toxicity, cardiotoxicity, inhibition of platelet function and anticoagulant activities [79]. In
centipedes, PLA2s activity was reported in S. viridis, S. subspinipes dehaani, S. viridicornis,
and O. pradoi [22,44,80]. Unlike other invertebrates or vertebrate PLA2s, centipede PLA2s
are unique and form a sister-clade to Group X-related PLA2 [37,79]. Low PLA2s activity
was detected in venoms of S. viridicornis and O. pradoi [44]. PLA2s are ubiquitous in many
venomous snakes such as elapid, rattlesnake and pit viper. PLA2s isolated from elapid
venom could hydrolyze phospholipids, whereas those isolated from viper venoms could
not unless exogenous phospholipids were added [81–83]. In addition, PLA2s from elapid
and viper were reported to exert hemolytic activities, while PLA2s from centipede exhibited
no directly cytotoxic effects [22,82].

PLA2s are thought to hydrolyze glycerophospholipids and release lysophospholipids
and fatty acids. However, the catalytic reaction was often removed from snake and toxic
centipede venoms, which might explain the low phospholipase A2 activity of S. viridicornis
and O. pradoi venoms. In addition, the phylogenetic analyses revealed that centipede PLA2
shares a higher sequence identity with snake phospholipases than insects or arachnids [22].

5.3. γ-Glutamyl Transpeptidase

γ-Glutamyl transpeptidases (GGTs) are reported to regulate primarily oxidative stress
responses and xenobiotic detoxification [84]. By utilizing transcriptome analysis, GGTs
were found to be abundant in the venoms of almost all tested species, which were lowly
distributed in the venoms of E. rubripes, T. longicornis, while highly expressed in the venoms
of S. alternans, S. morsitans, and C. westwoodi [37], indicating that GGT might be a crucial
component of centipede venom. Liu et al. reported the presence of GGT (SSD14) in the
S. subspinipes dehaani using venomic and transcriptomic analysis. SSD14 dose-dependently
induced human platelet aggregation and hemolysis of red blood cells from rabbits and
mice [22]. However, the primary function of GGT does not seem to target the vertebrate
hemostasis since the body size of the centipede is relatively small, and there are not enough
GGTs to target the blood system of the prey or predator [37]. Nevertheless, GGT is an
essential component of centipede survival, given the abundant expression of GGT. The
molecular mechanism and candidate target of GGTs need to be further explored [38].

5.4. Other Enzymes

Others with less abundant enzymes were also reported in centipedes. Three glycosidic
hydrolase families, chitinase, lysozyme and hyaluronidase, were found in centipede, while
they did not exist in all centipede species. Chitinase may be helpful in the digestion of
arthropods [85–89]. The lysozyme digests β-1,4-glycosidic bonds in the peptidoglycan
of bacterial cell walls and can be used to kill bacteria [90,91]. Hyaluronidase is known
as a “spreading factor” because it enhances the pathological effects of the venom com-
ponents [79,92–94]. Glucose dehydrogenase initiates the catalytic process of the pentose
phosphate pathway [95] and likely represents a case of the new functionalization of protein.
Nonspecific esterases were reported in many taxa, including octopus [96], spiders [97,98],
and snakes [99,100]. In centipedes, type B carboxyl esterase and homologous transcripts
were discovered in many species except E. rubripes [37]. Similar to the type B carboxyl
esterase, we do not know the role of Porphyromonas-type peptidyl arginine deiminase
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(PPAD), which was found in the T. longicornis venom [37]. Centipede PADs also existed
in Lithobius forficatus by horizontal gene transfer from bacteria [19]. With the continuous
upgrading of detection methods, the enzymes in centipede venom are continuously mined
and identified. We will not enumerate them here.

5.5. Other Non-Enzymatic Proteins

The putativeβ pore-forming toxins (β-PFTx) are rich proteins in centipede venoms [37].
Upon proteolytic activation, the aerolysin-like β-PFTx is oligomerized into a pore-forming
heptamer. CAPs (cysteine-rich proteins) exhibit multiple functions, including peptidases,
vasodilators, myotoxins and ion channel modulators. CAP1-3 were reported from the
T. longicornis and E. rubripes, Scolopendrinae and S. morsitans venoms [37]. In addition, the
low-density lipoprotein receptor Class A repeat (LDLA) domain has been reported only in
centipede, and no representative LDLAs from other venoms have been detected outside
centipede [22,37], although its function remains to be determined.

6. Therapeutic Potential of Bioactive Peptides and Proteins from Centipede

Since time immemorial, humans have relied on naturally occurring substances for
their therapeutic benefits. Venoms from multiple species encompassed a natural reserve
of millions of active biological molecules. Thanks to their selectivity and stability, these
molecules have proven invaluable tools for drug development, research, and discovery.
For example, a series of bioactive peptides from the snakes, scorpions, spiders, honey bees,
and cone snails venoms hold a promise as rich sources of chemotherapeutics against some
human diseases, such as chronic inflammation, autoimmune disease, and cancer [101–104].
Over the years, venom-derived peptides and proteins have provided essential diagnostic
and research tools [105–109]. Owing to their potency and precise targets, they provide
insight into complex molecular interactions such as the coagulation cascade and are es-
sential in drug discovery. Additionally, venom-derived molecular probes have greatly
expounded our insight into the biophysical properties of different ion channel families,
which is important in understanding the pharmacological properties and development of
therapeutic agents for neurological, blood and other diseases (neurodegenerative diseases
and brain ischemia).

Extensive research on the pharmacological properties is ongoing, and several of
these venom-derived components are under clinical trials as potential therapeutic agents
for several clinical indications. Currently, six FDA-approved venom-derived drugs are
available on the market [110]. Pain is the most common presenting physical symptom and
the primary reason for seeking medical care, which chronically affects people’s mental
health and social life. As we know, NaV1.7 channels are promising analgesic targets for
treating various pain-related diseases. The authors of this paper and other collaborators
found a potent and selective inhibitor of the NaV1.7 channel, which exhibited a more
potent analgesic than morphine in formalin-induced pain models. Thus, µ-SPTX-Ssm6a
is a promising lead molecule for analgesic drug development. In addition, NaV channels
are well-established therapeutic targets, such as local anesthetics, antiarrhythmics, and
anticonvulsants. Therefore, centipede venoms are potential therapeutics for related diseases.
Likewise, KV and CaV channels are potential therapeutic targets, including episodic ataxia,
long-QT syndrome, epilepsy, benign familial neonatal convulsions, autosomal dominant
non-syndromic hearing loss, hypokalemic periodic paralysis, night blindness, familial
hemiplegic migraine and malignant hyperthermia [111]. Since the TRPV1 channel is widely
distributed in the somatosensory system, the TRPV1 channel modulators, such as RhTx
and RhTx2, can potentially treat pain and itch pathological conditions.

Microbial infections also present a significant global predicament, mainly due to the
recalcitrance of pathogens to available prophylactic regimens. Therefore, there is an exigent
need for new alternative-antibiotic therapies. AMPs derived from venoms have proven
clinical efficacy in combating multidrug-resistant pathogens. Thus, the antimicrobial
peptides from venomous animals, including centipedes, are lead candidate molecules for
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combating antibiotic-resistant bacteria. Following the study of the anticancer potential of
centipede extracts, centipede venoms may aid the development of new anticancer agents.

Enzymes are abundant in centipede venom and have been proposed in various pro-
cesses, including homeostatic balance, innate immunity, digestion, apoptosis and cell
cycles [50,112–116]. Moreover, dysregulations or alterations of these enzymes lead to
pathological conditions, such as rheumatic arthritis, osteoporosis and cardiovascular disor-
ders [117,118]. Peptidase and peptidase inhibitors from centipede venom have therapeutic
potential in immune-related diseases (Figure 2).
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7. Conclusions

Animal venoms are abundant sources of bioactive peptides and proteins, which are
used for the medical treatment of a broad range of diseases, including asthma, hyper-
tension, cancer, cardiac failure, and polio [119–121]. Several venom-derived peptides
from venomous animals have been clinically applied in cardiovascular, neurological dis-
orders, and immune system diseases, such as captopril, ziconotide, tozuleristide, eptifi-
batide [119,122–124]. Despite the remarkable diversity of venomous animals, there appears
to be a striking convergence regarding the types of proteins used in toxin scaffolds [37].
Nevertheless, our understanding of this fascinating area of evolution is limited by the
small taxonomic range studied, with entire families of venomous animals almost entirely
unknown. As an example, centipedes, class Chilopoda, may represent the oldest terrestrial
venomous lineage after scorpions, having emerged approximately 440 Ma ago. Although
the bioactive peptides and proteins from centipedes have not been fully appreciated and
extensively studied, a prominent common attribute with most scorpion venoms, which
is a well-studied group, is the presence of disulfide-rich peptides that act on the nervous
system, cardiovascular system, musculoskeletal system and blood system. In addition,
there are other differences in details. For instance, while both venoms contain neurotox-
ins that potently inhibit sodium channels, scorpion α-toxins specifically inhibit the fast
inactivation mechanism of voltage-gated sodium channels leading to several neuro- and
cardiotoxic effects.

With the development of an increasingly sensitive and accurate analytical method,
more functional peptides and proteins from centipedes are being discovered. For instants,
dozens of bioactive peptides containing two to four pairs of disulfide bonds have been
cloned and isolated. Most of these peptidic components act on NaV, KV, and CaV channels,
indicating that centipede venoms are good resources for discovering bioactive peptides
and candidate-leading molecules. In addition, bioactive peptides and proteins are also
excellent probes for exploring the structure and function of receptors and human physiology
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mechanisms. The investigation of centipede venom will promote people’s understanding
of the components of centipede venom and provide lead molecules for the research and
development of new drugs.
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