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Memantine treatment reduces the
incidence of flaccid paralysis in a
zika virus mouse model of temporary
paralysis with similarities to
Guillain-Barr�e syndrome
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Abstract

Clinical evidence suggests that Zika virus contributes to Guillain-Barr�e syndrome that causes temporary paralysis. We

utilized a recently described Zika virus mouse model of temporary flaccid paralysis to address the hypothesis that

treatment with an N-methyl-D-aspartate receptor antagonist, memantine, can reduce the incidence of paralysis. Aged

interferon alpha/beta-receptor knockout mice were used because of their sublethal susceptibility to Zika virus infection.

Fifteen to twenty-five percent of mice infected with a Puerto Rico strain of Zika virus develop acute flaccid paralysis

beginning at days 8–9 and peaked at days 10–12. Mice recover from paralysis within a week of onset. In two independent

studies, twice daily oral administration of memantine at 60mg/kg/day on days 4 through 9 after viral challenge signif-

icantly reduced the incidence of paralysis. No efficacy was observed with treatments from days 9 through 12. Memantine

treatment in cell culture or mice did not affect viral titers. These data indicate that early treatment of memantine before

onset of paralysis is efficacious, but treatments beyond the onset of paralysis were not efficacious. The effect of this

N-methyl-D-aspartate receptor antagonist on the incidence of Zika virus-induced paralysis may provide guidance for

investigations on the mechanism of paralysis.
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Introduction

Congenital Zika syndrome and Guillain-Barr�e syn-

drome in adults are two serious outcomes associated

with Zika virus outbreaks.1–4 Guillain-Barr�e syndrome

is a reversible, acute peripheral neuropathy involving

temporary paralysis. The mechanism by which Zika

virus causes paralysis in Guillain-Barr�e syndrome is

unknown. A recent mouse model of Zika virus-

induced temporary paralysis has provided an opportu-

nity to evaluate cellular mechanisms.5 Since Zika virus

does not cause robust disease in adult laboratory mice,

interferon ab-receptor (IFNAR�/�) knockout mice

were used. Infection is lethal in young IFNAR�/�

mice, but infection in aged mice greater than

4-months-old is sublethal. In these mice, hindlimb

acute flaccid paralysis developed in 15–25% of infected
mice beginning on days 8–9 and peaking on days
10–11. Within a week of onset, mice recover from
paralysis.
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Unlike more pathogenic flaviviruses, like West Nile
virus or Japanese encephalitis virus, that infect and
destroy motor neurons in the spinal cord,5 Zika virus
infection in aged IFNAR-/- mice does not destroy
motor neurons. Zika virus immunoreactivity cannot
be readily detected with colocalization of motor
neuron-immunoreactive markers in the lumbosacral
spinal cords of paralyzed mice, yet there is some Zika
virus immunoreactivity outside of motor neurons.
Ultrastructural analysis by electron microscopy reveal
that pre-synaptic terminals becomes detached or
retracted from alpha-motor neurons in paralyzed
mice at a statistically significant level. The synapses
are then re-associated upon recovery of paralysis. The
biochemical mechanisms by which these events occur is
uninvestigated.

To begin mechanistic studies, we evaluated meman-
tine for efficacy. Memantine is an N-methyl-D-aspar-
tate receptor antagonist and is an indication for
treatment of moderate to severe Alzheimer’s disease.
The premise for this efficacy study is that memantine
and other agonists (dizocilpine (MK-801), agmatine
sulfate, ifenprodil) prevent neuronal death in cell cul-
ture without affecting Zika virus replication, and pre-
vent the increase of virus induced-intraocular pressure
and reduce neurodegeneration in the brains of
interferon-receptor deficient mice.6,7 In a subsequent
neuronal cell culture study, blocking of the N-methyl-
D-aspartate receptor by ifenprodil reduced neuronal
cell death coincident with reduced influx of Caþ2.8

Methods

In the first of three memantine treatment experiments,
male and female IFNAR-/- mice at 4.2- to 5.3-months-
old were block-randomized between groups according
to weight and gender and injected subcutaneously (s.c.)
on both sides for a total of 1,340 pfu of ZIKV per
mouse (PRVABC59, Human/2015/Puerto Rico, BEI
Resources passaged 2 times in Vero 76 cells in MEM
with 50 mg/mL gentamicin) or sham (uninfected cells
prepared and diluted the same as the viral inoculum).
Although one strain of ZIKV were not evaluated, there
was no a priori reason to believe that memantine would
be efficacious with other viral strains because meman-
tine is probably targeting cellular processes, and not
the virus specifically. Beginning at 4 days after viral
challenge, mice were treated twice daily by oral
gavage (p.o.). Treatments continued through day 9.
Volumes of treatment solution were adjusted for
weights of individual mice to achieve 60mg/kg/day
dosage. The numbers of mice were n¼ 16 for the
ZIKV-memantine group, n¼ 14 for the ZIKV-vehicle
group, n¼ 3 for the sham-memantine group, and n¼ 3
for the sham-vehicle group. Details of the other two

experiments shown in figure legends are similar to

this first experiment. Data were analyzed using gener-

alized estimating equation with compound symmetry

structure of the working correlation matrix. Binary

outcome of motor deficit is modelled with logit link

function. Analysis was performed using PROC

GENMOD in SAS/STAT 15.1 (SAS Institute Inc.,

Cary, NC). Animal studies were accordance with the

approval of the Institutional Animal Care and Use

Committee of Utah State University.
Mice were analyzed using the viral paresis scale9 for

signs of tail and hindlimb paresis/paralysis using a sen-

sitive, open-field assay modified from the Basso Mouse

Scale used to assess paralysis in spinal cord-injured

mice10 and a test used to track paralysis in amyotrophic

lateral sclerosis mouse models.11 Each mouse was

placed on a tabletop and allowed to roam freely for

4minutes. Hindlimb function was scored on a 7-point

scale9 by researchers who were blinded to the infection

status of each group. In this study, mice with VPS of 5

or 6 were paralyzed in either or both hindlimbs.

Results

Memantine treated from day 4 through day 9 signifi-

cantly reduced the prevalence of paralysis (p¼ 0.020)

(Figure 1(a)). The number of paralysis-mouse-days was

also statistically reduced at p¼ 0.0010 and p¼ 0.0001,

respectively (Figure 1(b)). Since the incidences of paral-

ysis of placebo-treated mice (6/18, 33%) was low, the

statistical power was weak. To validate the reproduc-

ibility of these data, a second independent experiment

was performed. We increased the numbers of mice in

each infected group from 18 and 20, to 26 each. Even

though the incidence of paralysis in the placebo-treated

group was again low at 19% (5/26), memantine was

still efficacious in reducing the prevalence of paralysis

(p¼ 0.040) (Figure 1(d)). We were able to overcome the

statistical challenge of a low incidence of paralysis by

performing two independent experiments, increasing

the number of mice in each infected group to 26, and

using an appropriate statistical model. Data were also

analyzed by calculating the paralysis-mouse-days. By

Fischer’s exact P stack analysis, memantine also signif-

icantly improved the paralysis outcome (Figure 1(e))

(p¼ 0.0089, respectively). This statistical test of the per-

centage of paralyzed mice also revealed statistical sig-

nificance (p¼ 0.0381) in experiment #1, but not

experiment #2. As previously observed,5 most animals

survive (Figure 1(c) and (f)) and recover from paralysis

(Figure 1(a) and (d)).
To determine if memantine could treat existing

paralysis, treatment was initiated at day 9 and extended

through peak days of paralysis through day 14.
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However, memantine was ineffective; statistical differ-

ences in paralysis were not observed (Figure 2).
We eliminated the possibility that memantine’s

mechanism of action was to reduce viral load as mea-

sured in cell culture (50% effective concentration

>7.8 mg/mL; 50% cytotoxic concentration¼ 7.8mg/
mL) or in the spinal cords of mice (Figure 3), which

confirmed previous results observed in primary neuro-

nal cell culture.6

Discussion

The primary purpose of this study was to investigate

the possible role of N-methyl-D-aspartate receptor

in the development of temporary paralysis caused by

ZIKV using memantine, an inhibitor of this receptor.

In two independent experiments, memantine reduced

the incidence of paralysis, which suggests that activa-

tion of this receptor is associated with paralysis.

A distinguishing pathological event in this mouse

model is that pre-synaptic terminals becomes detached

or retracted from alpha-motor neurons in paralyzed

mice.5 The synapses are then re-associated upon recov-

ery of paralysis. A hypothesis for future studies, there-

fore, is that glutamate excitotoxicity mediated by

N-methyl-D-aspartate receptors signals synaptic

retraction and paralysis, and that resolution of gluta-

mate excitotoxicity might reverse the paralysis of

ZIKV-induced Guillain-Barr�e syndrome.
A limitation of the study is the necessary use of

interferon non-responsive mice. A series of publica-

tions following the ZIKV outbreak found that adult

wild-type laboratory mice are not susceptible to

ZIKV infection, but mice that lack type 1 and/or

type 2 interferon receptors are susceptible to lethal

infection.12–16 These interferon non-responsive

models do have flaws, but they may also have some

relevance to human ZIKV infections. Like many virus-

es, ZIKV gains advantages in human hosts by inhibit-

ing interferon responses.17–19 Because the virus may not

be able to inhibit mouse-specific interferon pathways,20

blocking interferon response in transgenic mice allows

the virus to similarly replicate as it does in human

subjects.

Figure 1. Memantine (60mg/kg/day) twice daily oral gavage (p.o.) treatments on days 4 to 9 after Zika virus challenge reduced the
prevalence of (a, d) paralysis and (b, e) paralysis mouse-days in two independent experimental trials. Paralysis was identified in mice
having VPS �5 on either or both hindlimbs. Paralysis mouse-days were calculated by the number of paralyzed mice on each day
between 9 and 12 days for each group divided by the total number of mice on each day between 9 and 12 days per group. (c, f) Survival
was high (>80%). The age of the IFNAR�/� mice in experiment #1 were 4.2- to 5.3-months-old. n¼ 20 ZIKV-memantine group;
n¼ 18 ZIKV-vehicle group; n¼ 9 sham-memantine group; n¼ 9 sham-vehicle group.
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These data indicate that early treatment of meman-

tine before onset of paralysis is efficacious, but treat-

ments beyond the onset of paralysis were not

efficacious. The effect of this N-methyl-D-aspartate

receptor antagonist on the incidence of Zika virus-

induced paralysis may provide guidance for investiga-

tions on the mechanism of paralysis.
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Figure 2. Memantine (60mg/kg/day) twice daily oral gavage (p.o.) treatments on days 9 to 12 after Zika virus (ZIKV) challenge did
not affect the prevalence of (a) paralysis or (b) paralysis-mouse-days. Paralysis were identified in mice having VPS � 5 on either or
both hindlimbs. The age of the IFNAR�/� mice were 3.9 to 4.1-months. n¼ 27 ZIKV-memantine group; n¼ 27 ZIKV-vehicle group;
n¼ 4 sham-memantine group; n¼ 4 sham-vehicle group. The experimental protocol was the same as in Figure 1, except memantine
was treated from day 9 through the morning of day 12. The data of the ZIKV-memantine group were not statistically different from
those of the ZIKV-vehicle group.

Figure 3. ZIKV RNA unaffected by memantine treatment in the
lumbosacral spinal cord collected at 6 and 9 days after viral
challenge.
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