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Abstract: The frequency of heavy rains is increasing with climate change in regions that already have
high annual rainfall (i.e., Sichuan, China). Crop response under such high-rainfall conditions is to
increase dry matter investment in vegetative parts rather than reproductive parts. In the case of
soybean, leaf redundancy prevails, which reduces the light transmittance and seed yield. However,
moderate defoliation of soybean canopy could reduce leaf redundancy and improve soybean yield,
especially under high-rainfall conditions. Therefore, the effects of three defoliation treatments (T1,
15%; T2, 30%; and T3, 45% defoliation from the top of the soybean canopy; defoliation treatments
were applied at the pod initiation stage of soybean) on the growth and yield parameters of soybean
were evaluated through field experiments in the summer of 2017, 2018, and 2019. All results were
compared with nondefoliated soybean plants (CK) under high-rainfall conditions. Compared with
CK, treatment T1 significantly (p < 0. 05) improved the light transmittance and photosynthetic
rate of soybean. Consequently, the leaf greenness was enhanced by 22%, which delayed the leaf
senescence by 13% at physiological maturity. Besides, compared to CK, soybean plants achieved
the highest values of crop growth rate in T1, which increased the total dry matter accumulation (by
6%) and its translocation to vegetative parts (by 4%) and reproductive parts (by 8%) at physiological
maturity. This improved soybean growth and dry matter partitioning to reproductive parts in T1

enhanced the pod number (by 23%, from 823.8 m−2 in CK to 1012.7 m−2 in T1) and seed number
(by 11%, from 1181.4 m−2 in CK to 1311.7 m−2 in T1), whereas the heavy defoliation treatments
considerably decreased all measured growth and yield parameters. On average, treatment T1

increased soybean seed yield by 9% (from 2120.2 kg ha−1 in CK to 2318.2 kg ha−1 in T1), while
T2 and T3 decreased soybean seed yield by 19% and 33%, respectively, compared to CK. Overall,
these findings indicate that the optimum defoliation, i.e., T1 (15% defoliation), can decrease leaf
redundancy and increase seed yield by reducing the adverse effects of mutual shading and increasing
the dry matter translocation to reproductive parts than vegetative parts in soybean, especially under
high-rainfall conditions. Future studies are needed to understand the internal signaling and the
molecular mechanism controlling and regulating dry matter production and partitioning in soybean,
especially from the pod initiation stage to the physiological maturity stage.
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1. Introduction

The increasing human population is projected to raise food demand globally by 50%
in 2030 [1]. The first four decades of the green revolution (from 1960 to 2000) witnessed
substantial improvements in grain yields of staple food crops; however, the rate of im-
provement in crop yields has significantly declined in the past twenty years [2,3]. This
decline was ascribed to the fact that the genetic approaches used for the green revolution
are attaining their potential limits [4]. Besides, most of the remaining agricultural land
utilized for agriculture production is easily erodible soils or environmentally sensitive
regions, such as tropical forest areas [5]. Additionally, failure to enhance the crop yields on
the currently available agricultural land will increase crop prices and the destruction of
tropical forest areas for crop production [6]. At the same time, there is a continuing loss of
agricultural land worldwide where urbanization occurs rapidly [7,8]. Therefore, modern
and sustainable agronomic approaches are required now to fulfill the future demands for
food crops [9], which we will face in the midcentury [10]. Thus, meeting the predicted
world demand for food crops will require new crop production practices or methods
beyond that employed in the green revolution [11,12].

Soybean (Glycine max L. Merr) is the major spring and summer food crop in the
southwest of China [13,14]. Still, seed yield production varies mainly due to biotic, e.g.,
diseases [15], and abiotic stresses, e.g., nutrients [16], sunlight [17], and water [18]. The
most critical growth phases for soybean to obtain better crop yield are from pod initiation to
seed formation [19]. Previous studies have revealed that soybean would grow excessively
under favorable growing conditions, especially its leaves [20]. Besides, there are heavy
rains in the southwest of China during the monsoon season, which substantially increases
the leaf area of soybean plants and decreases the photosynthetically active radiation
transmittance in soybean canopy [21]. In line with this, researchers have confirmed leaf
redundancy for soybean [5], and the top canopy leaves give shading to the more competent
leaves in the middle and lower ranks for soybean plants [22]. Furthermore, shading from
upper canopy leaves favors the early senescence of middle and bottom leaves [23,24],
reducing the translocation of carbohydrates and nutrients to reproductive parts in soybean
plants [25]. Moreover, these types of mutual shading conditions, especially during the
reproductive phase of soybean, decrease the current photosynthetic rate and the availability
of photoassimilates for developing pods and seeds, which ultimately decrease the final
seed yield of soybean plants [24]. Thus, we hypothesized that extra leaf growth of soybean
plants negatively affects the seed yield of soybean. It is crucial to determine the optimum
leaf area of soybean to maximize crop yields, especially under high-rainfall conditions.

In past studies, researchers have reported the soybean response mechanisms to insect
damage [26], weather or herbivory damage [27,28], and artificial defoliation [29]. These
responses include reductions in light interception [26], photosynthetic characteristics [30],
pod and seed number [31], seed size and weight [32], effective seed filling period [33], and
seed yield [28,32]. However, insufficient information is available on how defoliation influ-
ences the photosynthetically active radiation (PAR) transmittance, dry matter accumulation,
and partitioning in vegetative and reproductive parts, which ultimately affect the final pod
number, seed number, and seed yield of soybean plants in field conditions. Determining
the optimum leaf area for soybean, especially in high-rainfall conditions, is essential to
obtain a better soybean yield. This will also help crop breeders and agronomists develop
new soybean varieties and production practices to fulfill the projected food demands.
Therefore, in the present study, we hypothesized that soybean produces extra leaves in the
high-rainfall conditions, i.e., southwest of China, and a slight defoliation from soybean
canopy would (a) improve the PAR transmittance at the soybean canopy, (b) delay the leaf
senescence of remaining leaves by improving the light environment at the soybean canopy,
and (c) increase the translocation of photoassimilate to pods and seeds, as well as the final
seed yield of soybean under high-rainfall conditions. We evaluated these hypothesizes by
comparing the defoliation of 15%, 30%, or 45% of the top leaves from the soybean canopy
at the pod initiation stage with no defoliation treatment.
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2. Results
2.1. Leaf Greenness and Leaf Area Index

Leaf greenness showed a significant variation from R4 to R7, while nonsignificant
differences were found at R3 in all treatments (Table 1). At R3, R4, and R5, the average
highest leaf greenness was measured in CK, while at R6 and R7, the highest leaf greenness
was noted under treatment T1, whereas, at all sampling stages, the average lowest leaf
greenness was noticed under the T3 treatment. Overall, compared to CK, treatment T1
increased the leaf greenness by 11% at R6 and by 22% at R7, suggesting that the reducing
leaf area at the start of the reproductive phase (from R3 to R5) significantly enhanced
the leaf greenness at the late reproductive stage (from R6 to R7), which delayed the leaf
senescence in soybean plants under treatment T1.

Table 1. Leaf greenness of soybean at different phenological stages as affected by different defoliation
treatments during the summer season of 2017, 2018, and 2019.

Year Treatment Growth Stages

R3 R4 R5 R6 R7

2017 CK 25.5 ± 0.5 NS 35.4 ± 1.0 a 42.2 ± 1.8 a 31.9 ± 1.8 b 29.5 ± 2.4 ab

T1 25.1 ± 0.6 32.1 ± 1.6 ab 38.1 ± 3.0 ab 36.5 ± 2.8 a 35.9 ± 3.4 a

T2 24.6 ± 1.4 30.2 ± 1.5 ab 33.7 ± 0.8 bc 28.8 ± 1.5 c 24.4 ± 1.2 b

T3 25.1 ± 0.7 26.6 ± 1.6 b 28.5 ± 1.2 c 23.1 ± 1.2 d 20.6 ± 1.9 b

2018 CK 27.7 ± 1.7 NS 38.6 ± 2.5 a 43.8 ± 2.2 a 39.6 ± 2.7 a 32.6 ± 0.2 b

T1 27.3 ± 0.6 36.2 ± 1.1 ab 42.0 ± 2.8 ab 41.1 ± 3.1 ab 39.9 ± 2.7 a

T2 26.5 ± 0.5 30.9 ± 2.2 bc 34.6 ± 1.1 bc 36.9 ± 2.6 ab 30.8 ± 1.3 b

T3 26.1 ± 1.3 28.5 ± 1.2 c 32.1 ± 1.5 c 33.5 ± 1.4 b 28.6 ± 1.1 b

2019 CK 25.0 ± 1.1 NS 33.2 ± 1.6 a 36.8 ± 1.7 a 28.5 ± 1.4 ab 25.9 ± 1.7 b

T1 24.4 ± 0.3 31.9 ± 1.2 ab 34.2 ± 2.3 ab 32.9 ± 3.6 a 31.2 ± 2.5 a

T2 26.0 ± 1.2 29.1 ± 1.6 bc 31.4 ± 1.5 ab 25.4 ± 1.1 ab 21.5 ± 1.1 bc

T3 25.2 ± 0.7 27.4 ± 1.1 c 28.1 ± 1.6 b 23.3 ± 1.5 b 19.1 ± 1.5 c

Treatment codes represent 100% leaf area (CK: control), 85% leaf area (T1), 70% leaf area (T2), and 55% leaf area
(T3) from the soybean canopy. Means are averages over three replicates ± the standard error of the mean. Means
that do not share the same letters in a column differ significantly at p < 0.05 using least significant differences
(LSDs), calculated separately for each year; NS = nonsignificant.

The different defoliation treatments (T1, T2, and T3) significantly reduced the values
of the leaf area index for the control treatment (CK), with the most significant (p < 0.05)
reduction noticed under T3 (Figure 1). On average, at R3, R4, and R5, the maximum leaf
area index was obtained in CK, while at R6 and R7, the maximum leaf area index was noted
under treatment T1. In contrast, the mean minimum leaf area index was measured under
treatment T3. Interestingly, relative to CK, treatment T1 significantly increased (by 14% in
2017, 13% in 2018, and 11% in 2019) the leaf area index of soybean plants at R7, indicating
that the leaf senescence in soybean is directly associated with leaf greenness.

2.2. PAR Transmittance and Photosynthesis

As presented in Table 2, all defoliation treatments significantly improved the PAR
transmittance of the soybean canopy at R5. The mean values for PAR transmittance
revealed that the maximum PAR transmittance was noticed in T3, followed by T2, T1, and
CK. Averaged across the years, compared to CK, the PAR transmittance was increased by
42% in T1, 98% in T2, and 146% in T3, indicating that soybean plants severely suffer from
mutual shading of leaves.
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Figure 1. Leaf area index of soybean at the pod initiation stage (R3), full pod stage (R4), seed initiation stage (R5), full seed
stage (R6), and physiological maturity stage (R7) as affected by different defoliation treatments during the summer season
of 2017, 2018, and 2019. Treatment codes represent 100% leaf area (CK: control), 85% leaf area (T1), 70% leaf area (T2), and
55% leaf area (T3) from the soybean canopy. Means are averages over three replicates ± the standard error of the mean.
Means that do not share the same letters in a column differ significantly at p < 0.05 using least significant differences (LSDs),
calculated separately for each year.

Table 2. Light transmittance, photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), and intercellular
CO2 concentration (Ci) of soybean at the seed initiation stage (R5) as affected by different defoliation treatments during the
summer season of 2017, 2018, and 2019.

Year Treatment Light
Transmittance Pn Tr Gs Ci

(%) (µmol CO2 m−2 s−1) (mmol H2O m−2 s−1) (mol H2O m−2 s−1) (µmol CO2 m−2 s−1)

2017 CK 6.7 ± 0.6 a 11.8 ± 0.6 c 3.0 ± 0.3 c 0.5 ± 0.0 c 321.3 ± 7.0 a

T1 9.4 ± 0.7 a 13.6 ± 0.8 b 3.7 ± 0.5 bc 0.6 ± 0.0 b 279.4 ± 8.6 b

T2 13.3 ± 1.2 b 15.5 ± 0.4 a 4.4 ± 0.3 ab 0.7 ± 0.0 b 257.9 ± 16.2 bc

T3 15.7 ± 1.0 b 17.1 ± 0.2 a 5.2 ± 0.3 a 0.8 ± 0.0 a 241.2 ± 9.7 c

2018 CK 10.6 ± 0.8 d 12.3 ± 0.9 c 2.7 ± 0.3 c 0.5 ± 0.0 c 354.7 ± 23.7 a

T1 13.8 ± 1.2 c 15.7 ± 0.6 b 3.6 ± 0.5 bc 0.7 ± 0.0 b 321.0 ± 7.5 ab

T2 19.2 ± 0.9 b 17.4 ± 0.4 b 4.3 ± 0.3 ab 0.6 ± 0.0 b 295.8 ± 13.5 b

T3 23.3 ± 2.4 a 19.9 ± 0.5 a 5.0 ± 0.3 a 0.8 ± 0.0 a 273.6 ± 11.2 b

2019 CK 7.3 ± 0.6 d 10.3 ± 0.1 d 2.7 ± 0.4 d 0.3 ± 0.0 c 328.1 ± 24.9 a

T1 11.7 ± 1.0 c 15.8 ± 0.2 c 3.7 ± 0.2 c 0.4 ± 0.0 c 280.1 ± 13.0 ab

T2 16.3 ± 0.8 b 15.5 ± 0.2 b 4.5 ± 0.3 b 0.5 ± 0.0 b 247.0 ± 6.9 b

T3 21.0 ± 1.0 a 18.7 ± 0.0 a 5.5 ± 0.3 a 0.7 ± 0.0 a 234.6 ± 22.5 b

Treatment codes represent 100% leaf area (CK: control), 85% leaf area (T1), 70% leaf area (T2), and 55% leaf area (T3) from the soybean
canopy. Means are averages over three replicates ± the standard error of the mean. Means that do not share the same letters in a column
differ significantly at p < 0.05 using least significant differences (LSDs), calculated separately for each year.

All treatments significantly influenced the photosynthetic parameters of soybean
plants (Table 2). The values of the photosynthetic rate (Pn), transpiration rate (Tr), and
stomatal conductance (Gs) were significantly higher in T1, T2, and T3 than CK. However,
defoliation treatments significantly reduced the intercellular CO2 concentration (Ci) values
in soybean leaves compared to the corresponding values in the control treatment. At R5,
treatment T3 increased Pn, Tr, and Gs by 62%, 88%, and 77%, respectively, compared CK in
all years of study. In contrast, the average highest and lowest Ci values were noted in the
CK and T3 treatments, respectively.

2.3. Dry Matter and Crop Growth Rate

The total dry matter accumulation (TDM) in soybean demonstrated an “S-type” curve
in all defoliation treatments and the control treatment at different sampling stages (Figure 2).
The TDM increased slowly from R3 to R4, demonstrated a steep increase from R5 to R6,
and reached the highest level at R7. Averaged across the three years, at R3, R4, and R5,
the maximum TDM was recorded under CK, while at R6 and R7, the maximum TDM was
produced in the T1 treatment. In contrast, the minimum TDM was obtained in the T3
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treatment. Furthermore, all treatments changed the TDM and influenced the partitioning
of dry matter in vegetative and reproductive parts (Table 3). For example, compared to CK,
treatment T1 significantly increased dry matter partitioning to vegetative and reproductive
parts by 4% and 8% at R7, respectively, indicating that the higher green leaf at R7 (Table 2)
maintained the high rate of photoassimilate translocation to reproductive parts. However,
heavy defoliation (T2 and T3) significantly reduced the dry matter partitioning to vegetative
parts (by 18% and 34%) and reproductive parts (by 27% and 45%) compared to the control
treatment (CK).
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Figure 2. Total dry matter accumulation of soybean at the pod initiation stage (R3), full pod stage (R4), seed initiation stage
(R5), full seed stage (R6), and physiological maturity stage (R7) as affected by different defoliation treatments during the
summer season of 2017, 2018, and 2019. Treatment codes represent 100% leaf area (CK: control), 85% leaf area (T1), 70%
leaf area (T2), and 55% leaf area (T3) from the soybean canopy. Means are averages over three replicates ± the standard
error of the mean. Means that do not share the same letters in a column differ significantly at p < 0.05 using least significant
differences (LSDs), calculated separately for each year.

In this experiment, the values of the crop growth rate among R3–R4, R–R5, R5–R6, and
R6–R7 exhibited a similar trend (Table 4). In general, the crop growth rate of soybean was
increased at the early reproductive growth stages and achieved its maximum value between
the R4–R5 and R5–R6 stages; after that, it gradually reduced owing to leaf senescence in all
treatments. On average, at all sampling stages, the highest crop growth rate was noticed in
T1, while the lowest crop growth rate was recorded in treatment T3. Overall, between R6
and R7, T1 increased the crop growth rate of soybean plants by 52% in 2017, 24% in 2018,
and 34% in 2019 compared to the corresponding values under CK.

2.4. Yield and Yield Components

Table 5 shows the yield (seed yield, kg ha−1) and yield components (number of pods
m−2, number of seeds m−2, and 100-seed weight) of soybean under different treatments.
Among the treatments, T1 produced the mean maximum soybean seed yield (2318.2 kg
ha−1), whereas T3 had the mean minimum soybean seed yield (1428.1 kg ha−1) in all years
of the experiment. Interestingly, a reduction of 15% of the leaf area at R3 increased the
seed yield of soybean by 9% in T1 compared to nondefoliated soybean plants in CK. In this
study, nonsignificant differences were noted among different treatments for the individual
seed weight of soybean. However, different defoliation and control treatments showed
significant effects on the pods m−2 and seeds m−2, with the highest values of 1012.7 pods
m−2 and 1311.7 seeds m−2 being obtained in T1, followed by CK (823.8 pods m−2 and
1181.4 seeds m−2), T2 (680.9 pods m−2 and 953.3 seeds m−2), and T3 (527.6 pods m−2 and
789.7 seeds m−2). The dynamics of the number of pods m−2 and the number of seeds
m−2 in 2019 under different treatments were consistent with those in the previous years.
Overall, compared to CK, treatment T1 increased the number of pods m−2 and the number
of seeds m−2 by 23% and 11%, respectively. Thus, treatment T1 significantly improved the
final pod number and seed number in soybean plants, resulting in an improved seed yield
of soybean.
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Table 3. Dry matter accumulation in vegetative (leaves + stems; g m−2) and reproductive (pods + seeds; g m−2) organs of soybean at different phenological stages as affected by different
defoliation treatments during the summer season of 2017, 2018, and 2019.

Year Treatment Growth Stages

R3 R4 R5 R6 R7

Vegetative
Parts

Reproductive
Parts

Vegetative
Parts

Reproductive
Parts

Vegetative
Parts

Reproductive
Parts

Vegetative
Parts

Reproductive
Parts

Vegetative
Parts

Reproductive
Parts

2017 CK 271.2 ± 10.2 a 32.3 ± 2.8 NS 323.2 ± 9.0 a 53.2 ± 1.0 b 401.8 ± 4.8 a 116.7 ± 7.9 b 386.2 ± 5.0 a 223.1 ± 7.0 b 288.1 ± 7.8 a 365.5 ± 2.6 b

T1 234.3 ± 17.6 b 31.8 ± 2.7 289.3 ± 7.3 b 71.7 ± 5.2 a 379.5 ± 9.7 b 149.5 ± 4.9 a 379.1 ± 18.3 a 257.1 ± 8.5 a 301.6 ± 10.7 a 401.8 ± 3.2 a

T2 185.6 ± 5.1 c 28.2 ± 1.2 233.4 ± 4.7 c 41.6 ± 1.9 c 302.4 ± 9.2 c 85.1 ± 2.0 c 301.0 ± 6.4 b 162.0 ± 1.7 c 234.5 ± 8.2 b 259.8 ± 3.0 c

T3 143.6 ± 12.4 d 27.6 ± 2.7 179.9 ± 9.9 d 34.7 ± 1.6 c 236.0 ± 10.0 d 64.9 ± 5.6 d 252.6 ± 7.0 c 111.2 ± 3.0 d 185.8 ± 13.2 c 198.8 ± 5.6 d

2018 CK 283.9 ± 8.9 a 41.2 ± 1.5 NS 347.9 ± 3.0 a 80.6 ± 1.6 b 431.8 ± 8.3 a 133.5 ± 1.8 b 415.8 ± 5.3 a 245.4 ± 4.7 b 327.8 ± 3.5 a 419.7 ± 2.5 b

T1 251.5 ± 5.7 b 42.2 ± 1.2 318.7 ± 1.9 b 91.8 ± 1.1 a 396.7 ± 6.0 b 165.0 ± 4.9 a 401.2 ± 3.3 a 282.0 ± 4.5 a 334.1 ± 2.5 a 455.8 ± 2.5 a

T2 189.4 ± 7.7 c 41.1 ± 1.3 250.4 ± 5.6 c 66.0 ± 3.6 c 322.7 ± 8.0 c 103.8 ± 3.4 c 317.4 ± 2.8 b 191.1 ± 1.4 c 269.1 ± 4.2 b 308.6 ± 2.0 c

T3 146.5 ± 1.6 d 40.8 ± 0.7 207.7 ± 4.7 d 50.8 ± 1.7 d 274.9 ± 9.4 d 69.8 ± 2.9 d 266.0 ± 3.6 c 140.2 ± 4.4 d 221.1 ± 9.5 c 241.4 ± 10.2 d

2019 CK 296.9 ± 7.2 a 27.6 ± 2.4 NS 350.1 ± 6.1 a 51.9 ± 1.5 b 463.3 ± 8.6 a 92.8 ± 4.9 b 414.2 ± 2.2 a 236.9 ± 5.8 b 299.7 ± 3.7 b 426.3 ± 7.2 b

T1 254.7 ± 6.4 b 26.7 ± 3.7 303.6 ± 4.5 b 68.5 ± 4.4 a 412.4 ± 8.2 b 135.0 ± 3.5 a 395.4 ± 5.1 b 269.0 ± 4.6 a 317.7 ± 3.0 a 446.9 ± 1.9 a

T2 214.7 ± 6.1 c 26.1 ± 2.3 259.3 ± 5.2 c 44.8 ± 2.1 bc 340.0 ± 3.9 c 94.9 ± 3.0 b 354.3 ± 5.1 c 151.3 ± 8.0 c 245.3 ± 2.6 c 313.1 ± 8.1 c

T3 172.6 ± 5.9 d 26.6 ± 3.3 209.9 ± 7.1 d 34.6 ± 2.8 c 295.6 ± 2.4 d 53.8 ± 3.7 c 274.7 ± 4.1 d 124.8 ± 3.7 d 198.9 ± 6.7 d 229.7 ± 3.5

Treatment codes represent 100% leaf area (CK: control), 85% leaf area (T1), 70% leaf area (T2), and 55% leaf area (T3) from the soybean canopy. Means are averages over three replicates ± the standard error of the
mean. Means that do not share the same letters in a column differ significantly at p < 0.05 using least significant differences (LSDs), calculated separately for each year; NS = nonsignificant.
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Table 4. The crop growth rate (g m−2 day−1) of soybean plants at different phenological stages as
affected by different defoliation treatments during the summer season of 2017, 2018, and 2019.

Year Treatment Growth Stages

R3–R4 R4–R5 R5–R6 R6–R7

2017 CK 9.1 ± 0.6 ab 15.8 ± 0.8 a 13.0 ± 0.6 b 6.3 ± 0.7 b

T1 11.9 ± 1.2 a 18.7 ± 1.0 a 15.3 ± 1.0 a 9.6 ± 1.3 a

T2 7.7 ± 0.9 bc 12.5 ± 1.0 b 10.8 ± 0.7 bc 4.5 ± 0.8 bc

T3 5.4 ± 0.5 c 9.6 ± 0.8 b 9.0 ± 0.7 bc 3.0 ± 0.7 c

2018 CK 11.5 ± 0.4 a 15.2 ± 1.1 ab 12.0 ± 1.3 ab 10.8 ± 0.7 ab

T1 13.0 ± 0.7 a 16.8 ± 1.1 a 15.2 ± 0.9 a 13.3 ± 0.8 a

T2 9.5 ± 0.4 b 12.2 ± 0.6 bc 10.3 ± 1.5 bc 8.7 ± 0.7 bc

T3 7.9 ± 0.5 b 9.6 ± 1.0 c 7.7 ± 0.9 c 7.0 ± 0.5 c

2019 CK 11.1 ± 0.5 a 15.4 ± 0.9 ab 11.9 ± 0.9 b 9.4 ± 0.9 ab

T1 12.9 ± 0.8 a 17.5 ± 0.8 a 14.6 ± 0.4 a 12.5 ± 1.3 a

T2 9.0 ± 0.6 b 13.1 ± 0.4 b 8.8 ± 0.6 c 6.6 ± 1.0 bc

T3 6.5 ± 0.3 c 10.5 ± 0.6 c 6.3 ± 0.6 d 3.6 ± 0.7 c

Treatment codes represent 100% leaf area (CK: control), 85% leaf area (T1), 70% leaf area (T2), and 55% leaf area
(T3) from soybean canopy. Means are averages over three replicates ± the standard error of the mean. Means that
do not share the same letters in a column differ significantly at p < 0.05 using least significant differences (LSDs),
calculated separately for each year; NS = nonsignificant.

Table 5. Yield and yield components of soybean as affected by different defoliation treatments during
the summer season of 2017, 2018, and 2019.

Year Treatment Yield and Yield Components

Number of
Pods

Number of
Seeds

100-Seed
Weight Seed Yield

(m−2) (m−2) (g) (kg ha−1)

2017 CK 803.1 ± 36.4 b 1139.6 ± 64.7 b 18.1 ± 0.2 NS 2069.0 ± 130.3 b

T1 1022.5 ± 47.8 a 1247.6 ± 52.7 a 18.0 ± 0.1 2243.9 ± 100.2 a

T2 671.8 ± 53.6 bc 956.3 ± 49.9 c 18.2 ± 0.3 1743.6 ± 95.4 c

T3 524.7 ± 32.3 c 759.6 ± 57.0 d 18.4 ± 0.2 1396.7 ± 97.6 d

2018 CK 912.0 ± 37.3 b 1291.8 ± 36.1 b 17.6 ± 0.3 NS 2273.2 ± 98.3 b

T1 1072.7 ± 46.6 a 1424.3 ± 61.5 a 17.3 ± 0.3 2460.5 ± 118.5 a

T2 715.8 ± 69.3 c 1062.8 ± 42.2 c 17.8 ± 0.4 1897.3 ± 103.9 c

T3 563.7 ± 44.7 d 895.6 ± 47.2 d 17.7 ± 0.1 1584.8 ± 72.6 d

2019 CK 756.4 ± 24.3 b 1112.7 ± 4.1 b 18.1 ± 0.2 NS 2018.5 ± 55.7 b

T1 942.9 ± 39.7 a 1263.3 ± 3.6 a 17.8 ± 0.3 2250.4 ± 72.9 a

T2 655.1 ± 24.7 b 840.7 ± 4.5 c 18.2 ± 0.2 1534.7 ± 93.4 c

T3 494.4 ± 30.1 c 713.8 ± 3.5 d 18.3 ± 0.2 1302.7 ± 64.2 d

Treatment codes represent 100% leaf area (CK: control), 85% leaf area (T1), 70% leaf area (T2), and 55% leaf area
(T3) from soybean canopy. Means are averages over three replicates ± the standard error of the mean. Means that
do not share the same letters in a column differ significantly at p ≤ 0.05 using least significant differences (LSDs),
calculated separately for each year; NS = nonsignificant.

2.5. Correlation Analysis

To recognize the indices wherein soybean growth and yield components were sensitive
to the leaf area index, the relationship between decreasing leaf area index at the R5 stage and
soybean growth (Figure 3) and yield components were investigated (Figure 4). Among the
growth and yield components of soybean, the crop growth rate (g m−2 day−1), vegetative
dry matter (g m−2), reproductive dry matter (g m−2), total dry matter accumulation (g m−2),
final number of pods (m−2), number of seeds (m−2), and seed yield (kg ha−1) increased
with increasing leaf area index. However, the highest values of all these parameters in all
years of this study were noticed in treatment T1, where soybean plants produced 6% in 2017,
13% in 2018, and 10% in 2019, with less leaf area index than the corresponding soybean
plants in the control treatment. We found that the crop growth rate (Figure 3a), vegetative
dry matter (Figure 3b), reproductive dry matter (Figure 3c), total dry matter accumulation
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(Figure 3d), final number of pods (Figure 4a), number of seeds (Figure 4b), and seed yield
(Figure 4c) were positively (p < 0.05) related to the leaf area index. Furthermore, the
relationship between the crop growth rate during R3 to R6 (the critical period for seed
setting) and soybean yield components was also investigated; and the final number of
pods (m−2), number of seeds (m−2), and seed yield (kg ha−1) increased with increasing
crop growth rate. However, the maximum yield components were noticed in treatment T1,
where soybean plants achieved an 18% (mean of all the study years) higher crop growth
rate than the corresponding soybean plants in the control treatment. We found that the
final number of pods (Figure 5a), number of seeds (Figure 5b), and seed yield (Figure 5c)
were positively (p < 0.05) related to the crop growth rate. The correlation coefficient among
all the measured indices for the mean datasets was higher than 0.74 (p < 0.05).
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Figure 3. Relationship of the leaf area index at the R5 stage with the crop growth rate (a) and
vegetative dry matter (b), reproductive dry matter (c), and total dry matter accumulation (d) of
soybean at the R7 stage. Means are averages over three replicates ± the standard error of the mean.
The dashed black line shows the relationship.
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Figure 5. Relationship of crop growth rate during R3 to R6 (the critical period for seed setting) with the final number of
pods (a), number of seeds (b), and seed yield (c) of soybean. Means are averages over three replicates ± the standard error
of the mean. The dashed black line shows the relationship.

3. Discussion

Crop leaves become more critical to growth and yield only when they act as sources,
not as a sink, especially during the reproductive phase of crops [9]. Thus, crop yield is
not always strongly correlated with leaf area, while crop leaves become a sink and are
negatively correlated with seed yield [34]. Leaf senescence, leaf redundancy, and the low
PAR transmittance at crop canopies are the primary reasons for converting crop leaves from
source organs to sink organs. Leaf senescence is a natural process, which occurs during
the lifecycle of crops. However, the early senescence of leaves significantly reduces crop
yields [35,36]. Besides, leaf redundancy is defined as a relative increase in the number and
size of leaves due to improper management practices (e.g., an improper (large) maturity
group) or environmental factors (e.g., high rainfall). It changes the photoassimilate parti-
tioning pattern from reproductive parts to vegetative parts and decreases crop yields [37].
Moreover, the low PAR transmittance in the middle and lower leaves is primarily due
to the large canopy [34], high planting density [38], and plant height [39], which all to-
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gether prevent light penetration at crop canopies, thereby causing a significant reduction
in the current photosynthetic rate [9]. Therefore, the lower leaves cannot fulfill the plant
demand for carbohydrates and nutrients, and they permanently act as a sink instead of a
source [40]. However, the results of the present study revealed that the slight defoliation
(T1) from the top of the soybean canopy significantly increased the PAR transmittance
and photosynthesis of soybean compared to nondefoliated soybean plants. These positive
responses also enhanced the leaf greenness of the remaining soybean leaves [41], which
delayed the leaf senescence of soybean leaves by increasing their leaf greenness at R6 and
R7. Consequently, the remaining lower leaves contributed carbohydrates and nutrients
for a longer period to developing pods and seeds and remained a source throughout
the reproductive phase. Whereas the heavy defoliation considerably increased the PAR
transmittance and photosynthetic rate of soybean plants, this increment in the PAR trans-
mittance and the photosynthetic rate did not compensate for the reduced total leaf area
of soybean plants at all measuring stages in T2 and T3, indicating the decreased recovery
growth from R4 to R7. Taken together, these results suggest that the slight defoliation at the
start of the reproductive phase of soybean: (i) effectively reduced the leaf redundancy by
reducing the photoassimilate consumption in the extra leaf growth under the high-rainfall
conditions; and (ii) improved PAR transmittance at the soybean canopy, which delayed the
leaf senescence caused by the mutual shading of leaves.

The leaf area of soybean is a critical index for obtaining a higher crop yield, and it
is significantly influenced by abiotic (solar radiation and heavy rainfall) factors [42]. In
addition, researchers had obtained the maximum soybean seed yield when their crops
achieved a leaf area index between 3.5 and 4.0 at the beginning of the flowering stage under
subtropical environments [31]. However, little is known about the optimum range of the
leaf area index for soybean under low-light and high-rainfall conditions. Therefore, the
determination of the optimum leaf area index, especially under high-rainfall conditions, is
a first step to decrease the yield gaps in soybean production [42]. The experimental results
demonstrated that the soybean plants appear to produce more leaves than essential for
better crop yield under the high-rainfall condition. While new developing leaves from
the R4 to R7 stages of soybean are detrimental for pod initiation and seed formation [43],
extra crop foliage hinders the light penetration through the crop canopies [12]. Therefore,
the benefit of having fewer leaves at the start of the reproductive phase is associated with
higher PAR transmittance (Raza et al., 2019) and light use efficiency [44]. Similarly, in the
previous study, the researchers confirmed that the increasing light intensity changed dry
matter accumulation pattern in soybean by allocating more dry matter for pod initiation
and seed formation [45], which significantly increased the pod and seed number in de-
foliated soybean plants compared to nondefoliated soybean plants [43]. Consequently,
the amount of dry matter from the R3 to R5 stages is a critical factor determining yield
and yield components in soybean [46]. These results indicate the potential to improve
the soybean yield while increasing sustainability for light use efficiency, especially under
high-rainfall conditions. Thus, it is possible that with increased photosynthesis and light
use efficiency, soybean plants with a little lower leaf area at R3, R4, and R5 could save dry
matter investment on the development and maintenance of extra vegetative parts. These
dry matter savings could then be shifted to increase the final seed yield of soybean by
increasing the pod initiation [5] and decreasing seed abortion [11].

At maturity, the pod and seed number of soybeans is the outcome of the balance
between dry matter accumulation in vegetative and reproductive parts. In this study, a
slight reduction in the leaf area of soybean plants at R3 significantly increased the number of
pods and seeds through increased pod initiation and decreased seed abortion, respectively,
by maintaining enough supply of carbohydrates to reproductive parts. Thus, under high-
rainfall conditions, soybean requires a higher supply of photoassimilates to reduce pod
abscission and seed abortion because, with an adequate supply of assimilates, each initiated
pod and seed can develop into a mature pod and seed at final harvest [11]. However, mutual
shading of leaves significantly reduces the net photosynthetic rate and carbohydrate supply
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to developing pods in soybean, especially at the pod initiation and seed initiation stages [43].
The slight defoliation in T1 improved the photosynthetic rate and maintained a higher
supply of photoassimilates to reproductive parts during the reproductive phase of the
soybean. Similarly, some studies on the predictive models incorporate the temporal profile
of pod and seed initiations in the assimilate-based models [47,48]. Therefore, the present
higher pod and seed number of soybeans in T1 than CK could be explained by assimilate-
based models. Moreover, the results of this experiment exhibited that the better seed yield
of soybean was measured in T1, followed by the CK, T2, and T3 treatments. Importantly, the
leaf area index reduction in treatment T1 at R3 was 15%. It could only reduce the leaf area
index of soybean plants by 9% and 5% (average of three years) at R5 and R6, respectively.
Interestingly, it increased the leaf area index of soybean by 13% at R7 due to the delayed
leaf senescence, resulting in a 9% increase in seed yield of soybean as compared to the
control treatment. Therefore, we can conclude that the improved seed yield of soybean in
T1 might be associated with the improved PAR transmittance and dry matter accumulation,
leading to a higher partitioning of dry matter and nutrients to developing pods and seeds
from R3 to R7. Delayed leaf senescence maintained the continuous assimilate supply, which
reduced the pod abscission and seed abortion rate in soybean plants [11,43]. Therefore, the
slight defoliation significantly increased the final pod and seed number, which increased
the final seed yield. Moreover, the medium- or late-maturing soybean varieties tend to
uptake more nutrients (nitrogen) from the soil under high-rainfall conditions, increasing
the dry matter investment in vegetative parts, especially during the reproductive growth
phase, as we observed in this study. Therefore, based on our results, we recommend
10–15% of defoliation from the top of the soybean canopy at the pod initiation stage,
especially for medium- or late-maturing varieties, for higher PAR transmittance, dry matter
partitioning towards reproductive parts, and seed yield of soybean plants. For this purpose,
(i) leaf clipping machines can be developed to optimize soybean canopies for better crop
yields, which will also reduce the leaf redundancy in soybean plants, especially under
high-rainfall conditions; (ii) crop management practices (i.e., optimizing plant distribution
through modifying plant population and row spacing) could be developed that could
reduce the leaf redundancy in soybean plants; and (iii) some genetic modification of the
leaf angle might be a plausible option for increasing light transmittance through the canopy,
which will improve the current photosynthesis of soybean leaves and, finally, the seed
yield. Furthermore, we can better control crop yields by regulating the crop canopies
in field conditions [9], for instance: chemicals or plant growth regulators can be used at
the appropriate time to control the vegetative growth (i.e., dry matter investment in new
leaves during the reproductive phase) of soybean plants. Additionally, our optimal leaf
removal findings can be applied generally to solve the problem of excessive vegetative
growth of soybean, not only in heavy-rainfall regions but also in the regions where the
active accumulated temperature is not enough, due to the sudden decrease of temperature
in the late growing season (i.e., in Sichuan, the temperature drops sharply in September)
and improper management (i.e., nitrogen and variety use), which do not allow promising
results from short-duration varieties.

4. Materials and Methods
4.1. Experimental Site

This study was carried out at the research site of Sichuan Agricultural University
(29◦98′ N, 103◦59′ E), City Yaan, Province Sichuan, China. The study was performed for
three consecutive years during the summer season of 2017, 2018, and 2019 with three
replications for each treatment. The research area is categorized by a humid subtropical
monsoon climate with a mean annual temperature of 16.2 ◦C. The average annual rainfall of
this area is about 1200 mm, mostly occurring in the summer season (from June to August).
Weather data (daily temperature and rainfall) of the research site during the cropping
seasons are shown in Figure 6. The soil is characterized as fluvo-aquic soil [49], with a pH
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of 6.6. The contents of available nitrogen, phosphorus, potassium, and organic matter in the
0–20 cm soil layer were 0.32 g kg−1, 0.04 g kg−1, 0.38 g kg−1, and 29.8 g kg−1, respectively.
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4.2. Experimental Materials and Design

The experimental design was a randomized complete block design (RCBD) with three
replicates. After the harvesting of wheat, the soybean cultivar “Nandou-12 (determinate
growth habit, lodging resistant, a variety of medium-maturity group; breeding material of
Nanchong Academy of Agricultural Sciences in Sichuan Province)”, which is the famous
cultivar of soybean in the southwest of China, was used as the experimental material [9,41].
In all years of the experiments, soybean was sown (at a seeding rate of 30 kg ha−1) in the
second week of June at a planting population of 100,000 plants ha−1 using a plant-to-plant
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distance of 20 cm and a row-to-row distance of 50 cm and harvested in the third week of
October. Four different treatments were organized in a randomized complete block design
with three replications: no defoliation treatment was used as a control (CK), and three
different defoliation treatments were applied at the pod initiation stage (R3) of soybean: T1
(15% defoliation); T2 (30% defoliation); and T3 (45% defoliation) from the top of the soybean
canopy (Figure 7). Defoliation was performed (one time) manually using a leaf clipper (R3).
These defoliation treatments were maintained by removing the different number of fully
developed trifoliate (i.e., three trifoliates for T1, six trifoliates for T2, and nine trifoliates for
T3) from the soybean plant. At R3, the total number of phytomeres in each soybean plant
was 19± 3. We selected stage R3 for defoliation because the formation of reproductive parts
(pods) starts from this stage in soybean [50]. In high-rainfall regions, soybean plants tend
to lodge due to extra vegetative growth [51]. Therefore, we applied different defoliation
treatments to evaluate the effect of reducing the leaf area on soybean, especially during
the reproductive growth phase. All the growth stages were recorded by following the
description of Fehr and Caviness (1977) (Table 6). The size of each experimental plot
was 24 m2 (4 m × 6 m) and consisted of eight soybean rows spaced 0.50 m apart. Each
experimental plot was separated by an uncropped space of two meters in width. At the
time of soybean sowing, fertilizers were applied at 75 kg nitrogen ha−1 as urea, 40 kg
phosphorus ha−1 as calcium superphosphate, and 10 kg potassium ha−1 as potassium
sulfate. For seedbed preparations, conventional tillage, that is three cultivations with a
tractor-mounted cultivator followed by planking, was practiced in the three years of the
study. In this study, all farm machinery was owned by Sichuan Agricultural University,
Chengdu, China. Weeds were controlled with hand hoeing, which was performed twice
after the soybean sowing. Disease and pests were also well controlled using appropriate
chemicals. Additionally, we used the central six rows of each treatment for plant sampling
and measurements (with at least one meter away from the previous sampling); the first
and last rows of each treatment were not selected due to border-row effects.
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material [9,41]. In all years of the experiments, soybean was sown (at a seeding rate of 30 

kg ha−1) in the second week of June at a planting population of 100,000 plants ha−1 using a 

plant-to-plant distance of 20 cm and a row-to-row distance of 50 cm and harvested in the 

third week of October. Four different treatments were organized in a randomized com-

plete block design with three replications: no defoliation treatment was used as a control 

(CK), and three different defoliation treatments were applied at the pod initiation stage 

(R3) of soybean: T1 (15% defoliation); T2 (30% defoliation); and T3 (45% defoliation) from 

the top of the soybean canopy (Figure 7). Defoliation was performed (one time) manually 

using a leaf clipper (R3). These defoliation treatments were maintained by removing the 

different number of fully developed trifoliate (i.e., three trifoliates for T1, six trifoliates for 

T2, and nine trifoliates for T3) from the soybean plant. At R3, the total number of phyto-

meres in each soybean plant was 19 ± 3. We selected stage R3 for defoliation because the 

formation of reproductive parts (pods) starts from this stage in soybean [50]. In high-rain-

fall regions, soybean plants tend to lodge due to extra vegetative growth [51]. Therefore, 

we applied different defoliation treatments to evaluate the effect of reducing the leaf area 

on soybean, especially during the reproductive growth phase. All the growth stages were 

recorded by following the description of Fehr and Caviness (1977) (Table 6). The size of 

each experimental plot was 24 m2 (4 m × 6 m) and consisted of eight soybean rows spaced 

0.50 m apart. Each experimental plot was separated by an uncropped space of two meters 

in width. At the time of soybean sowing, fertilizers were applied at 75 kg nitrogen ha−1 as 

urea, 40 kg phosphorus ha−1 as calcium superphosphate, and 10 kg potassium ha−1 as po-

tassium sulfate. For seedbed preparations, conventional tillage, that is three cultivations 

with a tractor-mounted cultivator followed by planking, was practiced in the three years 

of the study. In this study, all farm machinery was owned by Sichuan Agricultural Uni-

versity, Chengdu, China. Weeds were controlled with hand hoeing, which was performed 

twice after the soybean sowing. Disease and pests were also well controlled using appro-

priate chemicals. Additionally, we used the central six rows of each treatment for plant 

sampling and measurements (with at least one meter away from the previous sampling); 

the first and last rows of each treatment were not selected due to border-row effects. 

 

Figure 7. Pictorial representation of the soybean canopy as affected by different defoliation treatments under high-rainfall
conditions during the growing season of 2017, 2018, and 2019. The CK refers to control treatment (no defoliation); T1, T2,
and T3 refer to 15%, 30%, and 45%, defoliation, respectively, from the top of the soybean canopy.
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Table 6. Soybean phenological stages and growth phases as recorded during the summer season of
2017, 2018, and 2019 at the research site of Sichuan Agricultural University, Yaan, China.

Phenological Stage Growth Phase Julian Day

2017 2018 2019

Seed emergence (VE) Germination 165 167 172
Fifth-trifoliate (V5) Vegetative 194 194 199

Flower-initiation (R1) Pre-reproductive 216 216 224
Pod-initiation (R3) Reproductive 228 234 240

Full pod (R4) Reproductive 236 243 247
Seed-initiation (R5) Reproductive 245 252 257

Full seed (R6) Reproductive 252 260 265
Physiological maturity (R7) Reproductive 259 268 273

Full maturity (R8) Reproductive 282 289 296

4.3. Measurements
4.3.1. Leaf Area Index and Leaf Greenness

The leaf area index of soybean plants was determined at the pod initiation stage (R3),
full pod stage (R4), seed initiation stage (R5), full seed stage (R6), and physiological maturity
stage (R7). For this purpose, ten consecutive soybean plants were sampled from each exper-
iment plot. The leaf area of every single leaf was measured by multiplying the leaf length
and greatest leaf width with the crop-specific coefficient factor of 0.75 for soybean [52].
Then, the leaf area index of soybean plants was calculated using Equation (1) [53].

Leaf area index =
(Leaf area per plant × Plant number per plot)

Plot area
(1)

Moreover, the leaf greenness of soybean leaves at all sampling stages (R3, R4, R5, R6,
and R7) was measured using SPAD-502 (Soil Plant Analysis Development, Konica Minolta,
Japan). For this purpose, three fully developed trifoliates from the middle of the soybean
canopy (in total, nine individual leaves) were selected to measure the leaf greenness of
soybean plants, and the average was calculated. In all treatments, we did not use the young
leaves for the measurement of leaf greenness; and we measured the leaf greenness from
the same phytomer rank (8th phytomer rank) of all sampled plants in all treatments.

4.3.2. Photosynthetically Active Radiation Transmittance and Photosynthetic Parameters

The photosynthetically active radiation (PAR) was determined at R5 because soybean
achieved the maximum leaf area at R5 [43], using the quantum sensors (LI-191SA, LICOR
Inc., Lincoln, NE, USA) equipped with a digital data logger. To measure the PAR, first,
sensors were placed at the top of the soybean canopy and then at the ground level. The
PAR of each treatment was determined three times, from 10:30 to 11:30 h on a sunny day.
Then, the PAR transmittance was estimated using Equation (2) [9]:

PAR transmittance (%) =
PARG
PART

× 100 (2)

where PART is the PAR above the soybean canopy and PARG is the PAR at ground level.
Furthermore, the photosynthetic parameters of soybean leaves were measured at R5

using Li-6400 (LI-COR Inc., Lincoln, NE, USA). For this purpose, three fully developed
individual leaves from the middle of the soybean canopy were selected to measure the
photosynthetic parameters. All photosynthetic measurements were taken from 11:30 to
13:00 h under a steady light intensity of 1000 µmol m−2 s−1, a temperature of 25 ◦C, and a
carbon dioxide concentration of 400 µmol mol−1. Note, we only selected those soybean
leaves that were receiving the same levels of solar radiation in all treatments.
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4.3.3. Dry Matter and Crop Growth Rate

At R3, R4, R5, R6, and R7, after the measurement of the leaf area index, we used
the same plant samples for dry matter analysis. First, we divided the plant samples into
vegetative (stem + leaves, g m−2) and reproductive parts (pods + seeds, g m−2). After
that, all samples were placed in an oven at 65 ◦C to obtain the constant weight of all parts
and then weighed. Additionally, at all sampling stages, the total dry matter accumulation
(TDM, kg ha−1) was estimated from the summation of the dry matter of vegetative parts
and reproductive parts [16].

The crop growth rate (g m−2 day−1) of soybean was calculated among R3–R4, R4–R5,
R5–R6, and R6–R7. The crop growth rate and reproductive growth rate of soybean were
measured using Equation (3) [54].

Crop growth rate =
TDM2 − TDM1

T2 − T1
(3)

where TDM1 and TDM2 are the total dry matter (vegetative dry matter + reproductive dry
matter) of soybean plants at Stages 1 and 2, respectively. T1 is the time of the first sampling,
and T2 is the time of the second sampling.

4.3.4. Yield and Yield Components

At soybean maturity, the four-meter square area was harvested by cutting soybean
plants at ground level from all treatments and sun dried for the next seven days. After sun
drying, all pods were separated from the soybean plants, and the number of pods m−2

was counted, as well as the average determined. Then, all pods were manually threshed,
and the average number of seeds m−2 was determined, then all the seeds of the sampled
plants were weighed to calculate the seed yield of each plant and converted into kg ha−1.
Five lots of one hundred seeds from the bulk seed lot of each treatment were oven dried at
65 ◦C till constant weight, and then, the seed weight (SW) (in mg) was recorded using an
electrical balance, then the average was calculated.

4.4. Statistical Analysis

Statistical analyses were conducted using Statistix 8.1. Significant differences were
measured by using ANOVA in combination with the LSD (least significance difference)
test. The significance of the differences was evaluated at the p < 0.05 level. Tables report
the means and the standard errors of the calculated means based on the three replicates
of each treatment. The Pearson correlation was used to analyze the relationship of the
growth and yield components with the leaf area index at R5; we selected the R5 stage
because researchers have reported that soybean achieves the maximum leaf area index at
this stage [43,50].
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