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Non-alcoholic fatty liver disease is characterised
by a reduced polyunsaturated fatty acid
transport via free fatty acids and high-density
lipoproteins (HDL)
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ABSTRACT

Background and objectives: Non-alcoholic fatty liver disease (NAFLD) develops due to impaired hepatic lipid fluxes and is a risk factor for
chronic liver disease and atherosclerosis. Lipidomic studies consistently reported characteristic hepatic/VLDL “lipid signatures” in NAFLD; whole
plasma traits are more debated. Surprisingly, the HDL lipid composition by mass spectrometry has not been characterised across the NAFLD
spectrum, despite HDL being a possible source of hepatic lipids delivered from peripheral tissues alongside free fatty acids (FFA). This study
characterises the HDL lipidomic signature in NAFLD, and its correlation with metabolic and liver disease markers.

Methods: We used liquid chromatography-mass spectrometry to determine the whole serum and HDL lipidomic profile in 89 biopsy-proven
NAFLD patients and 20 sex and age-matched controls.

Results: In the whole serum of NAFLD versus controls, we report a depletion in polyunsaturated (PUFA) phospholipids (PL) and FFA; with PUFA PL
being also lower in HDL, and negatively correlated with BMI, insulin resistance, triglycerides, and hepatocyte ballooning. In the HDL of the NAFLD
group we also describe higher saturated ceramides, which positively correlate with insulin resistance and transaminases.

Conclusion: NAFLD features lower serum lipid species containing polyunsaturated fatty acids; the most affected lipid fractions are FFA and (HDL)
phospholipids; our data suggest a possible defect in the transfer of PUFA from peripheral tissues to the liver in NAFLD. Mechanistic studies are
required to explore the biological implications of our findings addressing if HDL composition can influence liver metabolism and damage, thus
contributing to NAFLD pathophysiology.

© 2023 Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION perspective, NAFLD is a continuum of presentations ranging from

“simple” steatosis (NAFL; intrahepatic fat deposition in more than 5%
Non-alcoholic fatty liver disease (NAFLD) develops due to an impair-  of hepatocytes) to steatohepatitis (NASH; steatosis in the presence of
ment in systemic/hepatic metabolism leading to hepatic lipid accu- inflammation and ballooning), fibrosis, and cirrhosis, which can ulti-
mulation and, eventually lipotoxicity [1]. From a histological mately evolve to hepatocellular carcinoma (HCC) [2].
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NAFLD has reached pandemic proportions with a global prevalence of
24% in the general population, thus being a public health priority [3].
NAFLD is strongly associated with features of the Metabolic Syndrome
(MetS), including obesity, insulin resistance (IR) and type 2 diabetes
mellitus (T2DM), mixed dyslipidaemia [low high-density lipoprotein
cholesterol (HDL-C) and increased very low-density lipoprotein tri-
glycerides (VLDL-TG)], which partly explain the elevated cardiovascular
disease (CVD) risk [4]. The latter represents the leading cause of death
in these patients, and recent studies suggest that NALFD could be an
independent risk factor for atherosclerosis and CVD outcomes [5].
However, the mechanisms linking both conditions are still debated [4].
Over the last decade, lipidomics has helped to understand the NAFLD
pathophysiology, pointing to specific changes in lipid metabolism that
can serve as candidate biomarkers [6]. Specifically, lipidomic studies
of liver tissues have reported a lipid imbalance alongside the NAFLD
spectrum characterised by elevated levels of saturated fatty acids
(SFA) and reduced levels of phospholipids (PL) and polyunsaturated
fatty acids (PUFA) [7]. Major players expected to contribute to these
lipidomic changes are: 1) adipose tissue (AT) [the foremost source of
fatty acids (FA) to the liver]; 2) hepatic de novo lipogenesis (DNL),
enhanced by hyperinsulinaemia and increased (refined) carbohydrate
intake; 3) dietary fat intake [1,8,9]. Over the years, studies have
described differences in whole serum/plasma lipids, mainly focusing
on TG fatty acid remodelling alongside circulating candidate bio-
markers. The latter has been prompted by the risks and costs asso-
ciated with liver biopsy procedures. Compared to healthy controls,
NAFLD patients displayed an increased level of SFA and mono-
unsaturated fatty acids (MUFA) and reduced PUFA within the TG
fraction of the whole plasma [10—13], partly explained by the
enhanced DNL [14]. However, apart from these findings focusing on
TG, whole plasma lipidomic studies have reported conflicting results
regarding the abundance and composition of other lipid classes
[13,15—17]. Several factors might contribute to the discrepancies
observed in the circulating lipidome of NAFLD patients: 1) differences
in inclusion criteria among studies (such as sex, dyslipidaemia,
ethnicity, and dietary habits); 2) while TG composition reflects more
direct changes in liver metabolism (being enriched in VLDL) and TG/
VLDL metabolism is particularly stressed under the metabolic pressure
of obesity/MetS/NAFLD [1], other lipids are abundant in multiple li-
poprotein fractions including low-density lipoproteins (LDL) and HDL,
thus rendering the biological interpretation of results generated in a
complex matrix, such as whole plasma, more challenging.

The use of isolated lipoprotein fractions (lipoprotein lipidomics) can
provide a higher granularity than whole plasma lipidomics, allowing a
more detailed study of biological processes such as lipoprotein
remodelling and organ-to-organ exchange/crosstalk.

This study aims to investigate the quantitative and qualitative lipidomic
differences in patients across the NAFLD spectrum. Given the asso-
ciation of NAFLD with cardiovascular risk (CVR) and considering the
mounting evidence associating HDL reduction with (central) obesity/IR/
NAFLD [18—20], we posited that HDL may play a role in NAFLD acting
as a possible source of hepatic lipids delivered from peripheral tissues
to the liver and that, together with FFA, differences in HDL composition
might be associated to NAFLD development and/or progression. With
this proposition, we studied the lipidome of the whole serum and HDL
(obtained through fast protein liquid chromatography) by liquid chro-
matography coupled with mass spectrometry in healthy and biopsy-
confirmed NAFLD participants.

2. METHODS

2.1. Ethics and the BioNASH study cohort

Eighty-nine patients with biopsy-proven NAFLD (patients with alternate
diagnoses, aetiologies, and kidney dysfunction were excluded) and 20
healthy volunteers were involved in this study. Patients were recruited
by the NASH Service at Cambridge University Hospitals NHS Founda-
tion Trust, whereas healthy volunteers were recruited either by the
NIHR Cambridge BioResource (http://www.cambridgebioresource.org.
uk) or by the NHS Blood and Transplant Unit, Cambridge, UK. Partic-
ipant enrolment was approved by NHS Research Ethics Committees
(REC 06/Q0106/70; 12/EE/0040; 17/EE/0389). Study protocols fol-
lowed the principles of the Declaration of Helsinki, and all participants
gave written informed consent.

Liver biopsies were scored by an experienced liver pathologist for
steatosis (0—3), ballooning (0—2), inflammation (0—2), and fibrosis
(0—4) and were classified according to the Kleiner score [21] and
classified into NAFL and NASH following the same algorithm proposed
by Bedossa and colleagues [22]. In healthy controls, where liver biopsy
was not clinically indicated, they were selected on the basis of the
predicted absence of NAFLD according to the non-invasive score
proposed by Kotronen et al. [based on: presence/absence of metabolic
syndrome, T2DM, and levels of insulin, aspartate aminotransferase
(AST) and AST/alanine aminotransferase (ALT)] [23].

Sample collection and processing for serum and lipoprotein lipidomics
have been previously described [20] and are here reported in sup-
plementary materials.

2.2. Statistical analyses

Data are shown as mean + standard deviation unless otherwise
specified. Normality was visually assessed from plots of the data
(skewness/kurtosis) obtained with the Im function in R, and loga-
rithmic transformations were applied to non-normally distributed
data. Comparisons of clinical data between healthy and NAFLD
patients were assessed using three-way and two-way ANOVA
controlling for sex and the presence of T2DM, followed by the Tukey
HSD post hoc test to estimate the statistical significance among
groups. Regarding categorical variables, a chi-square test was
adopted. Whole serum lipidomic data were analysed using three-
way ANOVA controlling for sex, presence of T2DM and interaction
between sex, T2DM and disease state, followed by the Tukey HSD
post hoc test to estimate the statistical significance among groups.
A p-value <0.05 was considered significant. However, when lipids
were investigated as independent hits, multiple testing correction
[Benjamini-Hochberg procedure to control the False Discovery Rate
(FDR)] was applied as specified in the legend to tables. Lipoprotein
lipidomics data, where participants were only males, were analysed
using two-way ANQVA controlling for the presence of T2DM and the
interaction between disease state and T2DM, followed by the Tukey
HSD post hoc test to estimate the statistical significance among
groups. A p-value <0.05 was considered significant. As with whole
serum, when lipids were considered as an independent unit, FDR
was reported along with the raw p-value. To assess the power of
this study, whole serum and lipoprotein lipidomics, we performed a
Post Hoc Power Analysis with G*power software. Variables with an
effect size (f) below 0.3 (whole serum) and 0.5 (lipoproteins) fell
below an acceptable power level of 0.7, therefore being potentially
exposed to type 2 error. All the significant variables had an optimal
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power (>0.8). Univariate correlations were carried out using the
Pearson Correlation Coefficient. Statistical analysis and graphs were
performed with R version 4.2.1.

2.3. Other experimental procedures
Detailed experimental procedures are described in the supplementary
files.

3. RESULTS

3.1. Clinical characteristics and whole serum lipidomic profile of
healthy and NAFLD patients

This study involved 109 participants, including 20 healthy volunteers
(age and sex-matched), 36 NAFL, and 53 NASH (Supplementary
Table 1). The patients in the NAFLD spectrum displayed significantly
higher BMI, insulin resistance (as assessed by the Homeostasis Model
Assessment 2 of Insulin Resistance HOMA2-IR), and mixed dyslipi-
daemia (higher TG and lower HDL-C), along with increased liver en-
zymes (ALT, AST), while LDL-C and total cholesterol were not
significantly different across the groups (Supplementary Table 1).
NASH patients displayed a worse metabolic profile (significantly higher
glucose, insulin, HOMA2-IR, AST) compared to NAFL, despite similar
BMI (Supplementary Table 1).
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Lipids were analysed as total lipid class (sum of each lipid measured),
and according to their acyl chain saturation levels (saturated, mono-
unsaturated and polyunsaturated), as fatty acids saturation level im-
balances have been described in the livers of NAFLD patients and are
involved in the pathophysiology of NAFLD.

The whole serum lipidomic analysis revealed a quantitative and quali-
tative depletion of several phospholipid classes [phosphatidylcholines
(PC), phosphatidylethanolamines (PE), phosphatidylglycerols (PG), and
sphingomyelins (SM)] in the NAFLD (both NAFL and NASH) groups as
compared to the controls (Figure 1 A-G). The lower levels of total PC and
PE were mainly driven by a depletion in their PUFA component, while PG
were markedly lower irrespectively of their acyl chain saturation levels
(Figure 1B,D,F). Lower SM levels in NAFLD groups were attributable to a
reduction in MUFA and PUFA components (Figure 1H). Furthermore, we
observed a significant sex effect on most of the PL measured (Figure 1),
in line with known differences in the lipoprotein metabolism among
sexes [24,25]. While between NAFLD and controls total free fatty acids
(FFA) were not significantly different (Figure 11), NAFLD patients showed
markedly higher saturated FFA, coupled with a depletion in poly-
unsaturated FFA (Figure 1J). Similar results were found in the triglyc-
eride fraction (Supplementary Fig. 1a,b), likely reflecting the known
activation of DNL programs previously described in NAFLD
[11,14,26,27]. Within the lysophosphatidylcholines (LPC), the only
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Figure 1: Whole serum levels of major lipid classes in healthy volunteers and NAFLD patients. (A,B) PC, (C,D) PE, (E,F) PG, (G,H) SM were lower across the NAFLD spectrum
compared to controls. (I,J) FFA were higher in SFA and lower in PUFA in NAFLD as compared to controls. All lipid species were analysed by LC-MS. Statistical significance was
assessed using three-way ANOVA controlling for sex, presence of type 2 diabetes mellitus (T2DM) and interaction between sex, T2DM and disease state, with a p-value <0.05
considered significant. Tukey HSD post hoc test was used to estimate the statistical significance among groups. Lowercase red letters indicate post hoc analysis significance: “a”
means different from controls “CTRL”, and “b” means different from NAFL. Data are represented as mean =+ standard deviation; expression data of participants are represented as
dot plots. In Supplementary Table 2 are reported all the specific lipid species analysed. Abbreviations: PC, phosphatidylcholines; PE, phosphatidylethanolamines; PG, phospha-
tidylglycerols; SM, sphingomyelins; FFA, free fatty acids; SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids.
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significant difference observed was in the saturated fraction, which was
higher in NAFLD than controls (Supplementary Fig. 1c,d). In contrast,
within the lysophosphatidylethanolamines (LPE), only the MUFA content
was significantly lower in NAFL compared to controls and NASH
(Supplementary Fig. 1e,f). Ceramides (Cer) did not show significant
differences between NAFLD and controls (Supplementary Fig. 1g,h) but
were characterised by a significant sex effect, as reported in the liter-
ature [28—30].

Lastly, within the NASH group, we clustered the patients against
fibrosis (Supplementary Table 3). Apart from a mild increase of LPE
MUFA, and a trend in lower SFA/MUFA-TG and FFA in NASH F3-4 vs.
NASH FO0-2, no major changes were observed in the lipid classes when
clustering the patients against fibrosis (Supplementary Table 4). This
trend to deflection in SFA/MUFA-TG (including TG enriched in DNL
products) in end-stage NASH F3-4, was previously described by others
and explained by liver dysfunction [7]; in our cohort, it also reflects
similar trends in BMI, Insulin/HOMA-IR and TG (Supplementary Table 3)
that could be associated to a deflection in sterol regulatory element-
binding protein 1 (SREBP-1) activation, as we previously described
(by next generation sequencing in a partially overlapping cohort) [26].
To better understand the extent to which whole serum lipidomic data
related to metabolic impairment, we correlated the significantly
different lipids from Figure 1 with critical clinical data (Figure 2).
Pearson correlation analysis showed that PG (total, SFA, MUFA, PUFA)
had the strongest inverse correlation with obesity and insulin resis-
tance, whereas SFA from FFA were positively correlated with HOMA2-
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IR (Figure 2). Moreover, most of the lipids significantly reduced in the
NAFLD groups were also positively correlated with HDL-C (Figure 2).
No significant correlation between whole serum lipids and liver his-
tology were found (data not shown), aligning with previous studies
showing small/no differences across the NAFLD spectrum [17,31].
Taken together, these data show that in NAFLD, the whole serum
lipidome is depleted of specific PL, and their PUFA content drove these
changes, suggesting a close relationship between the circulating lip-
idome, IR and HDL metabolism.

3.2. HDL lipidomics of NAFLD patients suggest a reduced reverse
PUFA transport from peripheral tissues to the liver

Based on the strong correlations between PL/PUFA-containing lipids
and HDL-C, we posited an implication of HDL particles in the observed
whole serum differences; specifically, we investigated if the lipidomic
differences we observed in the whole serum were due to the sole
reduction of HDL concentration or also driven by an impairment of HDL
composition.

To address this question, we isolated HDL by fast protein liquid
chromatography (FPLC) and studied its lipidome in a sub-cohort of 40
age-matched male subjects (9 healthy, 11 NAFL, and 20 NASH;
Supplementary Table 5). We focused on male participants to reduce
the variability attributable to sex differences in HDL metabolism.
Compared to controls, and in agreement with whole serum lipidomics,
the HDL lipidomic profile of NAFLD patients was characterised by lower
PC levels, mainly driven by their PUFA content, with NASH being most
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Figure 2: Correlations between significant whole-serum lipid species and clinical data. Heatmap representing a correlation matrix among significantly different whole serum
lipid species and clinical data in healthy volunteers and NAFLD patients: colour represents the Pearson correlation coefficient (red: positive; blue: negative), and the size of the circle
represents significance (black bold borders highlight correlations with p < 0.05; red bold borders highlight correlations with p < 0.01). Abbreviations: PC, phosphatidylcholines; PE,
phosphatidylethanolamines; PG, phosphatidylglycerols; SM, sphingomyelins; FFA, free fatty acids; SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, poly-
unsaturated fatty acids; BMI, body mass index; HOMA2-IR, Homeostasis Model Assessment 2 of Insulin Resistance; TAG, triglycerides; TC, total cholesterol; LDL-C, low-density
lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; AST, aspartate aminotransaminase; ALT, alanine aminotransaminase.
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Figure 3: HDL levels of major lipid classes in healthy volunteers and NAFLD patients, and their correlation with clinical and liver histological data. (A,B) PC were lower
in NAFLD as compared to controls. (C—-E) SM and PG were lower across the NAFLD spectrum as compared to controls. (F,G) Total and SFA Cer were higher in NASH compared to
controls. Statistical significance was assessed using two-way ANOVA controlling for presence of type 2 diabetes mellitus (T2DM) and interaction between T2DM and disease state,
with a p-value <0.05 considered significant. Tukey HSD post hoc test was used to estimate the statistical significance among groups. Lowercase red letters indicate post hoc
analysis significance: “a” means different from controls “CTRL”, and “b” means different from NAFL. Data are represented as mean + standard deviation; expression data of
participants are represented as dot plots. In Supplementary Table 6 are reported all the specific lipid species analysed within the HDL fraction. (H) Heatmap representing a
correlation matrix among significantly different HDL lipid species and clinical data in healthy volunteers and NAFLD patients: colour represents the Pearson correlation coefficient
(red: positive; blue: negative), and the size of the circle represents significance (black bold borders highlight correlations with p < 0.05; red bold borders highlight correlations with
p < 0.01). () Heatmap representing a correlation matrix among significantly different HDL lipid species and liver histological data in NAFLD patients (n = 31): colour represents the
Pearson correlation coefficient (red: positive; blue: negative), and the size of the circle represents significance (black bold borders highlight correlations with p < 0.05; red bold
borders highlight correlations with p < 0.01). All lipid species were analysed by LC-MS and normalised to its internal standard (IS) as with whole serum (list of IS used reported in
the method section), in addition to the ApoA-I concentration (Supplementary Fig. 2). Abbreviations: PC, phosphatidylcholines; SM, sphingomyelins; PG, phosphatidylglycerols; Cer,
ceramides; SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids.
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significantly affected (Figure 3A,B). This observation confirmed our
hypothesis that PC differences in whole serum lipidomics tightly reflect
HDL abundance and composition. Indeed, reduced PC (and especially
their PUFA content) have been reported in peripheral tissues (including
AT and macrophages) of obese patients with IR [32—36]; these tissues
are involved in HDL metabolism.

Furthermore, compared to controls, the NAFLD group showed lower
absolute levels of total SM (mostly MUFA and PUFA) and total PG
(Figure 3C-E). Low HDL SM concentration has been associated with a
decreased HDL cholesterol efflux capacity [37]; this has also been
suggested for PG, even though this lipid class represents a minor
component of the HDL lipidome [38] (in our data, with few exceptions,
most PG were undetectable). We also observed higher HDL total Cer in
NASH patients, mainly driven by their SFA component (Figure 3F,G). No
significant differences were observed in LPC, TG and PE among the
groups (Supplementary Fig. 3). When clustering NASH patients against
fibrosis (Supplementary Table 7), no major differences were observed
in the HDL lipid classes, with the exception of a significant decline in
HDL TG SFA concentration (Supplementary Table 8).

To further assess the extent to which the HDL lipidome related to
metabolic parameters and liver histology, we correlated the signifi-
cantly different lipids with critical clinical and histological data
(Figure 3H,1). Pearson correlation analysis showed that the lipid species
significantly reduced in the NAFLD group were negatively correlated
with insulin resistance and, within these species, (Total/MUFA/PUFA)
SM had the strongest correlation. On the other hand, we found the
positive correlation of total and SFA Cer with insulin resistance and
liver enzymes particularly intriguing, with AST showing the strongest
correlation (Figure 3H). We also observed a significant negative cor-
relation between hepatocyte ballooning and total PG, Total/MUFA/PUFA
SM (Figure 3l). As already described for the whole serum lipidome,
none of HDL lipid classes correlated with fibrosis.

We then focussed on the specific HDL PUFA-containing species where
we found a generalised depletion in NASH of PUFA-PL (Figure 4A)
including PC containing odd-chain fatty acids (such as PC 37:5, PC
37:6, 35:2, 35:3). Moreover, most of these PUFA-containing lipid
species negatively correlated with insulinemia, HOMA2-IR (Figure 4B)
and hepatocyte ballooning (Figure 4C).

In summary, these data show that, independently from the lower HDL-
C concentration, HDL is characterised by PUFA PL depletion and
enrichment of SFA Cer levels in NAFLD that might be intimately linked
to IR, and associated to liver damage. The fact that the liver reuses
HDL-derived PL, either incorporating them into membranes or con-
verting them into different lipid classes, has been previously suggested
with tracer experiments in preclinical models [39]. Our results, despite
being observational, show for the first time that the HDL lipidome of
NAFLD patients carries lipidomic signatures similar to those previously
described in both peripheral tissues and liver of patients with MetS/
NAFLD [7,32—36], therefore potentially implicating HDL as a
contributor to NAFLD development and progression in IR states.

4. DISCUSSION

NAFLD is characterised by an imbalance in hepatic lipid fluxes [1], with
lipoproteins (alongside FFA) being deeply involved in these processes.
Apart from the characteristic elevated hepatic fat content (mainly TG), it
is increasingly recognised that other lipid species, such as phospho-
lipids and sphingolipids, are involved in the onset and progression of
this condition [40]. Indeed, some lipid species are referred to as
“lipotoxic species” because of their capability to induce cell toxicity.

While reports regarding characteristic hepatic lipidomic signatures of
NAFLD are coherent (including higher SFA across different lipid spe-
cies, oxidised lipids, ceramides or lower PUFA/PL), whole serum lip-
idomic studies have produced conflicting results, also sometimes
discordant with hepatic findings [41]. Discordances have also been
reported among major plasma lipidomic classes: for example, PL have
been described higher (PC/SM [16]; PC/PE/PG [42]), and/or lower (PC/
LPC/SM [13]; LPC [43]) in NAFLD compared to controls. This might be
partly due to the recruiting criteria (e.g., differences in clinical pa-
rameters such as HDL-C, TG, and BMI between diseased and controls
across studies) and diet, potentially affecting the circulating lipidome.
Moreover, the lipidomic profiling of the whole serum/plasma provides
averaged information on lipoproteins concentration and composition
varying according to disease state, dietary habits, sex and many other
factors [44,45]. Investigating the specific lipoprotein lipidomic profile
provides a more accessible matrix to compare among studies (e.g.,
lipoproteins are normalised to their protein/apolipoprotein content) and
give a more biologically relevant interpretation (e.g., VLDL as a more
direct proxy of liver output). Understandably, mass-spectrometry-
based lipoprotein lipidomics of NAFLD has mainly focused on VLDL
[46—48], with limited information regarding the other lipoprotein
fractions.

In this study, we first started describing NAFLD’s whole serum lip-
idomic signature compared to healthy controls. We showed that NAFLD
is characterised by a depletion in PL (PC, PE, PG, SM) specifically
driven by their PUFA fraction. Moreover, NAFLD patients had higher
saturated and lower polyunsaturated FFA. Circulating FFA are released
by the AT, and elevated levels of FFA have been attributed to enhanced
lipolysis due to AT-IR [1,9]. Elevated FFA play a major role in the onset
and development of NAFLD [49,50]. The higher saturated FFA in
NAFLD vs. controls that we reported is aligned with previous whole
serum studies [51—53] as well as with the acyl chain saturation profile
of the whole hepatic lipidome [17,54,55].

We also observed lower levels of PUFA in FFA and PL in whole serum of
NAFLD patients (compared to controls); these results find confirmation
in previous reports [40] (although polyunsaturated FFA depletion is a
debated finding [51—53]). Preclinical studies have provided mecha-
nistic insights as to how PUFA (especially essential fatty acids, EFA)
deficiency promotes hepatic steatosis. EFA can negatively modulate
the DNL machinery toward the negative modulation of the Liver X
Receptor (LXR), of SREBP-1 and/or of the carbohydrate response
element binding protein (ChREBP) [56—58]. Also, PUFA can activate
the peroxisome proliferator—activated receptor-o. (PPARct) promoting
fatty acid oxidation [59]. Despite the solid evidence of the role of PUFA
in modulating hepatic lipid metabolism, it should be said that omega-3
supplementation has yielded unsatisfactory results in NAFLD ftrials
[60]. Our data do not clearly point to EFA deficiency but rather to a
global PUFA depletion: FFA composition, a robust predictor of adipose
tissue fatty acid composition (that, in turn is considered the gold
standard for the representation of long term dietary fatty acids storage
due to the slow turnover time [61—63]) showed a depletion in linoleic
acid (FFA 18:2) that is not confirmed by other EFA and their derivatives.
Reduced PUFA PL in NAFLD could therefore be also attributable to
enhanced utilisation (catabolism or conversion to second messengers
such as eicosanoids) [64,65].

Since 1) NAFLD liver biopsies show depletion in PC and PUFA in
multiple lipid classes [40]; 2) HDL are the primary carriers of circulating
PC; 3) total and PUFA PC were strongly correlated with HDL-C; we
sought to better understand the lipid composition of isolated HDL to
investigate whether these results were due to HDL concentration or
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Figure 4: Significantly lower PUFA-containing phospholipids within HDL, and their correlations with clinical and liver histological data. (A) Log2 fold change among the
significantly different HDL PUFA in healthy volunteers (CTRL) versus NAFLD patients, with “#” indicating a Tukey HSD post hoc significant difference p < 0.05 (details in
Supplementary Table 6). (B) Heatmap representing a correlation matrix among significantly different HDL PUFA species and clinical data in healthy volunteers and NAFLD patients:
colour represents the Pearson correlation coefficient (red: positive; blue: negative), and the size of the circle represents significance (black bold borders highlight correlations with
p < 0.05; red bold borders highlight correlations with p < 0.01). (C) Heatmap representing a correlation matrix among significantly different HDL PUFA species and liver his-
tological data in NAFLD patients (n = 31): colour represents the Pearson correlation coefficient (red: positive; blue: negative), and the size of the circle represents significance
(black bold borders highlight correlations with p < 0.05; red bold borders highlight correlations with p < 0.01). Abbreviations: PC, phosphatidyicholine; PE, phosphatidyletha-
nolamine; PG, phosphatidylglycerol; SM, sphingomyelin; SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; BMI, body mass index;
HOMA2-IR, Homeostasis Model Assessment 2 of Insulin Resistance; TAG, triglycerides; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; AST, aspartate amino-
transaminase; ALT, alanine aminotransaminase.

MOLECULAR METABOLISM 73 (2023) 101728 © 2023 Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 7
www.molecularmetabolism.com


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com

composition. The HDL lipidome confirmed the reduction of PC in
NAFLD, being once again driven by their PUFA component and strongly
negatively correlated with IR. The effects of changes in HDL PL content
has been studied in the context of HDL physical properties and reverse
cholesterol transport: in preclinical experiments, lower PC levels in
reconstituted HDL and HDL-mimicking micelles have been associated
with reduced cholesterol efflux capacity (CEC), thus rendering these
particles potentially less athero-protective [66,67]. This might go along
with some reports suggesting a lower CEC in NAFLD compared to
healthy controls (although this matter is also debated) [68—70]: the
lower PC we observed in HDL of NAFLD patients could justify, at least
in part, the lower CEC described in NAFLD. Intriguingly, HDL PUFA PL
were mainly depleted in NASH and negatively correlated with hepa-
tocyte ballooning: despite this finding will require future mechanistic
studies to explain the association, we are tempted to speculate that
differences in HDL PL composition might contribute to hepatocyte
damage. It is worth considering that HDL (together with FFA, diet, DNL
[1]) might be contributing as input to the hepatic fat pool, promoting a
“reverse (phospho)lipid transport” since: 1) PL constitute nearly 50%
of total lipids within HDL [45]; 2) tracer studies in mice suggest that
about 50% of hepatic PC is derived from the circulation (being HDL the
main carriers) [39]; 3) HDL PL can be used to build up membranes and/
or disassembled to use or esterify FA (into TG) [39]. The fact that our
HDL lipidomics results are aligned with hepatic lipidomic signatures
described in NAFLD [41] might support the hypothesis that HDL PL
composition might have a direct impact on hepatocyte (dys)-function.
However, the understanding of HDL fate in hepatocytes is currently at
its infancy. While mechanisms are established with regards to HDL-C
uptake (with the scavenger receptor class B type | (SR-BI) being a key
player in RCT) [71], less studied is the uptake of HDL lipids: it has been
suggested that SR-BI might also contribute to HDL-PC uptake but other
mechanisms (e.g., particle endocytosis, hydrolysis of PC by phos-
pholipases, and other unknown pathways) seem to be also at play
[39,72].

Here we also report strong correlations between HDL PUFA compo-
sition and IR that merits further investigation in light of the tight as-
sociation between adipose tissue dysfunction, IR, and HDL metabolism
and function [20,73,74]. However, we cannot rule out the hypothesis
that depletion of PUFA in the liver would influence AT via VLDL, and
then fire back to the liver (via FFA and HDL-PL) in a vicious cycle [9].
Moreover, the central role of the liver in the HDL biogenesis (including
its participation into HDL lipidation), renders even more difficult to
disentangle in this setting the contribution of periphery vs. liver in the
final HDL lipid composition.

We also reported a depletion of odd-chain PC-FA within the HDL: these
fatty acids have been previously associated with a reduced incidence
of T2DM [75,76]. Not surprisingly, the lower HDL odd-chain fatty acids
observed in NAFLD finds confirmation in an independent cohort of
patients with metabolic syndrome that we previously reported [20].
Whether HDL odd chain FA exert any metabolic effect is to be
established and so is their derivation as dietary sources [77], gut
microbiota [78], alpha-oxidation [79], and mitochondrial catabolism of
BCAA [80] can potentially contribute to the pool of these lipids.
Lastly, our data show that HDL Cer were higher in NASH compared to
controls and that their abundance in HDL correlated with hepatic
necro-inflammatory markers. Some studies described increased he-
patic Cer in NAFLD livers, and its association with lipotoxic damage
[17,81]. The liver is considered a major Cer synthesis site through
different pathways (de novo, salvage and sphingomyelin hydrolysis)
and of its export to circulation [82]; however Cer can be produced in
other organs and in circulation (by sphingomyelin hydrolysis) [83]. Our

findings can either reflect hepatic Cer concentrations (since HDL can
receive Cer from VLDL/LDL due to the activity of lipoprotein lipid
transport enzymes [84]) or, vice-versa, suggest that HDL influence
hepatic Cer pool. These findings, although intriguing, need further
mechanistic exploration.

This study is subject to different limitations. First, the study’s cross-
sectional nature provides a correlation between lipids and disease
states. Thus, causation cannot be drawn. Second, the contribution of
HDL lipids to its functionality alongside the liver lipid pool is only
speculative and requires adequate investigation. Third, dietary habits
were not recorded thus the impact of diet on our findings cannot be
inferred. Fourth, HDL lipidomics was performed only on males. Last,
patients were not profiled for the major genetic risk alleles for NAFLD,
but the marked IR state observed favours more the metabolic rather
than genetic nature of NAFLD.

In conclusion, by using mass-spectrometry-based lipidomics weshow
that NAFLD is characterised by substantial changes in HDL PL
composition and impaired reverse PUFA transport (via FFA and HDL-
PL) and that HDL PUFA-PL correlate with hepatocyte ballooning. How
HDL lipidome can influence the hepatic lipid pool and function requires
further investigation.
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