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Abstract
Knowledge about the collective dynamics of cortical spiking is very informative about the underlying coding principles.
However, even most basic properties are not known with certainty, because their assessment is hampered by spatial
subsampling, i.e., the limitation that only a tiny fraction of all neurons can be recorded simultaneously with millisecond
precision. Building on a novel, subsampling-invariant estimator, we fit and carefully validate a minimal model for cortical
spike propagation. The model interpolates between two prominent states: asynchronous and critical. We find neither of
them in cortical spike recordings across various species, but instead identify a narrow “reverberating” regime. This approach
enables us to predict yet unknown properties from very short recordings and for every circuit individually, including
responses to minimal perturbations, intrinsic network timescales, and the strength of external input compared to recurrent
activation “thereby informing about the underlying coding principles for each circuit, area, state and task.
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Introduction
In order to understand how each cortical circuit or network
processes its input, it would be desirable to first know its basic
dynamical properties. For example, knowing which impact one
additional spike has on the network (London et al. 2010) would
give insight into the amplification of small stimuli (Douglas
et al. 1995; Suarez et al. 1995; Miller 2016). Knowing how much
of cortical activity can be attributed to external activation or
internal activation (Reinhold et al. 2015) would allow to gauge
how much of cortical activity is actually induced by stimuli, or
rather internally generated, for example in the context of pre-
dictive coding (Rao and Ballard 1999; Clark 2013). Knowing the
intrinsic network timescale (Murray et al. 2014) would inform
how long stimuli are maintained in the activity and can be read
out for short-term memory (Buonomano and Merzenich 1995;

Wang 2002; Jaeger et al. 2007; Lim and Goldman 2013).
However, not even these basic properties of cortical network
dynamics are generally known with certainty.

In the past, insights about these network properties have
been strongly hampered by the inevitable limitations of spatial
subsampling, i.e., the fact that only a tiny fraction of all neu-
rons can be recorded experimentally with millisecond preci-
sion. Such spatial subsampling fundamentally limits virtually
any recording and hinders inferences about the collective
response of cortical networks (Priesemann et al. 2009, 2014;
Ribeiro et al. 2010, 2014; Levina and Priesemann 2017).

To describe network responses, two contradicting hypothe-
ses have competed for more than a decade, and are the sub-
jects of ongoing scientific debate: one hypothesis suggests that
collective dynamics are “asynchronous-irregular” (AI) (Burns
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and Webb 1976; Softky and Koch 1993; Stein et al. 2005), i.e.,
neurons spike independently of each other and in a Poisson man-
ner, which may reflect a balanced state (van Vreeswijk and
Sompolinsky 1996; Brunel 2000). The other hypothesis proposes
that neuronal networks operate at criticality (Beggs and Plenz 2003;
Levina et al. 2007, 2009; Beggs and Timme 2012; Plenz and Niebur
2014; Tkačik et al. 2015; Humplik and Tkačik 2017; Muñoz 2018).
Criticality is a particular state at a phase transition, characterized
by high sensitivity and long-range correlations in space and time.

These hypotheses have distinct implications for the coding
strategy of the brain. The typical balanced state minimizes redun-
dancy (Atick 1992; Bell and Sejnowski 1997; van Hateren and van
der Schaaf 1998; Hyvärinen and Oja 2000; Barlow 2012), supports
fast network responses (van Vreeswijk and Sompolinsky 1996),
and shows vanishing autocorrelation time or network timescale.
In contrast, criticality in models optimizes performance in tasks
that profit from extended reverberations of activity in the net-
work (Bertschinger and Natschläger 2004; Haldeman and Beggs
2005; Kinouchi and Copelli 2006; Wang et al. 2011; Boedecker et al.
2012; Shew and Plenz 2013; Del Papa et al. 2017).

Surprisingly, there is experimental evidence for both AI and
critical states in cortical networks, although both states are clearly
distinct. Evidence for the AI state is based on characteristics of
single-neuron spiking, resembling a Poisson process, i.e., exponen-
tial inter-spike interval (ISI) distributions and a Fano factor F close
to unity (Burns and Webb 1976; Tolhurst et al. 1981; Vogels et al.
1989; Softky and Koch 1993; de Ruyter van Steveninck et al. 1997;
Gur et al. 1997; Kara et al. 2000; Carandini 2004). Moreover, spike
count cross-correlations (Ecker et al. 2010; Cohen and Kohn 2011)
are small. In contrast, evidence for criticality was typically obtained
from a population perspective instead, and assessed neuronal ava-
lanches, i.e., spatio-temporal clusters of activity (Beggs and Plenz
2003; Pasquale et al. 2008; Priesemann et al. 2009; Friedman et al.
2012; Tagliazucchi et al. 2012; Shriki et al. 2013), whose sizes are
expected to be power-law distributed if networks are critical (Bak
et al. 1987). Deviations from power-laws, typically observed for spik-
ing activity in awake animals (Bédard et al. 2006; Hahn et al. 2010;
Ribeiro et al. 2010; Priesemann et al. 2014), were attributed to sub-
sampling effects (Girardi-Schappo et al. 2013; Priesemann et al.
2009, 2013, 2014; Ribeiro et al. 2010, 2014; Levina and Priesemann
2017). Hence, different analysis approaches provided evidence for
one or the other hypothesis about cortical dynamics.

We here resolve the contradictory results about cortical
dynamics, building on a subsampling-invariant approach pre-
sented in a companion study (Wilting and Priesemann 2018):
(i) we establish an analytically tractable minimal model for
in vivo-like activity, which can interpolate from AI to critical
dynamics (Fig. 1a); (ii) we estimate the dynamical state of corti-
cal activity based on a novel, subsampling-invariant estimator
(Wilting and Priesemann 2018) (Figs. 1b–d); (iii) the model repro-
duces a number of dynamical properties of the network, which
are experimentally accessible and enable us to validate our
approach; (iv) we predict a number of yet unknown network
properties, including the expected number of spikes triggered
by one additional spike, the intrinsic network timescale, the
distribution of the total number of spikes triggered by a single
extra action potential, and the fraction of activation that can be
attributed to afferent external input compared to recurrent
activation in a cortical network.

Material and Methods
We analyzed in vivo spiking activity from Macaque monkey pre-
frontal cortex during a short-term memory task (Pipa et al.

2009; Franke et al. 2010; Pröpper and Obermayer 2013), anesthe-
tized cat visual cortex with no stimulus (Blanche and Swindale
2006; Blanche 2009), and rat hippocampus during a foraging
task (Mizuseki et al. 2009a, 2009b) (Supp. 1). We compared the
recordings of each experimental session to results of a minimal
model of spike propagation, which is detailed in the following.

Minimal Model of Spike Propagation

To gain an intuitive understanding of our mathematical
approach, make a thought experiment in your favorite spiking
network: apply one additional spike to an excitatory neuron, in
analogy to the approach by (London et al. 2010). How does the
network respond to that perturbation? As a first order approxi-
mation, one quantifies the number of spikes that are directly
triggered additionally in all postsynaptic neurons. This number
may vary from trial to trial, depending on the membrane
potential of the postsynaptic neurons. However, what interests
us most is m, the mean number of spikes triggered by the one extra
spike. Any of these triggered spikes can in turn trigger spikes in
their postsynaptic neurons in a similar manner, and thereby
the perturbation may cascade through the system.

In the next step, assume that perturbations are started con-
tinuously at rate h, for example through afferent input from
other brain areas or sensory modalities. Together, this leads to
the mathematical framework of a branching model (Harris
1963; Heathcote 1965; Pakes 1971; Beggs and Plenz 2003;
Haldeman and Beggs 2005; Ribeiro et al. 2010; Priesemann et al.
2013, 2014). This framework describes the number of active
neurons At in discrete time bins of length Δt. Here, Δt should
reflect the propagation time of spikes between neurons.
Formally, each spike i at the time bin t excites a random num-
ber Yt i, of postsynaptic spikes, on average =m Yt i, . The activity

+At 1, i.e., the total number of spikes in the next time bin is then
defined as the sum of the postsynaptic spikes of all current
spikes At, as well as the input ht:
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This generic spiking model can generate dynamics spanning
AI and critical states depending on the input (Zierenberg et al.
2018), and hence is well suited to probe network dynamics
in vivo (see Supp. 3 for details). Most importantly, this frame-
work enables us to infer m and other properties from the ongo-
ing activity proper. Mathematical approaches to infer m are
long known if the full network is sampled (Heyde and Seneta
1972; Wei 1991). Under subsampling, however, it is the novel
estimator described in Wilting and Priesemann (2018) that for
the first time allows an unbiased inference of m, even if only a
tiny fraction of neurons is sampled.

A precise estimate of m is essential, because the dynamics
of the model is mainly governed by m (Fig. 1a). Therefore, after
inferring m, a number of quantities can be analytically derived,
and others can be obtained by simulating a branching model,
which is constrained by the experimentally measured m and
the spike rate.

Simulation

We simulated a branching model by mapping a branching pro-
cess (Eq. (1) and Supp. 3) onto a random network of =N  10,000
neurons in the annealed disorder limit (Haldeman and Beggs
2005). An active neuron activated each of its κ = 4 postsynaptic
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neurons with probability κ=p m/ . Here, the activated postsyn-
aptic neurons were drawn randomly without replacement at
each step, thereby avoiding that two different active neurons
would both activate the same target neuron. The branching
model is critical for =m  1 in the infinite-size limit, and subcriti-
cal (supercritical) for <m  1 ( >m  1). We modeled input to the
network at rate h by Poisson activation of each neuron at rate
h N/ . Subsampling (Priesemann et al. 2009) was applied to the
model by sampling the activity of n neurons only, which were
selected randomly before the simulation, and neglecting the
activity of all other neurons. Thereby, instead of the full activity
At, only the subsampled activity at was considered for
observation.

If not stated otherwise, simulations were run for =L  107

time steps (corresponding to ~11 h). Confidence intervals were
estimated according to Wilting and Priesemann (2018) from

=B  100 realizations of the model, both for simulation and
experiments.

We compared the experimental recordings to three different
models: AI, near-critical, and reverberating. All three models
were set up to match the experiment in the number of sampled
neurons n and firing rate = 〈 〉 ( ⋅Δ )R a n t/t . The AI and near-
critical models were set up with branching ratios of =m  0 or

=m  0.9999, respectively. In addition, the reverberating model
matched the recording in = ˆm m, where m̂ was estimated from
the recording using the novel subsampling-invariant estimator
(see below). For all models, we chose a full network size of

=N  104 and then determined the appropriate input
= Δ ( − )h R tN m1 in order to match the experimental firing rate.

Exemplarily for the cat recording, which happened to represent
the median m̂, this yielded ˆ =m  0.98, =n  50, and =R Hz 7.25 .
From these numbers, =h  290, =h  5.8 and =h  0.029 followed
for the AI, reverberating, and near-critical models, respectively.

In Fig. 2, the reverberating branching model was also
matched to the length of the cat recording of 295 s. To test for
stationarity, the cat recording and the reverberating branching
model were split into 59 windows of 5 s each, before estimating
m for each window. In Fig. 1c, subcritical and critical branching
models with =N  104 and =A  100t were simulated, and =n  100
units sampled.

Subsampling-Invariant Estimation of m̂

Details on the analysis are found in Supp. 2. For each experi-
mental recording, we collected the spike times of all recorded
units (both single and multi-units) into one single train of

(a) (b)

(c) (d) (e)

Figure 1. Reverberating versus critical and irregular dynamics under subsampling. (a) Raster plot and population rate at for networks with different spike propagation

parameters or neural efficacy m. They exhibit vastly different dynamics, which readily manifest in the population activity. (b) When recording spiking activity, only a

small subset of all neurons can be sampled with millisecond precision. This spatial subsampling can hinder correct inference of collective properties of the whole

network; figure created using TREES (Cuntz et al. 2010) and reproduced from Wilting and Priesemann (2018). (c) Estimated branching ratio m̂ as a function of the simu-

lated, true branching ratio m, inferred from subsampled activity (100 out of 10 000 neurons). While the conventional estimator misclassified m from this subsampled

observation (gray, dotted line), the novel multistep regression (MR) estimator returned the correct values. (d) For a reverberating branching model with =m  0.98, the
conventional estimator inferred ˆ =m  0.21 or ˆ =m  0.002 when sampling 50 or 1 units, respectively, in contrast to MR estimation, which returned the correct m̂ even

under strong subsampling. (e) Using the novel MR estimator, cortical network dynamics in monkey prefrontal cortex, cat visual cortex, and rat hippocampus consis-

tently showed reverberating dynamics, with (median ˆ =m  0.98 over all experimental sessions, boxplots indicate median/25–75%/0–100% over experimental sessions

per species). These correspond to intrinsic network timescales between 80ms and 2 s.
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population spike counts at , where at denotes how many neu-
rons spiked in the tth time bin Δt. If not indicated otherwise, we
used Δ =t ms 4 , reflecting the propagation time of spikes from
one neuron to the next.

From these experimental time series, we estimated m̂ using
the multistep regression (MR) estimator described in all detail
in Wilting and Priesemann (2018). In brief, we calculated the lin-
ear regression slope Δrk t, which describes the linear statistical
dependence of +at k upon at , for different time lags δ = Δt k t with

= …k k 1, , max. In our branching model, these slopes are expected
to follow the relation = ⋅ ˆ ( = ⋅ ˆ )δ

δ Δ
Δr b m or r b mt

t t
k t

k/ , where b is an
unknown parameter that depends on the higher moments of
the underlying process and the degree of subsampling.
However, it can be partialled out, allowing for an estimation of
m without further knowledge about b. Throughout this study,
we chose =k  2500max (corresponding to 10 s) for the rat record-
ings, =k  150max (600ms) for the cat recording, and kmax = 500
(2000ms) for the monkey recordings, assuring that Δk tmax was
always in the order of multiple intrinsic network timescales. In
order to test for the applicability of a MR estimation, we used a
set of conservative tests (Wilting and Priesemann 2018). The
exponential relation can be rewritten as an exponential auto-
correlation function δ δ τ= = ( Δ ) = (− )δ

δ Δr bm m t t texp ln / exp /t
t t/ ,

where the intrinsic network timescale τ relates to m as
τ= (−Δ )m texp / . While the precise value of m depends on the

choice of the bin size Δt and should only be interpreted together
with the bin size (Δ =t ms 4 throughout this study), the intrinsic
network timescale is independent of Δt. Therefore, we report
both values in the following.

Results
Reverberating Spiking Activity In Vivo

We applied MR estimation to the binned population spike
counts at of the recorded neurons of each experimental session

across three different species (see Methods). We identified a
limited range of branching ratios in vivo: in the experiments m̂
ranged from 0.963 to 0.998 (median = 0.98 , for a bin size of
Δ =t ms4 ), which is only a narrow window in the continuum
from AI ( =m  0) to critical ( =m  1). For these values of found in
cortical networks, the corresponding τ are between 100ms and
2 s (median 247ms, Figs 1e and S1). This clearly suggests that
spiking activity in vivo is neither AI-like, nor consistent with a
critical state. Instead, it is poised in a regime that, unlike criti-
cal or AI, does not maximize one particular property alone but
may flexibly combine features of both (Wilting et al. 2018).
Without a prominent characterizing feature, we name it the
reverberating regime, stressing that activity reverberates (differ-
ent from the AI state) at timescales of hundreds of milliseconds
(different from a critical state, where they can persist
infinitely).

Validity of the Approach

There is a straight-forward verification of the validity of our
phenomenological model: it predicts an exponential autocorre-
lation function δr t for the population activity at . We found that
the activity in cat visual cortex (Fig. 2a,a’) is surprisingly well
described by this exponential fit (Fig. 2b,b’). This validation
holds to the majority of experiments investigated (14 out of 21,
Fig. S1).

A second verification of our approach is based on its
expected invariance under subsampling: We further sub-
sampled the activity in cat visual cortex by only taking into
account spikes recorded from a subset ′n out of all available n
single units. As predicted (Fig. 2c), the estimates of m̂, or equiva-
lently of the intrinsic network timescale τ̂ , coincided for any
subset of single units if at least about five of the available 50
single units were evaluated (Fig. 2c’). Deviations when evaluat-
ing only a small subset of units most likely reflect the heteroge-
neity within cortical networks. Together, these results

(a)

(a’)

(b)

(b’)

(c)

(c’)

(d)

(d’)

Figure 2. Validation of the model assumptions. The top row displays properties from a reverberating model, the bottom row spike recordings from cat visual cortex.

(a/a’) Raster plot and population activity at within bins of Δ =t ms 4 , sampled from =n  50 neurons. (b/b’) Multistep regression (MR) estimation from the subsampled

activity (5min recording). The predicted exponential relation δ τ∼ = (− )δ δ Δr m texp /t
t t/ provides a validation of the applicability of the model. The experimental data

are fitted by this exponential with remarkable precision. (c/c’) When subsampling even further, MR estimation always returns the correct timescale τ̂ (or m̂) in the

model. In the experiment, this invariance to subsampling also holds, down to ≈n 10 neurons (shaded area: 16–84% confidence intervals estimated from 50 subsets of

n neurons). (d/d’) The estimated branching parameter m̂ for 59 windows of s5 length suggests stationarity of m over the entire recording (shaded area: 16–84% confi-

dence intervals). The variability in m̂ over consecutive windows was comparable for experimental recording and the matched model ( =p  0.09, Levene test). Insets:

exponential decay exemplified for one example window each.
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demonstrate that our approach returns consistent results when
evaluating the activity of ≥n 5 neurons, which were available
for all investigated experiments.

Origin of the Activity Fluctuations

The fluctuations found in cortical spiking activity, instead of
being intrinsically generated, could in principle arise from non-
stationary input, which could in turn lead to misestimation of
m (Priesemann and Shriki 2018). This is unlikely for three rea-
sons: first, the majority of experiments passed a set of conser-
vative tests that reject recordings that show any signature of
common non-stationarities, as defined in (Wilting and
Priesemann 2018). Second, recordings in cat visual cortex were
acquired in absence of any stimulation, excluding stimulus-
related non-stationarities. Third, when splitting the spike
recording into short windows, the window-to-window variation
of m̂ in the recording did not differ from that of stationary
in vivo-like reverberating models ( =p  0.3, Fig. 2d,d’). For these
reasons, the observed fluctuations in the estimates likely origi-
nate from the characteristic fluctuations of collective network
dynamics within the reverberating regime.

Timescales of the Network and Single Units

The dynamical state described by m directly relates to an expo-
nential autocorrelation function with an intrinsic network
timescale τ = −Δt m/ ln . Exemplarily for the cat recording,

=m  0.98 implies an intrinsic network timescale of τ = 188 ms,
with Δ =t  4 ms reflecting the spike propagation time from one
neuron to the next. While the autocorrelation function of the
full network activity is expected to show an exponential decay
(Fig. 3a, blue), this is different for the autocorrelation of single
neurons—the most extreme case of subsampling. We showed
that subsampling can strongly decrease the absolute values of
the autocorrelation function for any non-zero time lag (Fig. 3a,
gray). This effect is typically interpreted as a lack of memory,
because the autocorrelation of single neurons decays at the
order of the bin size (Fig. 3a, red). However, ignoring the value
at δ =t  0, the floor of the autocorrelation function still unveils
the exponential relation. Remarkably, the autocorrelation

function of single units in cat visual cortex displayed precisely
the shape predicted under subsampling (compare Fig. 3a,b).

Established Methods are Biased to Identifying AI
Dynamics

On the population level, networks with different m are clearly
distinguishable (Fig. 1a). Surprisingly, single-neuron statistics,
namely inter-spike interval (ISI) distributions, Fano factors,
conventional estimation of m, and the autocorrelation strength

δr t , all returned signatures of AI activity regardless of the under-
lying network dynamics, and hence these single-neuron prop-
erties do not serve as a reliable indicator for the network’s
dynamical state.

First, exponential ISI distributions are considered a strong
indicator of Poisson-like firing. Surprisingly, the ISIs of single
neurons in the in vivo-like branching model closely followed
exponential distributions as well. The ISI distributions were
almost indistinguishable for reverberating and AI models (Figs
4a,a’ and S2). In fact, the ISI distributions are mainly deter-
mined by the mean firing rate. This result was further sup-
ported by coefficients of variation close to unity, as expected
for exponential ISI distributions and Poisson firing (Fig. S2).

Second, for both the AI and reverberating regime, the Fano
factor F for single unit activity was close to unity, a hallmark
feature of irregular spiking (Tolhurst et al. 1981; Vogels et al.
1989; Softky and Koch 1993; de Ruyter van Steveninck et al.
1997; Gur et al. 1997; Kara et al. 2000; Carandini 2004) (Fig. 5g,
analytical result: Eq. (S9)). Hence it cannot serve to distinguish
between these different dynamical states. When evaluating
more units, or increasing the bin size to 4 s, the differences
became more pronounced, but for experiments, the median
Fano factor of single unit activity did not exceed =F  10 in any
of the experiments, even in those with the longest reverbera-
tion (Figs 4b,b’ and S3). In contrast, for the full network the
Fano factor rose to ≈F 104 for the in vivo-like branching model
and diverged when approaching criticality (Fig. 5g, analytical
result: Eq. (S5)).

Third, conventional regression estimators (Heyde and
Seneta 1972; Wei 1991) are biased towards inferring irregular
activity, as shown before. Here, conventional estimation
yielded a median of ˆ =m  0.057 for single-neuron activity in cat

(a) (b)Theory Experiment

Figure 3. MR estimation and intrinsic network timescales. (a) In a branching model, the autocorrelation function of the population activity decays exponentially with

an intrinsic network timescale τ (blue dotted line). In contrast, the autocorrelation function for single neurons shows a sharp drop from =r  10 at lag δ =t  0 to the next

lag ±Δr t (gray solid line). We showed previously that this drop is a subsampling-induced bias. When ignoring the zero-lag value, the autocorrelation strength is

decreased, but the exponential decay and even the value of the intrinsic network timescale τ of the network activity are preserved (inset). The red, dashed line shows

a potential, naive exponential function, fitted to the single-neuron autocorrelation function (gray). This naive fit would return a much smaller τ . (b) The autocorrela-

tion function of single-neuron activity recorded in cat visual cortex (gray) precisely resembles this theoretical prediction, namely a sharp drop and then an exponen-

tial decay (blue, inset), which persists over more than 100ms. A naive exponential fit (red) to the single-neuron data would return an extremely short τ .
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visual cortex, in contrast to ˆ =m  0.954 returned by MR estima-
tion (Fig. S9).

Fourth, for the autocorrelation function of an experimental
recording (Fig. 3b) the rapid decay of δr t prevails, and hence
single-neuron activity appears uncorrelated in time.

Cross-validation of Model Predictions

We compared the experimental results to an in vivo-like model,
which was matched to each experiment only in the average

firing rate, and in the inferred branching ratio m̂. Remarkably,
this in vivo-like branching model could predict statistical prop-
erties not only of single neurons (ISI and Fano factor, see
above), but also pairwise and population properties, as detailed
below. This prediction capability further underlines the useful-
ness of this simple model to approximate the default state of
cortical dynamics.

First, the model predicted the activity distributions, ( )p at ,
better than AI or critical models for the majority of experiments
(15 out 21, Figs 4c,d,c’,d’, S5, and S6), both for the exemplary bin

(a) (c) (e) (g)

(b) (d) (f)

(a’) (c’) (e’)

(g’)(b’) (d’) (f’)

Figure 4. Model validation for in vivo spiking activity. We validated our model by comparing experimental results to predictions obtained from the in vivo-like, rever-

berating model, which was matched to the recording in the mean rate, inferred m, and number of recorded neurons. In general, the experimental results (gray or

blue) were best matched by this reverberating model (red), compared to asynchronous-irregular (AI, green) and near-critical (yellow) models. From all experimental

sessions, best examples (top) and typical examples (bottom) are displayed. For results from all experimental sessions see Figs S2–S8. (a/a’) Inter-spike-interval (ISI)

distributions. (b/b’) Fano factors of single neurons for bin sizes between 4ms and 4 s. (c/c’) Distribution of spikes per bin ( )p at at a bin size of 4ms. (d/d’) Same as c/c’

with a bin size of 40ms. (e/e’) Avalanche size distributions ( )p s for all sampled units. AI activity lacks large avalanches, near-critical activity produces power-law dis-

tributed avalanches, even under subsampling. (f/f’) Same as e/e’, but for the avalanche duration distributions ( )p d . (g/g’) Spike count cross-correlations (rsc) as a func-

tion of the bin size.
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sizes of 4ms and 40ms. Hence, the branching models, which
were only matched in their respective first moment of the
activity distributions (through the rate) and first moment of the
spreading behavior (through m), in fact approximated all higher
moments of the activity distributions ( )p at .

Likewise, the model predicted the distributions of neural
avalanches, i.e., spatio-temporal clusters of activity (Figs 4e,f,e’,
f’, S7, and S8). Characterizing these distributions is a classic
approach to assess criticality in neuroscience (Beggs and Plenz
2003; Priesemann et al. 2014), because avalanche size and dura-
tion distributions, ( )p s and ( )p d , respectively, follow power laws
in critical systems. In contrast, for AI activity, they are approxi-
mately exponential (Priesemann and Shriki 2018). The matched
branching models predicted neither exponential nor power law
distributions for the avalanches, but very well matched the
experimentally obtained distributions (compare red and blue in
Figs 4e,f,e’,f’, S7, and S8). Indeed, model likelihood (Clauset et al.

2009) favored the in vivo-like branching model over Poisson and
critical models for the majority experiments (18 out of 21,
Fig. S7). Our results here are consistent with those of spiking
activity in awake animals, which typically do not display power
laws (Bédard et al. 2006; Ribeiro et al. 2010; Priesemann et al.
2014). In contrast, most evidence for criticality in vivo, in partic-
ular the characteristic power-law distributions, has been
obtained from coarse measures of neural activity (LFP, EEG,
BOLD; see Priesemann et al. 2014 and references therein).

Last, the model predicted the pairwise spike count cross-
correlation rsc. In experiments, rsc is typically between 0.01 and
0.25, depending on brain area, task, and most importantly, the
analysis timescale (bin size) (Cohen and Kohn 2011). For the cat
recording the model even correctly predicted the bin size
dependence of rsc from ¯ ≈r 0.004sc at a bin size of 4ms (analyti-
cal result: Eq. (S12)) to ¯ ≈r 0.3sc at a bin size of 2 s (Fig. 4g).
Comparable results were also obtained for some monkey

(a) (d) (e)

(b) (f) (g)

(c) (h) (i)

Figure 5. Predictions about network dynamics and propagation of perturbations. Using our in vivo-like, reverberating model, we can predict several network proper-

ties, which are yet very complicated or impossible to obtain experimentally. (a–c) In response to one single extra spike, a perturbation propagates in the network

depending on the branching ratio m, and can be observed as a small increase of the average firing rate of the sampled neurons, here simulated for 500 trials (as in

London et al. 2010). This increase of firing rate decays exponentially, with the decay time τ being determined by m. The perturbation a is rapidly quenched in the

asynchronous-irregular state, b decays slowly over hundreds of milliseconds in the reverberating state, or c persists almost infinitely in the critical state. (d) The aver-

age perturbation size Δs and Fano factor ΔFs (inset) increase strongly with m. (e) Average total perturbation sizes predicted for each spike recording of mammalian cor-

tex (errorbars: 5–95% confidence intervals). (f) Distribution ( )Δp s of total perturbation sizes Δs . The asynchronous-irregular models show approximately Poisson

distributed, near-critical models power-law distributed perturbation sizes. (g) Bin size dependent Fano factors of the activity, here exemplarily shown for the

asynchronous-irregular ( =m  0, green), representative reverberating ( =m  0.98, red), and near critical ( =m  0.9999, yellow) models. While the directly measurable Fano

factor of single neurons (dotted lines) underestimates the Fano factor of the whole network, the model allows to predict the Fano factor of the whole network (solid

lines). (h) The fraction of the externally generated spikes compared to all spikes in the network strongly decreases with larger m. (i) Fraction of the externally gener-

ated spikes predicted for each spike recording of mammalian cortex (errorbars as in e).
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experiments. In contrast, correlations in most monkey and rat
recordings were smaller than predicted (Figs 4g’ and S4). It is
very surprising that the model correctly predicted the cross-
correlation even in some experiments, as m was inferred only
from the temporal structure of the spiking activity alone,
whereas rsc characterizes spatial dependencies.

Overall, by only estimating the effective synaptic strength m
from the in vivo recordings, higher-order properties like ava-
lanche size distributions, activity distributions and in some
cases spike count cross-correlations could be closely matched
using the generic branching model.

The Dynamical State Determines Responses to Small
Stimuli

After validating the model using a set of statistical properties
that are well accessible experimentally, we now turn to making
predictions about yet unknown properties, namely network
responses to small stimuli. In the line of London et al. (2010),
assume that on a background of spiking activity one single
extra spike is triggered. This spike may in turn trigger new
spikes, leading to a cascade of additional spikes Δt propagating
through the network. A dynamical state with branching ratio m
implies that on average, this perturbation decays with time con-
stant τ = −Δt m/ log . Similar to the approach in London et al.
(2010), the evolution of the mean firing rate, averaged over a
reasonable number of trials (here: 500) unveils the nature of the
underlying spike propagation: depending on m, the rate excur-
sions will last longer, the higher m (Figs 5a–c and S11). The per-
turbations are not deterministic, but show trial-to-trial
variability which also increases with m (S11b).

Unless >m  1, the theory of branching models ensures that
perturbations will die out eventually after a duration Δd , having
accumulated a total of = ∑ ΔΔ =s t

d
t 1 extra spikes in total. This

perturbation size Δs and duration Δd follow specific distributions
(Harris 1963), which are determined by m: they are power law
distributed in the critical state ( =m  1), with a cutoff for any

<m  1 (Figs 5f and S11c,d). These distributions imply a charac-
teristic mean perturbation size Δs (Fig. 5d), which diverges at
the critical point. The variability of the perturbation sizes is
also determined by m and also diverges at the critical point
(inset of Figs 5d and S11e).

Taken together, these results imply that the closer a neuro-
nal network is to criticality, the more sensitive it is to external
perturbations, and the better it can amplify small stimuli. At
the same time, these networks also show larger trial-to-trial
variability. For typical cortical networks, we found that the
response to one single extra spike will on average comprise
between 20 and 1000 additional spikes in total (Fig. 5e).

The Dynamical State Determines Network Susceptibility and
Variability
Moving beyond single spike perturbations, our model gives pre-
cise predictions for the network response to continuous stimuli.
If extra action potentials are triggered at rate h in the network,
the network will again amplify these external activations,
depending on m. Provided an appropriate stimulation protocol,
this rate response could be measured and our prediction tested
in experiments (Fig. S11g). The susceptibility ∂ ∂R h/ diverges at
the critical transition and is unique to a specific branching ratio
m. We predict that typical cortical networks will amplify a
small, but continuous input rate by about a factor fifty
(Fig. S11h, red).

While the input and susceptibility determine the network’s
mean activity, the network still shows strong rate fluctuations
around this mean value. The magnitude of these fluctuations
in relation to the mean can be quantified by the network Fano
factor = [ ] 〈 〉F A AVar /t t (Fig. 5g). This quantity cannot be directly
inferred from experimental recordings, because the Fano factor
of subsampled populations severely underestimates the net-
work Fano factor, as shown before. We here used our in vivo-
like model to obtain estimates of the network Fano factor: for a
bin size of Δ =t  4 ms it is about ≈F 40 and rises to ≈F 4000 for
bin sizes of several seconds, highlighting that network fluctua-
tions probably are much stronger than one would naively
assume from experimental, subsampled spiking activity.

Distinguishing Afferent and Recurrent Activation
Last, our model gives an easily accessible approach to solving
the following question: given a spiking neuronal network,
which fraction of the activity 〈 〉A is generated by recurrent acti-
vation from within the network, and which fraction can be
attributed to external, afferent excitation h? The branching
model readily provides an answer: the fraction of external acti-
vation is 〈 〉 = −h A m/  1 (Fig. 5h). In this framework, AI-like net-
works are completely driven by external input currents or
noise, whereas reverberating networks generate a substantial
fraction of their activity intrinsically. For the experiments
investigated in this study, we inferred that between 0.1% and
7% of the activity are externally generated (median 2%, Fig. 5i).

While our model is quite simplistic given the complexity of
neuronal network activity, keep in mind that “all models are
wrong, but some are useful” (Box 1979). Here, the model has
proven to provide a good first order approximation to a number
of statistical properties of spiking activity and propagation in
cortex. Hence, it promises insight into cortical function because
(i) it relies on simply assessing spontaneous cortical activity, (ii)
it does not require manipulation of cortex, (iii) it enables rea-
sonable predictions about sensitivity, amplification, and inter-
nal and external activation, (iv) this analysis is possible in an
area specific, task- and state-dependent manner as only short
recordings are required for consistent results.

Discussion
Our Results Resolve Contradictions Between AI and
Critical States

Our results for spiking activity in vivo suggest that network
dynamics show AI-like statistics, because under subsampling
the observed correlations are underestimated. In contrast, typi-
cal experiments that assessed criticality potentially overesti-
mated correlations by sampling from overlapping populations
(LFP, EEG) and thereby hampered a fine distinction between
critical and subcritical states (Pinheiro Neto and Priesemann, in
preparation). By employing for the first time a consistent, quan-
titative estimation, we provided evidence that in vivo spiking
population dynamics reflects a reverberating regime, i.e., it
operates in a narrow regime around =m  0.98. This result is
supported by the findings by Dahmen et al. (2016): based on dis-
tributions of covariances, they inferred that cortical networks
operate in a regime below criticality. Given the generality of our
results across different species, brain areas, and cognitive states,
our results suggest self-organization to this reverberating regime
as a general organization principle for cortical network
dynamics.
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The Reverberating Regime Combines Features of AI and
Critical State

At first sight, ˆ =m  0.98 of the reverberating regime may suggest
that the collective spiking dynamics is very close to critical.
Indeed, physiologically a Δ ≈m 1.6% difference to criticality
( =m  1) is small in terms of the effective synaptic strength.
However, this apparently small difference in single unit proper-
ties has a large impact on the collective dynamical fingerprint
and makes AI, reverberating, and critical states clearly distinct:
for example, consider the sensitivity to a small input, i.e., the
susceptibility χ = ∂ ∂ =

−
R h/

m
1

1
. The susceptibility diverges at

criticality, making critical networks overly sensitive to input. In
contrast, states with ≈m 0.98 assure sensitivity without insta-
bility. Because this has a strong impact on network dynamics
and putative network function, finely distinguishing between
dynamical states is both important and feasible even if the cor-
responding differences in effective synaptic strength (m) appear
small.

We cannot ultimately rule out that cortical networks self-
organize as close as possible towards criticality, the platonic
ideal being impossible to achieve for example due to finite-size,
external input, and refractory periods. Therefore, the reverber-
ating regime might conform with quasi-criticality (Williams-
García et al. 2014) or neutral theory (Martinello et al. 2017).
However, we deem this unlikely for two reasons. First, in simu-
lations of finite-size networks with external input, we could
easily distinguish the reverberating regime from states with

=m  0.9999 (Wilting and Priesemann 2018), which are more
than one order of magnitude closer to criticality than any
experiment we analyzed. Second, operating in a reverberating
regime, which is between AI and critical, may combine the
computational advantages of both states (Wilting et al. 2018):
the reverberating regime enables rapid changes of computa-
tional properties by small parameter changes, keeps a sufficient
safety-margin from instability to make seizures sufficiently
unlikely (Priesemann et al. 2014), balances competing require-
ments (e.g., sensitivity and specificity (Gollo 2017)), and may
carry short-term memory and allow to integrate information
over limited, tunable timescales (Wang 2002; Boedecker et al.
2012). For these reasons, we consider the reverberating regime
to be the explicit target state of self-organization. This is in
contrast to the view of “as close to critical as possible,” which
still holds criticality as the ideal target.

More Complex Network Models

Cortical dynamics is clearly more complicated than a simple
branching model. For example, heterogeneity of single-neuron
morphology and dynamics, and non-trivial network topology
likely impact population dynamics. However, we showed that
statistics of cortical network activity are well approximated by a
branching model. Therefore, we interpret branching models as
a statistical approximation of spike propagation, which can cap-
ture a fair extent of the complexity of cortical dynamics. By
using branching models, we draw on the powerful advantage of
analytical tractability, which allowed for basic insight into
dynamics and stability of cortical networks.

In contrast to the branching model, doubly stochastic pro-
cesses (i.e., spikes drawn from an inhomogeneous Poisson dis-
tribution) failed to reproduce many statistical features
(Fig. S10). We conjecture that the key difference is that doubly
stochastic processes propagate the underlying firing rate
instead of the actual spike count. Thus, propagation of the

actual number of spikes (as e.g., in branching or Hawkes pro-
cesses; Kossio et al. 2018), not some underlying firing rate,
seems to be integral to capture the statistics of cortical spiking
dynamics.

Our statistical model stands in contrast to generative models,
which generate spiking dynamics by physiologically inspired
mechanisms. One particularly prominent example are net-
works with balanced excitation and inhibition (van Vreeswijk
and Sompolinsky 1996, 1997; Brunel 2000), which became a
standard model of neuronal networks (Hansel and van
Vreeswijk 2012). A balance of excitation and inhibition is sup-
ported by experimental evidence (Okun and Lampl 2008). Our
statistical model reproduces statistical properties of such net-
works if one assumes that the excitatory and inhibitory contri-
butions can be described by an effective excitation. In turn, the
results obtained from the well-understood estimator can guide
the refinement of generative models. For example, we suggest
that network models need to be extended beyond the
asynchronous-irregular state (Brunel 2000) to incorporate the
network reverberations observed in vivo. Possible candidate
mechanisms are increased coupling strength or inhomoge-
neous connectivity. Both have already been shown to induce
rate fluctuations with timescales of several hundred millise-
conds (Litwin-kumar and Doiron 2012; Ostojic 2014; Kadmon
and Sompolinsky 2015).

Because of the assumption of uncorrelated, Poisson-like net-
work firing, models that study single neurons typically assume
that synaptic currents are normally distributed. Our results
suggest that one should rather use input with reverberating
properties with timescales of a few hundred milliseconds to
reflect input from cortical neurons in vivo. This could poten-
tially change our understanding of single-neuron dynamics, for
example of their input-output properties.

Deducing Network Properties from the Tractable Model

Using our analytically tractable model, we could predict and
validate network properties, such as avalanche size and dura-
tion, ISI, or activity distributions. Given the experimental agree-
ment with these predictions, we deduced further properties,
which are impossible or difficult to assess experimentally and
gave insight into more complex questions about network
responses: How do perturbations propagate within the net-
work, and How susceptible is the network to external
stimulation?

One particular question we could address is the following:
Which fraction of network activity is attributed to external or
recurrent, internal activation? We inferred that about 98% of
the activity is generated by recurrent excitation, and only about
2% originates from input or spontaneous threshold crossing.
This result may depend systematically on the brain area and
cognitive state investigated: For layer 4 of primary visual cortex
in awake mice, Reinhold et al. (2015) concluded that the frac-
tion of recurrent cortical excitation is about 72%, and cortical
activity dies out with a timescale of about 12ms after thalamic
silencing. Their numbers agree perfectly well with our phenom-
enological model: a timescale of τ = 12 ms implies that the
fraction of recurrent cortical excitation is = ≈τ−Δm e 72%t/ , just
as found experimentally. Under anesthesia, in contrast, they
report timescales of several hundred milliseconds, in agree-
ment with our results. These differences show that the fraction
of external activation may strongly depend on cortical area,
layer, and cognitive state. The novel estimator can in future
contribute to a deeper insight into these differences, because it
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allows for a straight-forward assessment of afferent versus
recurrent activation, simply from evaluating spontaneous spik-
ing activity, without the requirement of thalamic or cortical
silencing.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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