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A general-purpose machine-learning force field for
bulk and nanostructured phosphorus

Volker L. Deringer® '™, Miguel A. Caro® %3 & Gabor Csényi® 4

Elemental phosphorus is attracting growing interest across fundamental and applied fields of
research. However, atomistic simulations of phosphorus have remained an outstanding
challenge. Here, we show that a universally applicable force field for phosphorus can be
created by machine learning (ML) from a suitably chosen ensemble of quantum-mechanical
results. Our model is fitted to density-functional theory plus many-body dispersion (DFT +
MBD) data; its accuracy is demonstrated for the exfoliation of black and violet phosphorus
(yielding monolayers of “phosphorene” and “hittorfene”); its transferability is shown for the
transition between the molecular and network liquid phases. An application to a phosphorene
nanoribbon on an experimentally relevant length scale exemplifies the power of accurate and
flexible ML-driven force fields for next-generation materials modelling. The methodology
promises new insights into phosphorus as well as other structurally complex, e.g., layered
solids that are relevant in diverse areas of chemistry, physics, and materials science.
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ARTICLE

he ongoing interest in phosphorus! is partly due to its

highly diverse allotropic structures. White P, known since

alchemical times, is formed of weakly bound P, molecules?,
red P is an amorphous covalent network®> and black P can be
exfoliated to form monolayers, referred to as phosphorene®”,
which have promise for technological applications®. Other allo-
tropes include Hittorf’s violet and Ruck’s fibrous forms, consist-
ing of cage-like motifs that are covalently linked in different
ways?~11, P nanorods and nanowires!?-14 and a range of thus far
hypothetical allotropes!>~18, Finally, liquid P has been of funda-
mental interest due to the observation of a first-order transition
between low- and high-density phases!®-21,

Computer simulations based on quantum-mechanical methods
have been playing a central role in understanding P allotropes.
Early gas-phase computations were done for a variety of cage-like
units?? and for simplified models of red P23; periodic density-
functional theory (DFT) with dispersion corrections served to
study the bulk allotropes?*-27. DFT modelling of phosphorene
quantified strain response?8, defect behaviour2® and thermal
transport30. Higher-level quantum-chemical investigations were
reported for the exfoliation energy of black P31:32, and the latter
will be a central theme in the present study as well. For the liquid
phases, DFT-driven molecular dynamics (MD) were done in
small model systems with 64-128 atoms per cell33-36,

Whilst having provided valuable insight, these prior studies
have been unavoidably limited by the computational cost of DFT.
Empirically fitted force fields (interatomic potential models)
require much fewer computational resources and have therefore
been employed for P as well. Recently, different approaches have
been used to parameterise force fields specifically for phosphor-
ene3’-40, For example, a ReaxFF model was used to study the
exfoliation of black P, notably including the interaction with
molecules in the liquid phase?!. However, these empirically fitted
force fields can only describe narrow regions of the large space of
atomic configurations, which poses a major challenge when very
diverse structural environments are present: for example, force
fields developed specifically for black P or phosphorene would
not be expected to properly describe the liquid phase(s).

Machine-learning (ML) force fields are an emerging answer to
this problem*?=48, and they are increasingly used to solve chal-
lenging research questions**=>1. The central idea is to carry out a
number of reference computations (typically, a few thousand) for
small structures, currently normally based on DFT, and to make
an ML-based, non-parametric fit to the resulting data. Alongside
the choice of structural representation and the regression task
itself, a major challenge in the development of ML force fields is
that of constructing a suitable reference database, which must
cover relevant atomistic configurations whilst having sufficiently
few entries to keep the data generation tractable. Although key
properties (such as equations of state and phonons) of crystalline
phases can now be reliably predicted with these methods®?, and
purpose-specific force fields can be fitted on the fly®3, it is still
much more challenging to develop general-purpose ML force
fields that are applicable to diverse situations out-of-the-box—to
a large extent, this is enabled (or precluded) by the reference data.
Indeed, when fitted to a properly chosen, comprehensive data-
base, ML force fields can describe a wide range of material
properties with high fidelity*>->0, while being flexible enough for
exploration tasks, such as structure prediction®4->7. Phosphorus
has been an important demonstration in the latter field more
recently, when we constructed a Gaussian approximation
potential (GAP) model through iterative random structure
searching (RSS) and fitting>S.

In the present work, we introduce a general-purpose GAP ML
force field for elemental P that can describe the broad range of
relevant bulk and nanostructured allotropes. We show how a

general reference database can be constructed by starting from an
existing GAP-RSS model and complementing it with suitably
chosen 3D and 2D structures, thus combining two database-
generation approaches that have so far been largely disjoint, and
giving exquisite (few meV per atom) accuracy in the most rele-
vant regions of configuration space. We then demonstrate how
baseline pair-potentials (“R6”) can help to capture the long-range
van der Waals (vdW) dispersion interactions that are important
in black P24 and other allotropes2®, and how this baseline can be
combined with a shorter-ranged ML model—together allowing
our model to learn from data at the DFT plus many-body dis-
persion (DFT + MBD) level of theory>®%, The new GAP (more
specifically, GAP + R6) force field combines a transferable
description of disordered, e.g., liquid P with previously unavail-
able accuracy in modelling the crystalline phases and their
exfoliation. We therefore expect that this ML approach will
enable a wide range of simulation studies in the future.

Results

A reference database for phosphorus. The quality of any ML
model depends on the quality of its input data. In the past, ato-
mistic reference databases for GAP fitting have been developed
either in a manual process (see, e.g., ref. 1) or through GAP-RSS
runs®263—but these two approaches are inherently different, in
many ways diametrically opposed, and it has not been fully clear
what is the optimal way to combine them. We introduce here a
reference database for P, which does indeed achieve the required
generality, containing the results of 4798 single-point DFT +
MBD computations, which range from small and highly sym-
metric unit cells to large supercell models of phosphorene. Of
course, “large” in this context can mean no more than few
hundred atoms per cell, which leads to one of the primary
challenges in developing ML force fields: selecting properly
sampled reference data to represent much more complex
structures.

Whilst details of the database construction are given in
Supplementary Note 1, we provide an overview by visualising
its composition in Fig. 1. To understand the diversity of
structures and the relationships between them, we use the
smooth overlap of atomic positions (SOAP) similarity
function®49>: we created a 2D map in which the distance
between two points reflects their structural distance in high-
dimensional space, here obtained from multidimensional scaling.
In this 2D map, two SOAP kernels with cut-offs of 5 and 8 A are
linearly combined to capture short- and medium-range order.
Every fifth entry of the database is included in the visualisation,
for numerical efficiency.

Figure 1 allows us to identify several aspects of the constituent
parts of the database. The GAP-RSS structures, taken from ref. %,
are indicated by grey points, and these are widely spread over the
2D space of the map: the initial randomised structures were
generated using the same software (buildcell) as in the
established Ab Initio Random Structure Searching (AIRSS)
framework®, with subsequent relaxations driven by evolving
GAP models>8. The purpose of including those data is to cover a
large variety of different structures, with diversity being more
important than accuracy. For the manually constructed part, in
contrast, related structures cluster together, e.g., the various
distorted unit cells representing white P (top left in Fig. 1).
Melting white P leads to a low-density fluid in which P, units are
found as well, and the corresponding points in the 2D
visualisation are relatively close to those of the white crystalline
form (marked as 1 in Fig. 1). Pressurising the low-density liquid
leads to a liquid-liquid-phase transition (LLPT)19-2l, and
accordingly points representing denser liquid structures are also
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Fig. 1 A GAP fitting database for elemental phosphorus. The relationships between the structures in the database are visualised through 2D embedding
of a SOAP similarity metric. Example structures are shown, and specific points of interest are highlighted by numbers: the closeness between molecular
crystalline (white P, 1) and liquid Py, the transition between the molecular and network liquid (2), the similarity between Hittorf's and fibrous P, which both
consist of extended tubes and fall in the same island on the plot (3), an isolated set of points corresponding to As-type structures (4) and the exfoliation
from black P into bilayers (5) and monolayers. The GAP-RSS dataset from ref. °8, finally, is shown using smaller grey points and spans a wide range of
configurations (see also Supplementary Fig. 1). Note that this map does not include the isolated P, P, and P, configurations, as it aims to survey the space

of extended P structures.

found closer to the centre of the map (the transition between
them occurs in the region marked as 2). The high-density liquid
itself, remarkably, appears to be structurally rather similar to
Hittorfs and fibrous P, and the latter two crystalline allotropes
occupy the same cluster of points in Fig. 1 (3)—reflecting the fact
that they are built up from very similar, cage-like units!0.
Rhombohedral (As-type) P is further away from other entries, in
line with the fact that no such allotrope is stable at ambient
pressure (4)7. Finally, the right-hand side of Fig. 1 prominently
features points corresponding to various types of black P and
phosphorene-derived structures (an example of a bilayer is
marked as 5).

The various parts of the database pose a challenge to the ML
algorithm: it needs to achieve a highly accurate fit for the
crystalline configurations (blue in Fig. 1), yet retain the ability to
interpolate smoothly between liquid configurations (orange). In
this, the selection of input data is intimately connected with the
regression task itself. A key feature of our approach is the use of a
set of expected errors (regularisation), which is required to avoid
overfitting (a GAP fit without regularisation would perfectly
reproduce the input data, but lead to uncontrolled errors for even
slightly different atomistic configurations). We set these values
manually, bearing in mind the physical nature of a given set of
configurations®!: e.g., we use a relatively large value for the highly
disordered liquid structures (0.2 eV A1 for forces), but a smaller
value for the bulk crystals (0.03 eV A~1). Similarly, large expected
errors for the initial GAP-RSS configurations allow the force field
to be flexible in that region of configuration space®>—thus

ensuring that it remains usable for crystal-structure prediction in
the future, which constitutes a very active research field for P1>-18
and can be vastly accelerated by ML force fields!®%8, Details of
the composition of the database developed here and the
regularisation are given in Supplementary Notes 1 and 2.

GAP + R6 fitting. The next task in development of our ML force
field is the choice of structural descriptors. In the case of P, there
is a need to accurately describe the long-range vdW interactions
between phosphorene sheets or in the molecular liquid—which
are weak on an absolute scale, yet crucial for stability and prop-
erties. At the same time, the ML model must correctly treat
complex, short-ranged, covalent interactions, e.g., in Hittorf’s P
with its alternating Py and Py cages?; it is this length scale (5-A
cut-off) that is typically modelled by finite-range descriptors in
ML force fields*->1.

Figure 2a-c illustrates the combination of descriptors used to
“machine-learn” our force field (details are provided in the
“Methods” section). The baseline is a long-range (20-A cut-off)
interaction term as in ref. 8, here fitted to the DFT + MBD
exfoliation curve of black P. The latter is taken to be indicative for
vdW interactions in P allotropes more generally, and a test for the
transferability of this approach to more complex structures
(Hittorf’s P) is given in one of the following sections. The baseline
model is subtracted from the input data, and an ML model is
fitted to the energy difference, which is itself composed of two
terms: a pair potential and a many-body term, both at short range
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Fig. 2 A GAP + R6 ML model including long-range dispersion.

a Schematic sketch of the different types of structural descriptors,

here illustrated for a pair of partially exfoliated phosphorene sheets—
emphasising the medium-range (5 A) and long-range (20 A) descriptors
that are combined in our approach (“Methods” section)®8. b, ¢ Modelling
the different length scales: the upper panel shows the cut-off function used
to bring the 2-body and SOAP descriptors smoothly to zero between 4 and
5 A; the lower panel shows the long-range term, Vg, evaluated for an
isolated pair of atoms in the absence of the ML terms. d Phosphorene
exfoliation curve from our GAP + R6 model (red) compared to the DFT +
MBD reference (dashed black line), giving the energy computed for black P
(structure from ref. 70) as a function of the interlayer distance. A GAP fit
without the long-range “+R6" term, i.e., based only on a 2b+SOAP fit with
a 5-A cut-off, is included for comparison (dashed grey line). To obtain these
curves, the sheets have been shifted along the [010] direction without
further relaxation, and the energy is referenced to that of a free monolayer.
Benchmark results for the exfoliation energy from quantum Monte Carlo
(QMC, —81+ 6 meV/atom, with bars showing the error given by the
authors, ref. 31) and coupled-cluster (CC, —92 meV/atom, ref. 32) studies
are given by symbols, both plotted at the horizontal zero.

(5-A cut-off, Fig. 2a, b), linearly combined and jointly determined
during the fit®®. The short-range GAP and the long-range
baseline model are then added up to give the final model
(“Methods” section). Because of the 1/r° dependence of the long-
range part, we refer to this approach as “GAP +R6” in the
following.

Figure 2d shows the resulting exfoliation curve: we obtain it by
scaling the known black P structure’? in small steps along the
[010] direction, keeping the individual puckered layers intact and

computing the potential energy at each step, with the energy of a
free monolayer set as the energy zero. To illustrate the need for a
treatment of long-range interactions (here, achieved using the
“4+R6” baseline), we fitted a GAP without this term, using a 5-A
cut-off and otherwise similar parameters—this model clearly fails
to capture the longer-range interactions involved in the
exfoliation, as shown by a grey dashed line in Fig. 2d. In contrast,
the GAP + R6 result (red) and the DFT + MBD reference data
(black) are practically indistinguishable. We also include two
benchmark values from high-level quantum chemistry, one from
quantum Monte Carlo computations3!, one from a coupled-
cluster (CC) approach in ref. 32. The GAP +R6 prediction
(-85 meV per atom) is in excellent agreement with both, and it
matches the DFT + MBD result to within 1% (=0.8 meV). To
place our results into context, we may quote from a recent
study?’, which compared several computational approaches in
regard to how well they describe the exfoliation energy of black
P: the results varied widely, from about —10 meV (without any
dispersion corrections) to between —86 and —145 meV (all at the
PBEO + D3 level but using different basis sets and damping
schemes), and further to —218 meV for one specific combination
of methods?’. The same study provided initial evidence for the
high performance of the MBD method in describing black P?7.

The most direct way to ascertain the quality of the ML model is
to compute energies and forces for a separate test set of
structures, and to compare the results to reference computations
using DFT + MBD (the ground truth to be learned). We separate
the results according to various types of test configurations, which
are of a very different nature.

Figure 3a shows such tests for P structures obtained from
GAP-RSS?8, starting with initial (random) seeds and progres-
sively including more ordered and low-lying structures. The
forces in the initial seeds range up to very high absolute values, as
a response to atoms having been placed far away from local
minima; the datapoints scatter but overall reveal a good
correlation between DFT 4+ MBD and GAP + R6. In contrast,
Fig. 3b focuses on the manually constructed parts of our database:
for the network liquid, there is still notable scatter, but for the
molecular liquid and especially for the 2D and crystalline
structures, the errors are much smaller. This is expected as these
configurations correspond to distorted copies of only a few
crystalline structures that are abundantly represented in the
database. We emphasise that the test structures are not fully
relaxed, on purpose (and neither are those used in the ML fit):
they serve to sample slightly distorted environments where there
are non-zero forces on atoms.

Numerical results for the test-set errors are given in Table 1.
We emphasise that the initial (random) GAP-RSS configurations
are included primarily for structural diversity, and that
they experience very large absolute forces, ranging up to about
20eV A1 (Fig. 3a), much more than the test-set error. The much
smaller magnitude of errors for the more ordered configurations
is consistent with a progressively tightened regularisation
of the GAP fit¢!: for example, we set the force regularisation to
0.4eV A~1 for random GAP-RSS configurations, 0.2 eV A1 for
liquid P, but 0.03eV A-! for bulk crystalline configurations
(Supplementary Table 1). The results for the subset describing the
crystalline phases are in line with a recent benchmark study for
six elemental systems, reporting energy RMS errors in the meV-
per-atom region and force RMS errors from 0.01eV A-!
(crystalline Li) to 0.16 eV A1 (Mo) obtained from GAP fits2.
Another recent test for liquid silicon showed errors of about 12
meV at.”! and 0.2 eV A-! for energies and forces, respectively’?,
which again is qualitatively consistent with our findings—the
molecular liquid primarily consists of P, units, whereas the
network liquid contains more diverse coordination numbers and
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Fig. 3 Validation of the ML force field. Scatterplots of Cartesian force
components for a test set of structures, which has not been included in the
fit, comparing DFT + MBD computations with the prediction from GAP +
R6. Data are shown for different sets of the GAP-RSS-generated (panel a)
and manually constructed (panel b) parts of the database. The insets show
kernel-density estimates (“smoothed histograms”) of absolute errors with
the same colour coding. Note the difference in absolute scales for the force
components between the two panels.

Table 1 Root mean square error (RMSE) measures for
energies and force components?.

RMSE energies  RMSE forces

(evVat.™ M (eVA-D)
GAP-RSS Initial (random) 0.116 0.69
Intermediates 0.055 0.38
Relaxed 0.058 0.36
3-coordinated 0.032 0.26
Network liquid 0.008 0.36
Molecular liquid 0.002 0.15
2D structures 0.002 0.07
Bulk crystals 0.001 0.06

aThe relevant parts of the database were randomly split into “training” and “testing” sets. The
training data were collected, amended with additional (e.g., dimer) configurations and used as
input for the ML fit. The testing data were not included in the fit, and RMSE errors are given for
the latter, comparing our GAP + R6 model to DFT + MBD data. The total size of the training
(testing) set is 4798 (1601) cells, respectively. Details are given in Supplementary Table 1.

environments, and its quantitative fitting error is therefore larger
than that for its molecular counterpart (Table 1). We stress again
that in the GAP framework, the ability to achieve good accuracy
in one region of configuration space whilst retaining flexibility in

others depends strongly on the judicious choice of regularisation
parameters (Supplementary Note 2 and Supplementary Table 2).

Crystalline allotropes. Phosphorus crystallises in diverse struc-
tures—and a substantial body of literature describes their
synthesis and experimental characterisation. Among these crys-
talline allotropes, black P has been widely studied as the precursor
to phosphorene. DFT + MBD describes the structure of bulk
black P remarkably well?’, reproducing experimental data within
any reasonable accuracy (Supplementary Note 3 and Supple-
mentary Table 3). It is then, by extension, satisfying to observe
the very high accuracy of the GAP + R6 prediction, which cap-
tures even the parameter b, corresponding to the interlayer
direction, to within better than 0.5% of the DFT + MBD refer-
ence. The two inequivalent covalent bond lengths in black P, after
full relaxation, are 2.225/2.255 A (DFT + MBD) and 2.225/2.260
A (GAP + R6), showing very good agreement.

Energies and unit-cell volumes of the main crystalline
allotropes are given in Table 2. Strikingly, black, fibrous and
Hittorfs P are essentially degenerate in their DFT 4+ MBD
ground-state energy, coming even closer together than an earlier
study with pairwise dispersion corrections had indicated®. This
de facto degeneracy is reproduced by our force field (Table 2),
with all three structures being similar in energy to within 0.003 eV
per atom. In terms of unit-cell volumes, black P is more compact,
whereas fibrous and Hittorfs P contain more voluminous tubes
and arrive at practically the same volume, as both contain the
same repeat unit and only differ in how the tubes are oriented in
the crystal structures. GAP + R6 reproduces all these volumes to
within about 1%. White P, which we describe by the ordered f
rather than the disordered a modification?, is notably higher in
energy, as expected for the highly reactive material. We finally
include in Table 2 the rhombohedral As-type modification, which
is a hypothetical structure at ambient conditions and can only be
stabilised under pressure’?. It is thus somewhat surprising that
DFT + MBD assigns a slightly more negative energy to As-type
than to black P (Table 2)—consequently, our ML model faithfully
reproduces this feature, to within 0.002 eV per atom.

Hittorf’s phosphorus in 3D and 2D. The exfoliation of black P
to form phosphorene had already served as a case to illustrate the
role of short-ranged versus GAP + R6 models (Fig. 2). Whilst
most of the work on 2D phases is currently focused on phos-
phorene, Schusteritsch et al. suggested to exfoliate Hittorfs P to
give “hittorfene””3, and very recently Hittorf-based monolayers!!
and nanostructures!'4 were indeed experimentally realised. It is
therefore of interest to ask whether this exfoliation can be
described by a force field for P, especially as the process involves
more complex structures, making the routine application of
DFT + MBD more computationally costly than for phosphorene.
The exfoliation of Hittorf’s P is also a more challenging test for
our method: regarding black P, we had included multiple partially
exfoliated mono- and bilayer structures in the database (Fig. 1),
whereas for Hittorf’s, we only include distorted variants of the
experimentally reported bulk structure but no exfoliation snap-
shots or monolayers. Testing the ML force field on the full
exfoliation curve therefore constitutes a more sensitive test for its
usefulness in computational practice.

Figure 4 shows the exfoliation similar to Fig. 2d, but now for
Hittorfs P, using two different structures. One is the initially
reported refinement result by Thurn and Krebs (1969, purple in
Fig. 4)°. The other was recently reported by Zhang et al. (2020,
cyan)!l. The samples in both studies have been synthesised in
very different ways: the earlier study followed the original
synthesis route by Hittorf’4, viz. slow cooling of a melt of white P
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results.

Volume (A3/atom)

Table 2 Unit-cell volumes and energies (relative to black P) for relevant allotropes, comparing DFT + MBD and GAP + R6

AEnergy (eV/atom)

Expt. DFT + MBD GAP + R6 Error versus DFT (%) DFT + MBD GAP + R6
White P (B-Pg, PT) 25.992 25.76 25.72 —-0.2 +0.178 +0.154
Fibrous P (PT) 2170 21.77 22.09 +1.4 +0.001 +0.003
Hittorf's P (P2/¢) 21.8¢ 21.82 22.01 +0.9 —0.001 +£0.000
Black P (Cmce) 19.03d 18.83 18.74 -0.5 0 (reference)
As-type P (R3m) - 15.48 15.44 -0.2 —0.0M —0.009

aFrom ref. 2; XRD at 88 K.

bFrom ref. 10; XRD at 293(2) K.

CCalc. from lattice parameters in ref. %; XRD at room temperature.
dFrom ref. 80; XRD at 293 K.

eHigh-pressure allotrope®’, here studied in a hypothetical form without external pressure. A recent experimental study reports 14.6 A3/atom at 6.05 GPa’2,

and excess Pb; the 2020 study used a chemical vapour transport
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Fig. 4 Exfoliation of Hittorf's phosphorus. Exfoliation into monolayer
“hittorfene””3, similar to Fig. 2d, but now for a more complex structure
where training data are only available around the minimum. Two different
experimental structural models are used as a starting point: the initial P2/c
structure (1969, ref. 2, magenta), and a very recently proposed P2/n
structure (2020, ref. 1, cyan). The results of our GAP + R6 model are given
by solid and dashed lines, respectively, and reference DFT + MBD
computations are indicated by circles and crosses.

route!!, which may have led to slightly different ways in which
the tubes are packed.

Remarkably, DFT + MBD places the two structures at
practically degenerate exfoliation energies (about 35 meV/atom
below the respective monolayer), without a discernible preference
for one over the other, despite the different synthesis pathways
and crystallographically dissimilar structure solutions®!l. Our
ML force field fully recovers this degeneracy at around the
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Fig. 5 Phosphorene nanoribbons. a The two fundamental types of ribbons,
obtained by cleaving along the two in-plane directions of phosphorene,
leading to armchair- (left) and zigzag- (right) type ribbons, with the
boundaries of the periodic simulation cells indicated. The energies are given
relative to a phosphorene monolayer; all structures are cleaved from the
bulk without further relaxation. b Demonstration of the applicability to a
much larger system (15,744 atoms), shown for a GAP + R6-driven MD
snapshot after 10 ps in the NVT ensemble, with a thermostat set to 300 K,
and then another 40 ps of constant-energy (NVE) dynamics. Colour coding
indicates the atomic positions in the direction normal to the layer.

minimum (correspondmg to the bulk phases) and at large
interlayer spacing (above + 4 A), as well as a subtle difference
between the phases at intermediate separation. As pointed out by
Schusteritsch et al.”3, the overall interlayer binding energy of
Hittorf’s P is very low, notably smaller than that of black P.
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Nanoribbons. Akin to graphene nanoribbons, phosphorene can
be cut into nanoribbons as well, as predicted computationally”>
and later demonstrated in experiment’®. Such ribbons have been
studied, e.g., in ref. 77, using empirical potential models. In
Fig. 5a, we show the two fundamental types of phosphorene
nanoribbons, referred to as “armchair” and “zigzag”. The latter is
clearly favoured among the two, and GAP + R6 reproduces the
associated energetics to within 5-6% of the DFT + MBD result.
The ratio between the formation energies of the armchair and
zigzag ribbon, as the most important indicator for the stability
preference, is even better reproduced, viz. 1.75 (DFT 4+ MBD)
compared to 1.76 (GAP + R6)7.

The test in Fig. 5a assesses very small ribbons, because the
effect of nanostructuring is most pronounced for those—in
contrast, larger ribbons are more similar to 2D phosphorene,
which is already ubiquitously represented in the database (Fig. 1).
However, beyond this initial test, the ML force field brings
substantially larger system sizes within reach. Figure 5b shows a
zigzag phosphorene nanoribbon that is >80 nm in length, with a
width that is consistent with experimental reports’®. After a short
NVT simulation, the system is allowed to evolve over 40 ps,
leading to the visible formation of nanoscale ripples—each
extending over several nanometres. This computational task may
be compared with an earlier study using an empirical potential to
simulate water diffusion on rippled graphene (over much longer
timescales)’8: with typical system sizes of 15x 15nm? and
reaching up to 30 x 30 nm?, such simulations are completely out
of reach for quantum-mechanical methods, but they are
accessible to ML force fields. Beyond the capability test in Fig. 5b,
similar simulation cells, but with added heat sources and sinks,
are widely used in computational studies of thermal transport,
normally in combination with empirical potentials—as has
indeed been shown for phosphorene nanoribbons’’. The high
accuracy of our ML model for predicting interatomic forces
(0.07 eV A-1 for the 2D configurations, Table 1) allows one to
anticipate a good performance for properties that are directly
derived from the force constants, viz. phonon dispersions and
thermal transport, as demonstrated previously for silicon (see
refs. 171, and references therein). A rigorous study of phonons
and thermal transport in phosphorene with GAP +R6 is
envisioned for the future.

Liquid phosphorus. Liquid phases provide a highly suitable test
case for the quality of a force field—indeed, the very first high-
dimensional ML force field, an artificial neural-network model for
silicon, was tested for the RDF of the liquid phase*2. Phosphorus
is, again, interesting in this regard, because two physically distinct
phases and the occurrence of a first-order LLPT have been
reported!®-21. In Fig. 6, we validate our method for both phases,
using simulation cells containing 248 atoms. The former
(Fig. 6a—c) contains P, molecules; the latter (Fig. 6d—f) describes a
covalently connected network liquid. We performed DFT-MD
computations for reference; due to the high computational cost,
these had to be carried out at the pairwise dispersion-corrected
PBE + TS (rather than MBD) level”®. Two different temperatures,
1000 and 2000K, span the approximate temperature range in
which phase transitions in P have been experimentally studied?’.

Our GAP + R6-driven MD simulations (which we call “GAP-
MD” for brevity) describing the low-density molecular phase are
in excellent agreement with the DFT-MD reference. The simplest
structural fingerprint is the radial distribution function (RDF),
plotted in Fig. 6b: there is a clearly defined first peak
(corresponding to P-P bonds inside the P, units, with a
maximum at about 2.2 A) and, separated from it, an almost
unstructured heap at larger distances beyond about 3 A, all

indicative of a molecular liquid that consists of well-defined and
isolated units. Similarly, the angular distribution functions (ADF)
in Fig. 6¢c show a single peak at =~60° consistent with the
equilateral triangles that make up the faces of the ideal P,
molecule. The molecules are more diffusive at higher tempera-
ture, and therefore, the features in the radial and angular
distributions are slightly broadened in the 2000-K data compared
to those at 1000 K—but there are no qualitative changes between
the two temperature settings, and the GAP-MD simulation
reproduces all aspects of the DFT-MD reference.

In Fig. 6d-f, we report the same tests but now for the network
liquid. In this case, at 1000 K, the GAP-MD-simulated liquid
appears to be slightly more structured than that from DFT-MD,
indicated by a larger magnitude of the second RDF peak between
3 and 4A, and a somewhat sharper peak in the angular
distribution at about 100° in the GAP-MD data. Whether that
is a significant difference between DFT and GAP + R6 or merely
a consequence of the slightly different dispersion treatments, MD
algorithm implementations, etc. remains to be seen—but it does
not change the general outcome that all major features of the
DFT-based trajectory are well reproduced by the GAP + R6
model. The 2000-K structures generated by DFT-MD and GAP-
MD simulations agree very well with each other, likely within the
expected uncertainty that is due to finite-system sizes and
simulation times. A feature of note in the ADF is a secondary
peak at 60°, much smaller than in the molecular liquid (Fig. 6¢c),
but present nonetheless: the liquid, especially at higher tempera-
ture, does still contain three-membered ring environments.
Comparing the 1000- and 2000-K simulations, the former reveals
a clear predominance of bond angles between about 90° and 110°,
whereas the bond-angle distribution in the latter is much more
spread out, indicating a highly disordered liquid structure.

Liquid-liquid-phase transition. We finally carried out a simu-
lation of the LLPT, expanding substantially on prior DFT-based
work33-30 in terms of system size, as shown in Fig. 7. Our initial
system contains 496 thermally randomised P, molecules (1984
atoms in total), which are initially held at the 2000-K and 0.3-GPa
state point for 25 ps. We then compress the system with a linear-
pressure ramp to 1.5 GPa, over a simulation time of 100 ps. At
low densities, the system consists entirely of P, units, most having
distorted tetrahedral shapes (and thus threefold coordination,
indicated by light-blue colouring in Fig. 7a). Occasionally during
the high-temperature dynamics, tetrahedra open up such that two
atoms temporarily lose contact and thus have lower coordination
numbers; sometimes two tetrahedra come closer than the distance
we use to define bonded contacts (2.7 A, as in Fig. 6b). All these
effects are minor, as seen on the left-hand side of Fig. 7a. Upon
compression, the atomistic structure changes drastically: having
reached a pressure of 0.81 GPa, the system has transformed into a
disordered, covalently bonded network, qualitatively consistent
with previous simulations in much smaller unit cells33-3°, but
now providing insight for a system size that would have been
inaccessible to DFT-MD simulations at this level. To benchmark
the computational performance of GAP-MD, we repeated this
simulation using 288 cores on the UK national supercomputer,
ARCHER, where it required 6 h (corresponding to 0.5 ns of MD
per day). The LLPT gives rise to a much larger diversity of atomic
coordination environments, seen on the right-hand side of
Fig. 7a. We emphasise that the liquid is held at a very high
temperature of 2000 K, and therefore substantial deviations from
the ideal threefold coordination (that would be found in crys-
talline P) are to be expected.

We analyse this GAP-MD simulation in Fig. 7b. We first
record the density of the system as a function of applied pressure.
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Fig. 6 Liquid phosphorus. MD simulations in the NVT ensemble, benchmarking the quality of the GAP + R6 ML force field for the description of liquid
phosphorus. a Snapshot of a DFT-MD simulation of a system containing 62 P, molecules at a fixed density of 1.5 g cm—3, corresponding to the low-density
liquid (or fluid). b Radial distribution functions for this system at two different temperatures, taken from the last 10 ps of the trajectories. Solid lines indicate
GAP-MD simulations, whereas dashed lines show the results of reference DFT-MD trajectories. ¢ Same for angular distribution functions (ADF), computed
using a radial cut-off of 2.7 A. d-f Same but for the network liquid at a much higher density of 2.5 g cm=3. The slightly more “jagged” appearance of the DFT
data in panel f is due to the smaller number of structures that are sampled from the trajectory.

The molecular liquid is quite compressible, indicated by a density
increase of about 40% during compression from 0.3 to 0.7 GPa,
consistent with the presence of only dispersive interactions
between the molecules. When the system is compressed further,
between 0.7 and 0.8 GPa, the density increases rapidly, con-
comitant with the observation of the LLPT in our simulation
(Fig. 7a). The network liquid is much less compressible, and it is
predicted to have a density of about 2.6-2.7 g cm~3—very similar
to the crystallographic density of black P (2.7gcm™3 at
atmospheric pressure)®), and smaller than 3.5gcm™3 reported
for As-type P at about 6 GPa’?, in line with expectations. The
transition, in fact, begins to occur earlier in the trajectory, as seen
by analysing the count of threefold coordinated atoms and three-
membered rings (the latter being a structural signature of the P,
molecules). Coexistence simulations and thermodynamic integra-
tion are now planned to map out the high-temperature/high-
pressure LLPT in comparison to experimental data20,

Discussion

We have developed a general-purpose ML force field for atomistic
simulations of bulk and nanostructured forms of phosphorus, one
of the structurally most complex elemental systems. Our study
showed how a largely automatically generated GAP-RSS database
can be suitably extended based on chemical understanding (in the
ML jargon, “domain knowledge”) whenever a highly accurate
description of specific materials properties is sought. The present
work might therefore serve as a blueprint for how general
reference databases for GAP, and in fact other types of ML force
fields for materials, can be constructed. In the present case, for
example, reference data for layered (phosphorene) structures
were added as well as for the LLPT, and our tests suggest the

resulting force field to be suitable for simulations of all these
practically relevant scenarios. Proof-of-concept simulations were
presented for a large (>80-nm-long) phosphorene nanoribbon, as
well as for the liquid phases, showcasing the ability of ML-driven
simulations to tackle questions that are out of reach for even the
fastest DFT codes. Future work will include a more detailed
simulation study of the liquid phases, as well as new investiga-
tions of red (amorphous) P, now all carried out at the DFT +
MBD level of quality and with access to tens of thousands of
atoms in the simulation cells. We certainly expect that phos-
phorus will continue to remain exciting, in the words of a recent
highlight article!. We also expect that the approaches described
here will be beneficial for the modelling of other systems with
complex structural chemistry—including, but not limited to,
other 2D materials that are amenable to exfoliation and could be
described by GAP + R6 models in the future.

Methods

Reference data. Dispersion-corrected DFT reference data were obtained at two
different levels. Initially, we used the pairwise Tkatchenko-Scheffler (TS) correc-
tion” to the Perdew-Burke-Ernzerhof (PBE) functional®!, as implemented in
CASTEP 8.082. For the final dataset, we employed the MBD approach®®0. We
expect that a similar “upgrading” of existing fitting databases with new data at
higher levels of theory will be useful in the future, especially as higher levels of
computational methods are coming progressively within reach (cf. the emergence
of high-level reference computations for black P31:32), as has indeed been shown in
the field of molecular ML potentials (see, e.g., ref. 83). PBE + MBD data were
computed using the projector-augmented wave method3* as implemented in
VASP8>86, The cut-off energy for plane waves was 500 eV; the criterion to break
the SCF loop was a 10~8-eV energy threshold. Computations were carried out in
spin-restricted mode. We used I'-point calculations and real-space projectors
(LREAL = Auto) for the large supercells representing liquid and amorphous
structures; the remainder of the computations was carried out with automatic k-
mesh generators with / = 30, where [ is a parameter that determines the number of
divisions along each reciprocal lattice vector.
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Fig. 7 The liquid-liquid-phase transition. We report a GAP-MD simulation of the liquid-liquid-phase transition (LLPT) in phosphorus, described by

compressing a system of 1984 atoms from 0.3 to 1.5 GPa over 100 ps (10> timesteps), with the temperature set to 2000 K. a Consecutive snapshots from
the trajectory, with coordination numbers, N, indicated by colour coding. b Evolution of density and atomic connectivity through the LLPT. The former,
shown in the upper panel, starting with a low-density, compressible molecular liquid, increases rapidly between about 0.7 and 0.8 GPa, and then reaches

much higher densities for the less compressible network liquid. The fraction
LLPT; the network liquid contains much higher- and some lower-coordinate

of 3-coordinated atoms is unity in ideal P4, but strongly lowered because of the
d environments (cf. panel a). The count of three-membered rings can similarly

be taken as an indicator for the presence of molecular P4 units: in the ideal molecular liquid, only P, tetrahedra are found (each having four faces, and hence
four three-membered rings, one per atom); in the network liquid, three-membered rings are still present, but their count is reduced to about a fifth, making

way for larger rings consistent with a covalently bonded network.

GAP —+ R6 fitting. The GAP + R6 force field combines short-range ML terms and
a long-range baseline (Fig. 2a) as follows. We start by fitting a Lennard-Jones (L])
potential to the DFT 4+ MBD exfoliation curve of black P at interatomic distances
between 4 and 20 A. We then define a cubic spline model, denoted Vg, using the
same idea as in ref. 9. The baseline is described by a cubic spline fit that comprises
the point (3.0 A, 0eV) together with the L] potential between 4.0 and 20 A, using
spline points at 0.1-A spacing up to 4.5 A, and 0.5-A spacing beyond that. The
derivative of the potential is brought to zero at 3.0 and 20 A; its shape is plotted in
Fig. 2c. The fitted L] parameters for our model are 5 = 6.2192 eV; €1, = 0 (i.e., only
the attractive longer-range part of the L] potential is used); ¢ = 1.52128 A. The
baseline model is subtracted from the input data, and an ML model is constructed
by fitting to

AE = Epgrympp — Z VRG(rij)y

i>j

)

where we denote the long-range potential by Ve for simplicity (because of its 1/RS
term), and i and j are atomic indices. The final model for the machine-learned
energy of a given atom, &(i), thus reads

(i) = {6<2b> > () + o Ze?“”(q/)} 3 Vi(n) @
LY J

q

The first two sums in Eq. (2) together constitute the GAP model, combined
using a properly scaled linear combination with scaling factors, § (which are here
given as dimensionless), and the last term, Vye, is added to the ML prediction to
give the final result. The two-body (“2b”) and many-body (Smooth Overlap of
Atomic Positions, SOAP®4) models are defined by the respective descriptor terms:
q is a simple distance between atoms, which enters a squared-exponential kernel,
and q’ is the power-spectrum vector constructed from the SOAP expansion
coefficients for the atomic neighbour density®%. The ML fit itself is carried out using
sparse Gaussian process regression as implemented in the GAP framework®3,
employing a sparsification procedure that includes 15 representative points for the
two-body descriptor and 8000 for SOAP. The full descriptor string used in the GAP
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fit is provided in Listing 1, and together with the data and their associated
regularisation parameters (Supplementary Notes 1 and 2), it defines the required
input for the model. The potential is described by an XML file (see

“Data availability” and “Code availability” statements).

MD simulations. DFT-MD simulations were done with VASP8>86, using the
pairwise TS correction for dispersion interactions’® and an integration timestep
of 2 fs. GAP-MD simulations were carried out with LAMMPS®’, either at con-
stant volume for comparison with the DFT data (Fig. 6), or using a built-in
barostat for pressurisation simulations (Fig. 7)%8-%. The timestep in all GAP-
MD simulations was 1 fs, which was found to improve the quality of the
simulations compared to a 2-fs timestep. Whether this is a consequence of the
somewhat different thermostats and MD implementations or, in fact, a con-
sequence of the shape of the potential remains to be investigated—for the time
being, we are content with running all GAP-MD simulations at the (more
computationally costly) timestep of 1 fs.

Listing 1: definition of the descriptor string used in the GAP fit.
gap={distance_Nb order=2 cutoff=5.0n_sparse=
15 covariance_type=ard_se delta=2.0 theta_uni
form=2.5 sparse_method=uniform compact_clus
ters=T: soap 1_max=6 n_max=12 atom_sigma=0.5
cutoff=5.0 radial_scaling=0.5 cutoff_transi
tion_width=1.0 central_weight=1.0 n_sparse=
8000 delta=0.2 £f0=0.0 covariance_type=dot_pro
duct zeta=4 sparse_method=cur_points}.

Data availability

The potential model described herein as well as the DFT+MBD reference data used for
fitting the model are openly available through the Zenodo repository (https://doi.org/
10.5281/zen0do.4003703). The unique identifier of the potential is GAP_2020_5 23
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60 1 23 12 19.In addition, the (DFT+MBD-computed) testing data used in this paper
are available at https://github.com/libAtoms/testing-framework/tree/public/tests/P/.

Code availability

The GAP code, which was used to carry out the fitting of the potential and the validation
shown throughout this work, is freely available at https://www.libatoms.org/ for non-
commercial research. The interface to LAMMPS (allowing GAPs to be used through a
pair style definition) is provided by the QUIP code, which is freely available at
https://github.com/libAtoms/QUIP/.
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