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Abstract: Regarding compliance and minimization of side effects of nilotinib therapy, there is a medical
need to have a gastroretentive drug delivery system (GRDDS) to enhance the oral bioavailability
that is able to administer an optimal dose in a quaque die (QD) or daily manner. In this study,
the influence on a swelling and floating (sf ) GRDDS composed of a polymeric excipient (HPMC 90SH
100K, HEC 250HHX, or PEO 7000K) and Kollidon® SR was examined. Results demonstrated that PEO
7000K/Kollidon SR (P/K) at a 7/3 ratio was determined to be a basic GRDDS formulation with optimal
swelling and floating abilities. MCC PH102 or HPCsssl,SFP was further added at a 50% content to this
basic formulation to increase the tablet hardness and release all of the drug within 24 h. Also, the caplet
form and capsule form containing the same formulation demonstrated higher hardness for the former
and enhanced floating ability for the latter. A pharmacokinetic study on rabbits with pH values in
stomach and intestine similar to human confirmed that the enhanced oral bioavailability ranged
from 2.65–8.39-fold with respect to Tasigna, a commercially available form of nilotinib. In conclusion,
the multiple of enhancement of the oral bioavailability of nilotinib with sf GRDDS could offer a
pharmacokinetic profile with therapeutic effectiveness for the QD administration of a reasonable dose
of nilotinib, thereby increasing compliance and minimizing side effects.

Keywords: gastroretentive drug delivery system; GRDDS; nilotinib; swelling and floating; Kollidone
SR; oral bioavailability

1. Introduction

Nilotinib with the brand name of Tasigna was approved by the United States (US) Food and
Drug Administration (FDA) for the treatment of chronic phase and accelerated phase Philadelphia
chromosome-positive chronic myelogenous leukemia (CML). The usual dosage is 400 mg given twice
daily, and it should be administered 1 h before a meal or 2 h after a meal to avoid an increase in nilotinib
plasma concentration, which causes toxicity and side effects [1]. With once-daily administration,
steady-state nilotinib exposure was linear in the dose range of 50–200 mg/day and was dose-dependent,
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with less than dose-proportional increases in systemic exposure at dose levels of >400 mg/day, possibly
because of limited solubility in gastric acid or saturation of its uptake. Upon twice-daily administration,
there was no relevant increase in exposure to nilotinib when the dose was increased from 400 to
600 mg/day [2]. This might have also been due to the maximal solubility in gastric acid being achieved
in this dose range. At a dose of 800 mg/day, exposure to nilotinib following 400 mg twice daily was
about 35% higher than after 800 mg given once daily, while the increase in exposure to nilotinib
between the first dose and steady state was approximately two-fold for once-daily dosing and 3.8-fold
for twice-daily dosing, both possibly because of the total solubility in gastric acid with two divided
doses being higher than that for a single dose, leading to enhanced bioavailability [2,3].

The inter-individual variability of nilotinib exposure is relatively high (with a coefficient of
variation (CV) of 32–64%), which can be partly explained by its solubility-limited absorption and
low bioavailability [2,4]. No differences in the pharmacokinetics of nilotinib were observed between
patients with CML and patients with a gastrointestinal stromal tumor (GIST) [1,5–7], but nilotinib
absorption may decrease by approximately 48% or 22% in patients with GIST with either a total or
partial gastrectomy, respectively [8–10]. This demonstrates that dissolution of nilotinib in gastric
acid is the main factor determining its oral bioavailability. Furthermore, in 10 patients with CML,
the mean area under the curve (AUC) of nilotinib increased by 50% when the drug was administered
with a high-fat meal [2]. This was probably a result of its increased soluble fraction in gastric acid
that was secreted by the presence of foods leading to enhanced bioavailability [11]. Additionally,
when co-administered with esomeprazole, nilotinib Cmax and AUC0-∞ decreased by 27% and 34%,
respectively. These results overall highlight that the extent of exposure to gastric acid in the stomach
principally determines the rate and extent of nilotinib absorption [12].

Since nilotinib has the effect of prolonging atrial repolarization, and this effect is directly
proportional to the plasma concentration, there is concern with the toxicity problem caused by food or
high-fat foods, leading to increased plasma concentrations and bioavailability [13,14]. The results of the
study published by Saglio et al. further suggested that nilotinib has great potential to replace imatinib
and become a first-line treatment for patients with chronic phase (Ph+) CML. However, this study also
showed that nilotinib needs to be taken at 600–800 mg in one dose per day to achieve a better effect.
Not only does such a high dose increase the clinical burden of the patient, but the twice-a-day model
of administration also slightly affects patient compliance. If a single formulation of a pharmaceutical
prescription could be developed to improve the bioavailability of nilotinib and match the dissolution
mode of quaque die (QD) or daily administration, the clinical efficacy of nilotinib would certainly have
great economic benefits [15].

To maximize exposure of nilotinib to gastric acid in the stomach, thereby enhancing oral
bioavailability and matching the dissolution of QD or daily administration, a gastroretentive drug
delivery system (GRDDS) would be the optimal choice, since it is mainly designed to allow the drug
to stay in the stomach for a period of time to increase exposure to the acidic environment of the
stomach, thereby increasing the bioavailability of the drug. On the other hand, nilotinib delivered
by a GRDDS would increase the time the drug stays at the site of action in the stomach, leading to
improved therapeutic efficacy of GIST patients [4,16]. There are four types of GRDDSs, high-density
systems [17], bioadhesive (mucoadhesive) systems [18,19], floating systems [20], and swellable
types [19]. Swellable-type GRDDSs can be formulated with commonly used hydrogel excipients,
such as polyvinyl alcohol (PVA), polyethylene oxide (PEO), hydroxypropyl methylcellulose (HPMC),
hydroxyethyl cellulose (HEC), and sodium carboxymethyl cellulose (NaCMC) [19], manufactured
via direct compression in a tablet dosage form, which can expand to a certain size in a short time
to avoid passing through the pylorus valve of the stomach, thus extending the gastroretention time.
On the other hand, floating GRDDSs can be designed with the use of Kollicoat® SR, which can be
compressed at a low tableting force to have high tablet hardness, ensuring a low initial density of
tablets for floating resulting in prolonged gastric retention [21,22]. GRDDSs so designed with swelling
and floating abilities possess four characteristics: (1) the dosage form is small enough to be swallowed;



Pharmaceutics 2020, 12, 137 3 of 15

(2) taken orally, the dosage form remains floating after being co-administrated with water to prevent
gastric emptying; (3) after the dosage form reaches the stomach, it expands to a certain size in a
short time to avoid passing through the pylorus valve of the stomach; (4) when the dosage form
is no longer required to be gastroretentive, it can be reduced to a size which can be excreted or be
decomposed in the body [23,24]. Therefore, novel swellable and floatable (sf )GRDDSs in tablet and
capsule forms for enhanced oral bioavailability of nilotinib were prepared and characterized in this
study. The in vivo oral bioavailability of a nilotinib-loaded sf GRDDS was examined to demonstrate the
enhanced oral bioavailability to reach a pharmacokinetic profile able to offer therapeutic effectiveness
by QD administration of nilotinib.

2. Materials and Methods

2.1. Materials

Kollidon® SR composed of 80% w/w polyvinyl acetate (polyvinyl acetate, PVAc) and 19% w/w
povidone (PVP) was supplied by BASF (Ludwigshafen, Germany). Hydroxyethyl cellulose 250HHX
(with a viscosity of 3400–5000 cP, an estimated molecular weight of 1600 kDa, designated hydroxyethyl
cellulose (HEC) 250HHX) was of pharmaceutical grade and was supplied by Hercules (Wilmington,
VA, USA). Hydroxypropyl methylcellulose (HPMC) 90SH 100K and polyethylene oxide 7000 k (PEO
7000K) were obtained from Dow Chemical (Midland, MI, USA). Microcrystalline cellulose (MCC)
PH102 was obtained from Wei Ming (Taipei, Taiwan). Hydroxypropyl cellulose (HPCssl,SFP) and
colloidal silicon dioxide 200 (Aerosil 200) were respectively provided by Nippon Soda (Tokyo, Japan)
and Evonik Resource Efficiency (Hanau-Wolfgang, Germany). All excipients used in this study were
pharmaceutical grade.

2.2. Preparation of Gastroretentive Tablets and Capsules

The formulation study selected three swellable and expandable polymers (PEO7000K, HPMC
90SH 100K, and HEX250HHX) with Kollidon®SR (BASF), which was the main substance controlling
drug release, and they were prepared via a direct compression method. In addition, microcrystalline
cellulose (MCCPH102; Wei Ming) and hydroxypropyl cellulose (HPCssl SFP), which were used as
dissolution-enhancing agents, were incorporated in the formulation, where ratios of polymers to
Kollidon® SR of 10:0, 7:3, 5:5, 3:7, and 0:10 were used. All polymeric materials and excipients were
firstly passed through a No. 40 mesh and mixed in a plastic bag for 3 min. Nilotinib, which was
separately mixed with Aerosil® 200 and sieved via mesh No. 40, was then added to the above
mixture and was further mixed in a plastic bag for another 3 min, and 1% magnesium stearate (Merck,
Darmstadt, Germany) was subsequently added as a lubricant with mixing for an appropriate time.
Tablets were prepared by weight into a 12-mm-diameter die with the nilotinib content equivalent to
150 mg/tablet and compressed with 0.5 or 1.0 tons of force using a tablet press (Carver Laboratory
Press Model C, Carver, Wabash, IN, USA). For the capsule dosage form, powder was manually filled
into No. 0 capsules. Finally, the water-swelling ability of the optimized formulations was evaluated,
and in vitro dissolution tests were conducted.

2.3. Physical Characterization of Tablet Formulations

The size, diameter, and thickness of nilotinib tablets (units: mm) was evaluated in triplicate
(n = 3) using vernier calipers. Three tablets of each formulation were randomly selected and used to
measure the hardness of the tablets (PTB-311; Pharma Test, Hainburg, Germany). Swelling studies
were conducted using the Vankel Dissolution Apparatus (VK7020S, Varian, Palo Alto, CA, USA).
No rotation speeds were applied. Pre-weighed tablets were immersed in 900 mL of medium (simulated
gastric solution, 0.1 N HCl) and maintained for 8 h at 37.0 ± 0.5 ◦C. At predetermined time intervals
(1, 3, 9, and 24 h), swollen tablets were removed from the solution, immediately wiped with a paper
towel to remove surface droplets, and weighed. The swelling index (Sw) was calculated according to
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the following equation: swelling index (Sw) = Wt −W0/Wt, where W0 is the initial weight of the dry
tablet and Wt is the weight of the swollen tablet at time t. Data are presented as the mean ± standard
deviation (SD) of three samples per formulation.

2.4. Dissolution Test

Dissolution tests were conducted in triplicate for all formulations by the apparatus II method (USP
XXIX) (VK7020, Vankel, UK). All release studies were performed at 100 rpm in 900 mL of simulated
gastric solution, 0.1 N HCl, at 37.0 ± 0.5 ◦C. Five-milliliter samples were withdrawn at predetermined
intervals (0, 0.5, 1, 1.5, 2, 4, 6, 8, 10, 12, and 24 h), and were refilled with the same volume of fresh
dissolution medium. The drug concentrations in the withdrawn samples at each time point were
analyzed using a high-performance liquid chromatographic (HPLC) method after being filtered via a
0.22-µm filter, and appropriate dilution was performed as needed.

An HPLC method was developed to estimate nilotinib in bulk, dosage forms, and dissolution
media. The method was employed on an Atlantis® T3 C18 column (4.6 mm × 250 mm, 5 µm, Waters,
Milford, MA, USA), and acetonitrile/water = 600:400 (v/v) was used as the mobile phase at a flow rate
of 1 mL/min. The selected UV detection wavelength was 254 nm. The column temperature was set to
40 ◦C, and the sample injection volume was 10 µL. The HPLC method was validated by a standard
curve in the concentration range of 0.5–30 µg/mL.

2.5. Animal Study of Oral Bioavailability

2.5.1. Animal Dosing

Six male white New Zealand rabbits were selected since its pH values in stomach and intestine
are both similar to human [25], and they were obtained from the Animal Center of Taipei Medical
University. The rabbits, each weighing around 3.0–4.0 kg, were individually housed with free access to
food and water. All experiments were approved by the animal ethics committee of Taipei Medical
University (LAC-2015-0108, 15 December 2015). Before administration, each rabbit was starved for 24 h
with access to drinking water and was then given a single dose, followed by a 10-day washout period.

In total, six rabbits were randomized into two groups, and each animal was given a single dose
of 150 mg/cap (Tasigna) or a 15 × 4 mm gastroretentive tablet containing 150 mg of nilotinib (or a
gastroretentive capsule (No. 0 capsule)). Blood was collected from each rabbit through the ear vein at
0, 1, 2, 4, 6, 8, 10, 12, 16, 24, 30, 36, 48, and 72 h after drug administration. The blood collection syringes
were wetted with 100 IU/mL heparin saline. Blood samples were immediately placed in a micro-tube,
shaken up and down for mixing, and centrifuged at 3000 rpm for 10 min at 4 ◦C; then, the upper layer
was aspirated. The plasma of each sample was dispensed into microcentrifuge tubes and frozen at
−80 ◦C until being assayed.

2.5.2. Liquid Chromatography Tandem Mass Spectroscopy (LC-MSMS) Analysis of Nilotinib
Plasma Concentrations

An ultra-performance LC (UPLC) analysis was conducted with an ACQUITY UPLC system,
Xevo TQ MS system (Waters), and the ionization mode was the electrospray free positive ion mode.
The analytical conditions are shown in Tables 1 and 2. Methyl tert-butyl ether (MTBE; 1400 µL) was
added to 20 µL of the imatinib (IS, 5 µg/mL) working solution and 200 µL of nilotinib plasma samples.
After being thoroughly vortex-mixed for 10 min, the mixture was centrifuged at 8000 rpm and 4 ◦C for
15 min. The upper organic phase of the extract was transferred to another clean tube and evaporated to
dryness using nitrogen. Afterward, the residue was dissolved in 200 µL of 0.1% formic acid/acetonitrile
(9:1) and centrifuged and vortexed for 3 min. The clear supernatant was injected into the column
for analysis.
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Table 1. Parameters of the UPLC–MS/MS system for analysis of nilotinib.

Column BEH C18 (1.7 µm, 2.1 × 50 mm)
Flow rate 0.3 mL/min

Injection volume 5 µL
Column oven 40 ◦C
Sample oven 4 ◦C

Mobile phase A (MPA) 0.1% formic acid
Mobile phase B (MPB) Acetonitrile

Elution condition
0~0.3 min, 90% MPA + 10% MPB

0.3~1.6 min, 20% MPA + 80% MPB
2~3 min, 90% MPA + 10% MPB

Capillary voltage 3 kV
Cone voltage 48 V

Desolvation temperature 350 ◦C
Desolvation gas flow 650 L/h

Collision gas flow 50 L/h

Table 2. Optimized multiple reaction monitoring parameters for nilotinib and imatinib.

Compound Formula/Mass Ions Parent m/z Cone
Voltage (V) Daughter Collision Energy

(Units eV)

Nilotinib C28H22F3N7O
1 530.15 56 549.27 28
2 530.15 56 304.14 26

Imatinib C29H31N7O
1 494.03 4 246.90 48
2 494.03 4 394.00 26

2.5.3. Statistical Analysis of the Pharmacokinetic Study

Measured values of the experimental data are expressed as the mean ± standard deviation (SD),
and the relationship between the concentration of each drug in the blood sample and time, and the
pharmacokinetic parameters were calculated in the non-compartment mode using WinNonlin 6.3
software (Pharsight®, Princeton, NJ, USA), including the maximal (or peak) plasma concentration
of the drug (Cmax), time to the maximum plasma concentration of the drug (Tmax), the area under
the plasma drug concentration–time curve (AUC), the elimination rate constant (Kel), and the drug
half-life (T1/2). The equation below was used to calculate the relative bioavailability. All values are
presented as mean ± standard error (SE).

Frel = 100×
AUCA/DoseA
AUCB/DoseB

2.6. Statistical Analysis

All means of physical data are presented with their SD as the mean ± SD. All means of the in vitro
and in vivo studies are reported with their standard error of the mean (SEM). An analysis of variance
(ANOVA) was conducted. A value of p < 0.05 was accepted as statistically significant.

3. Results and Discussion

Hydrophilic polymer matrix systems are widely used in oral controlled-release dosage forms
because of the flexibility of the materials, which often provides the desired drug release, reasonable
economics, and acceptance by patients. Hydrophilic polymers that possess gelling properties in water
are also widely used in formulating swellable GRDDSs with sustained-release characteristics. Kollidon
SR can form tablets with a light density at lower compression forces, and those tablets float in fluids.
Our study compared the influence on the swelling and floating caused by water absorption with
hydrophilic polymeric excipients including HPMC 90SH 100K, HEC 250HHX, and PEO7000K in the
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presence of various amounts of Kollidon® SR. Kollidon® SR is mainly composed of 80% w/w PVAc and
19% w/w povidone (PVP). Kollidon® SR is not sensitive to pH in the environment. PVAc is a material
with high plasticity; thus, it can form matrix tablets even at low tableting pressures. When a tablet
is orally administrated and exposed to gastric juice or intestinal fluid, the water-soluble povidone
dissolves slowly, and pores in the matrix tablet allow the main component drug to slowly be released
into the environment. Kollidon® SR is also a non-ionic substance; thus, there is no bonding or chemical
influence with substances of which the tablet is constructed. The hydrophilic polymeric excipient was
mixed with Kollidon® SR at ratios of 10:0, 7:3, 5:5, 3:7, and 0:10 (w/w), and each formulation had a
diameter of 15 mm and a weight of 400 mg. Results of swelling and floating at predetermined times
for those tablets are shown in Tables 3 and 4.

Results in Tables 3 and 4 demonstrate that, regardless of which of the three polymers, HPMC
90SH 100K, HEC 250HHX, and PEO7000K, was used, none of them could float in pH 1.2 simulated
gastric acid when 1.0 ton of compaction pressure for tableting was used. However, with a tableting
pressure of 0.5 tons, each of them could float, and the swelling extent as indicated by the change in
tablet diameter was not inferior to that prepared at a tableting pressure of 1 ton. Among the three
polymeric excipients examined, PEO7000K was observed to have the best swelling effect for tablets
prepared at both compression forces of 0.5 and 1 ton. At 1 h, only the PEO7000Kalone (10:0) and
PEO7000K/Kollidon SR (P/K = 7/3) group could swell to 15 mm in diameter, whereas the HPMC 90SH
100K (10/0, 7/3, and 5/5) and HEC 250HHX (10:0, 7/3, 5/5, 3/7, and 0/10) groups could only swell to
<15 mm. A diameter of >15 mm might be expected to avoid passing through the gastric pylorus valve.
Furthermore, as shown in Figure 1, a higher proportion of hydrophilic excipients led to a greater
expansion of the structure. The diameter of the tablet could be increased to 15 mm or more and was
observed to not have dissolved by simulated gastric acid at 24 h. However, the PEO7000K group had
the best swelling effect, which reached nearly 25 mm in diameter by 24 h.
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Table 3. Swelling and floating abilities of three polymers (HPMC 90SH 100K, HEC 250HHX, and PEO 7000K) with various ratios of Kollidon SR tableted at 0.5 tons of
compression force.

Ratios
0 1 h 2 h 5 h 24 h Suspending

D (mm) T (mm) D (mm) T (mm) D (mm) T (mm) D (mm) T (mm) D (mm) T (mm) Hardness (kPa) 0 h 5 h 24 h

H/K ratio
10:0 12.0 4.63 14.0 7.78 14.6 10.20 15.6 11.84 17.3 20.63 14.1 O O O
7:3 12.0 4.40 13.4 7.49 14.2 8.91 15.2 11.15 17.2 16.74 15.7 1 min O O
5:5 12.0 4.40 13.6 6.86 14.1 8.40 14.9 10.29 17.3 15.50 20.1 O O O

HEC/K ratio
10:0 12.2 4.43 14.6 7.60 18.0 9.15 20.5 10.63 26.8 12.05 8.8 X – X
7:3 12.1 4.50 14.3 7.50 16.5 9.20 18.5 10.40 21.1 12.76 9.8 O – X
5:5 12.0 4.65 14.3 7.58 16.0 9.45 18.4 10.14 20.5 11.99 17.0 O – X
3:7 12.0 4.82 13.8 7.52 15.1 8.49 16.9 9.50 19.0 10.98 23.2 O – X

0:10 12.1 5.25 12.1 6.27 12.6 6.57 12.8 7.00 13.7 7.12 21.2 O – X

P/K Ratio
10:0 12.0 4.56 15.4 8.26 18.2 9.71 20.7 11.08 27.9 13.15 15.8 O X X
7:3 12.1 4.66 15.0 7.98 16.9 9.70 19.5 10.04 24.8 10.39 16.8 O O O
5:5 12.0 4.74 14.9 8.25 16.5 8.61 17.8 10.06 22.8 10.82 20.4 O O O
3:7 12.0 5.01 13.9 8.18 15.3 8.56 16.1 9.20 17.9 9.74 23.0 O O O

K, Kollidon SR; H, HPMC 90SH 100K; HEC, HEC 250HHX; P, PEO7000K; D, diameter; T, thickness.
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Table 4. Swelling and floating abilities of three polymers (HPMC 90SH 100K, HEC 250HHX, and PEO7000K) with various ratios of Kollidon SR tableted at 1.0 ton of
compression force.

Ratios
0 1 h 2 h 5 h 24 h Suspending

D (mm) T (mm) D (mm) T (mm) D (mm) T (mm) D (mm) T (mm) D (mm) T (mm) Hardness (kPa) 0 h 5 h 24 h

H/K ratio
10:0 12.0 4.00 13.8 7.98 14.4 8.87 15.3 11.19 18.2 19.73 31.3 X X X
7:3 12.0 3.85 13.9 5.93 14.1 7.63 14.9 10.19 16.9 16.17 38.7 X X X
5:5 12.0 3.91 13.7 5.94 14.0 7.13 14.6 10.07 16.5 14.90 41.3 X X X

HEC/K ratio
10:0 12.0 4.01 14.6 7.4 18.15 9.43 20.4 12.53 28.4 12.96 14.2 X – X
7:3 11.9 3.97 14.0 6.94 15.72 10.19 18.8 11.64 23.6 13.04 32.0 X – X
5:5 11.8 4.20 13.8 6.4 15.51 8.72 17.3 9.68 21.0 10.73 38.1 X – X
3:7 11.9 4.15 13.7 6.62 14.26 8.08 16.3 8.77 17.6 10.89 40.9 X – X

0:10 11.9 4.15 12.0 4.79 12.09 5.31 12.4 5.44 12.6 5.69 41.5 X – X

P/K ratio
10:0 11.9 3.92 15.9 7.66 18.2 9.17 20.9 10.46 28.8 12.05 36.7 X X X
7:3 11.9 4.03 15.3 6.98 17.0 8.83 18.9 10.37 23.1 11.73 40.5 X X X
5:5 11.9 4.01 14.8 6.66 16.2 7.92 18.0 9.72 18.5 11.42 42.2 X X X
3:7 11.9 4.08 14.1 6.26 15.0 8.28 16.1 9.41 15.7 11.96 42.1 X X X

K, Kollidon SR; H, HPMC 90SH 100K; HEC, HEC 250HHX; P, PEO7000K; D, diameter; T, thickness.
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Furthermore, according to the results shown in Table 3, PEO7000K was found to have good water
absorption and swelling effects; thus, it was selected as the hydrophilic excipient with Kollidon® SR
for a gastric retention formulation. When the content of PEO7000K was higher, the swelling effect
was better. When the formulation was composed of PEO7000K alone, the swelling effect was the
best, but this formulation could not be suspended, which increased the chance of gastric emptying.
Therefore, P/K was finally selected at a 7/3 ratio as a basic formulation of the GRDDS, and drug release
profiles were further examined after incorporation of the drug.

Firstly, the drug mixed with excipient (P/K = 7/3) at different proportions (drug/excipient ratio, D/E)
was formulated to observe the effect of the added amount of excipient on drug release. Drug release
with 5% Aerosil 200 added at a fixed drug to P/K ratio of 1/4 was also compared. Results shown in
Table 5 and Figure 2A reveal that a higher added amount of excipient led to a slower drug release rate.
When the D/E ratio was equal to 1/4 (A1 formulation), drug release reached only 38% in 24 h, whereas
it was 95% in 24 h for D/E ratio equivalent to 1/2 (formulation A3). However, the tablet hardness for
the latter was much lower than that for the former, which was unfavorable for clinical application.
Therefore, Aerosil 200 was added to formulation A1 to help provoke a wicking effect of water into the
tablet to rapidly induce a widespread swelling effect in the tablet. It turned out that formulation A3
with 5% Aerosil 200 in formulation A1 at the same D/E ratio of 1/4 exhibited a three-fold increased
drug release rate at 24 h. Nevertheless, in the pharmaceutical industry, the addition of Aerosil 200 to
formulations is usually at 0.5–1%; thus, other suitable dissolution-enhancing agents must be found to
increase the drug release rate and increase the hardness of the tablet.

Table 5. Composition of formulations A1–A3 and M1–M6.

Formulations A1 A2 * A3 M1 M2 M3 M4 M5 M6

Drug (mg) 100 100 100 100 100 100 100 100 100
P/K 7/3 400 400 200 50 50 100 100 100 100

MCC PH102 – – – 25 50 0 50 100 200
Tablet (mg) 500 500 300 175 200 200 250 300 400

Hardness (kPa) 5.2 4.5 2.8 1.36 2.00 1.63 2.30 3.03 3.90
Floating No Yes No 1 h 1 h 2 h

* Mixed with 5% Aerosil 200; P, PEO7000K; K, Kollidon SR.
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Figure 2. Dissolution profiles of nilotinib in simulated gastric fluid (SGF) from the A1–A3 formulations
(A) and M1–M6 formulations (B).

Figure 3A shows that 100% of Tasigna (the brand name of nilotinib), composed of 150 mg of
nilotinib with Pluronic F68 as the main excipient in the capsule dosage form, was released in 1 h.
The instantaneous release of nilotinib was observed. The influence on the drug release rate and tablet
hardness of utilizing MCC102 as a dissolution-enhancing agent and improving the tablet hardness
at various added amounts was compared. Table 6 lists formulations which incorporated MCC102
at different ratios of drug to excipient (P/K = 7/3). M1 and M2 represent the weight ratio of drug to
excipient (P/K = 7/3) of 1:0.5, and M1 was formulated with the weight amount of MCC102 equivalent to
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50% of the weight of P/K, while M2 had an MCC102 equivalent to 100% of the P/K weight. Dissolution
results showed that drug release rates of the two groups were similar, but the hardness of M2 was higher
than that of M1. The weight ratio of drug to excipient (P/K = 7/3) in M3–M6 was 1:0.5, and various
amounts of MCC102 were added. As the amount of MCC102 increased, the hardness of the tablet
also increased from 1.63 to 3.9 kPa. Results of the drug release profile for M5 and M6 (with MCC102
contents of 100% and 200%, respectively) as shown in Figure 2B demonstrate that the release rate at
4 h was faster than that for M3 and M4, in which no MCC102 and 50% MCC102 were respectively
added, whereas the release rate at 6 h became faster instead for those groups with a lower amount of
MCC102 added. At 12 h, the release rates of all groups were close to 100%. The reason for the faster
release of MCC102 in the first group was presumed to be the presence of a higher content of MCC102,
which caused the tablet to initially swell and expand at a faster rate leading to faster release of the drug.
However, after swelling with water, the insoluble MCC102 became resistant to outward diffusion of
the drug located internally, resulting in a reduction in the release rate after 6 h. Thus, the formulation
with a 50% content of the dissolution enhancing agent (MCC102) was finally selected to increase the
tablet hardness and release the drug within 24 h.
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Table 6. Composition of formulations F1–F4 and C1–C6.

Formulations F1 F2 F3 F4 C1 C2 C3 C4 C5 C6

Drug (mg) 150 150 150 150 150 150 150 150 150 150
P/K 7/3 75 150 75 150 75 112.5 150 75 112.5 150

MCC PH102 37.5 75 – – 37.5 56.3 75 – – –
HPCsslSPF – – 37.5 75 – – – 37.5 56.3 75

Tablet (mg) 262.5 375 262.5 375 262.5 318.8 375 262.5 318.8 375
Hardness (kPa) 4.37 8.47 5.2 13.56 – – – – – –

Floating No No No No Yes Yes Yes Yes Yes Yes

In order to make swallowing tablets with higher drug contents easier, the stamping die was altered
into a long strip shape (15 mm in diameter) as a caplet. The formulations are shown in Table 6. F1 and
F2 had weight ratios of drug to excipients (P/K = 7/3) of 1:0.5 and 1:1, and MCC102 equivalent to 50%
of the P/K weight was added to the formulations. In F3 and F4, weight ratios of drug to excipients (P/K
= 7/3) were 1:0.5 and 1:1, and HPC equivalent to 50% of the P/K weight was added. The so-obtained
caplets all had higher hardness than the corresponding respective tablets. This might have been due to
the fact that, with a smaller force area, it received a larger pressing force, and the structure also become
more compact. Nevertheless, the caplet group did not float after absorbing water.

In Figure 3A, the drug release profile for Tasigna (the brand name of nilotinib) composed of 150 mg
of nilotinib with Pluronic F68 as the main excipient in the capsule dosage form was demonstrated to
be 100% released in 1 h. The instantaneous release of nilotinib was observed. In the MCC102 group
(F1 and F2), a greater proportion of the swellable/floating excipient (P/K) led to a slower drug release.
However, the HPCssl,SFP groups (F3 and F4) were not affected by the total amount of excipient (P/K)
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added to the formulation, and results showed that release rates for F3 and F4 were similar. The reason
might be that HPCssl,SFP is a super-fine powder, which possesses excellent permeability to water.
Therefore, even if the added amount of P/K increased, it still had no effect on the rate at which water
entered the tablet, resulting in the rate of drug dissolution remaining the same. Between the F1 and F3
groups, it was observed that the release rate of the first 6 h for F1 was faster than that for F3. This was
probably because, in the group using MCC102 as the dissolution-enhancing agent, it quickly dissolved
from the periphery of the tablet, and the release rate at the previous time point was faster. Due to
the compact structure of the caplet, we observed that none of the formulations in caplet form floated
during the dissolution test. Therefore, it was assumed that the time period of gastric retention might
be significantly prolonged by filling the same formulation as that for caplets into No. 0 capsules to
reduce the density, allowing the so-obtained capsules to float.

Table 6 reveals the formulations designed for the capsule-type GRDDSs. C1–C3 were composed
of excipient (P/K = 7/3) at D/E ratios of 1:0.5, 1:0.75, and 1:1, respectively, and MCC102, with an added
weight equivalent to 50% of the P/K weight. The design of C4–C6 was similar to that of C1–C3,
but MCC102 was replaced with HPC. Figure 3B displays drug release rate profiles of C1–C6. Regardless
of whether the group contained HPC or MCC102, the drug release rate was the fastest for a D/E ratio
of 1:0.5. When the D/E ratio increased to 1:0.75 and 1:1, the amount of excipient did not affect the
dissolution rate, and dissolution rates of HPC formulations C4–C6 were faster and reached 100% release
in 12 h, but it took 24 h to reach 100% release for MCC102 formulations C1–C3. The difference between
the caplet and capsule forms was that the capsule formulations floated, and the release rate might
be expected to only be affected when the P/K content was equivalent to 50% of the drug. When the
content of the swelling agent was low, the drug was released as soon as the capsule disintegrated;
however, when the content of swelling excipients was high enough, it formed a colloid after water
absorption, which was similar to the structure of the caplet, and did not affect the dissolution rate.
When the content of the swelling excipient was more than 75% that of the drug, the release rates of
capsules and caplets were similar. In order to understand the effects of gastroretentive ability on oral
pharmacokinetics of nilotinib, several groups of gastroretentive formulations (F1, F2, and C1–C6) with
sufficient strength, floating ability, good swelling properties, and different release rates were further
examined in a rabbit model.

The drug plasma concentration versus time profile of oral administration of 150 mg of Tasigna®

at a single dose in white rabbits is shown in Figure 4A, and oral administration of Tasigna® reached
the highest plasma concentration around the second hour, followed by a drug concentration decline as
time went by, while the drug was not detected in the blood after 48 h. The calculated pharmacokinetic
parameters are shown in Table 7. The time (Tmax) for the drug to reach the highest blood concentration
was 2.66 ± 1.52 h, the highest concentration of the drug (Cmax) was 614 ± 363 ng/mL, and the area
under the drug curve (AUC) was 2703 ± 1219 ng·h/mL.

The drug plasma concentration versus time profiles for oral administration of formulations F1 and
F2 containing 150 mg nilotinib as a single dose in rabbits are also displayed in Figure 4A. It shows that
oral administration of F1 resulted in the highest plasma concentration reached at around 15 h, followed
by a declining drug concentration as time went by, and the obtained pharmacokinetic parameters are
shown in Table 7. The time to the highest blood concentration of the drug (Tmax) was 15.5 ± 10.11 h,
the highest drug concentration (Cmax) was 795 ± 311 ng/mL, and the area under the drug curve (AUC)
was 16,728 ± 620 ng·h/mL. The orally administered F2 formulation was retained in the stomach for a
longer time than F1, due to the higher content of swelling excipients; thus, the time to reach the highest
blood concentration of the drug (Tmax) was extended to 24 h, the highest concentration of drug (Cmax)
was 869 ng/mL, and the area under drug curve (AUC) was 19,974 ng·h/mL. The bioavailability of F1
and F2 was 6–7-fold higher compared to that for Tasigna®. This was mainly attributed to Tasigna®

being encapsulated in a capsule, leading to all nilotinib content being released instantly after quick
dissolution of the capsule shell to expose its content to simulated gastric fluid (SGF). Since nearly
100% of the drug was dispersed instantly into the stomach, a smaller portion of nilotinib might have
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been transformed into the salt form in the stomach, leading to only this smaller portion of dissolved
nilotinib being available for absorption in the major absorption site of the intestines as the dissolved
nilotinib was emptied into the intestines. Additionally, as soon as the stomach emptied the drug load
in the stomach into the intestines, no more nilotinib was dissolved in the intestine due to its neutral to
slightly alkaline pH, thus leading to further retardation of the oral bioavailability with an increasing
undissolved portion of nilotinib not being absorbed in the intestines. Nevertheless, by increasing the
retention time of the drug in the stomach by the design of the GRDDS formulation, the sustained
release of nilotinib from the GRDDS would be expected to gradually transform all of the nilotinib
content into the salt form to dissolve in the stomach before emptying into the intestines, thus leading
to enhancement of its oral bioavailability.
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The drug plasma concentration versus time profiles and the obtained pharmacokinetic parameters
for oral administration of formulations C1–C6 in a single dose are shown in Figure 4B and Table 7,
respectively. In the C1–C3 groups using MCC102 as the dissolution-enhancing agent and hardness
enhancer, a higher D/E ratio led to a greater increase in bioavailability, which increased by 2.65-, 4.73-,
and 7.52-fold, respectively. Comparing the same formulations with different dosage forms, C1 and
F1, although there was no difference in the in vitro dissolution profile, the in vivo pharmacokinetics
were observed to differ between the capsule and the tablet. Drug in the swellable tablet could only be
released by swelling or expansion to loosen the diffusion resistance inward from the outer surface,
whereas drug in the capsule was available for dissolution as soon as the swellable excipient absorbed
water to became a gel form. As a result, the initial release rate for the capsule was expected to be faster
than that for the tablet, and the extent of drug release from the capsule form was also expected to be
greater than that for the tablet. Therefore, C1 reached the Tmax time earlier than F1, with values of
9.67 and 15.5 h, respectively. Alternatively, the extent of drug release was lower from the tablet form
than from the capsular form, leading to increased bioavailability of F1 to a greater extent than for C1.
When the D/E ratio was equal to 1.0, which occurred with C3 and F2 having the same formulation
but different dosage forms, F2 reached Tmax more slowly and the Cmax concentration was lower,
but C3 and F2 increased the relative bioavailability to 7.52- and 7.4-fold, respectively. It was observed
that the drug bioavailability at high excipient levels showed no difference between the tablet and
capsule. In the C4–C6 groups using HPCssl,SFP as a dissolution-enhancing agent and hardness enhancer,
the pharmacokinetic profiles and their pharmacokinetic parameters are shown in Figure 4B and Table 7,
respectively. Results illustrated that Cmax values of these three groups were almost 1000 ng/mL,
and average Tmax values were around 12–20 h, which were delayed compared to each corresponding
MCC102 group (7.0–9.7 h). However, there was no correlation between the relative oral bioavailability
enhancement and the D/E ratio. Nonetheless, the enhancement multiples of oral bioavailability for
C4–C6 were higher than those for each corresponding formulation of C1–C3.
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Table 7. Pharmacokinetics parameters of different formulations of nilotinib in rabbits (mean ± standard deviation, n = 2 or 3).

Formulations Cmax (ng/mL) Tmax (h) T1/2 (h) AUC0–72 (h·ng/mL) V (L) Cl (L/h) BA (folds)

Tasigna 614 ± 363 2.7 ± 1.5 6.7 ± 3.17 2703 ± 1219 1.0
F1 795 ± 311 15.5 ± 10.1 23.53 ± 10.17 16,728 ± 6203 6.0
F2 869 24 NA 19,974 7.4
C1 874 ± 267 9.7 ± 7.9 25.42 ± 19.59 8069 ± 3326 709 ± 336 23.95 ± 9.72 2.65
C2 1353 ± 115 7.0 ± 7.1 21.72 ± 2.98 14,373 ± 7700 395 ± 256 12.18 ± 6.52 4.73
C3 1889 ± 121 7.0 ± 1.4 42.3 ± 8.08 22,870 ± 13,285 455 ± 188 7.89 ± 4.5 7.52
C4 1046 ± 440 15.0 ± 6.0 24.56 ± 7.75 25,500 ± 11,787 276 ± 217 7.1 ± 3.5 8.39
C5 964 ± 214 20.7 ± 8.1 18.81 ± 2.75 18,091 ± 5033 240 ± 83 8.67 ± 2.08 5.95
C6 1053 ± 294 12.0 ± 3.5 56.58 ± 22.69 23,870 ± 186 550 ± 295 6.8 ± 2.2 7.85

Cmax, maximum serum concentration; Tmax, time to reach Cmax; T1/2, drug half-life; AUC area under the curve; Cl, clearance; BA, bioavailability.



Pharmaceutics 2020, 12, 137 14 of 15

4. Conclusions

This study combined swellable material of PEO7000K with floatable material of Kollidon® SR to
successfully produce an sf GRDDS formulation for retaining nilotinib in the stomach for a desirable
period of time. Further inclusion of MCC (PH102) or HPC (ssl, SFP) as a dissolution-enhancing agent in
the above sf GRDDS formulation could release the drug at a rate optimally sufficient to gradually convert
all of the nilotinib into the salt form available for dissolution in the stomach, being maintained in the
dissolved state for intestinal absorption after emptying into the intestines, which led to enhanced oral
bioavailability. The drug release profiles and resulting plasma drug concentrations of the so-designed
sf GRDDS formulations could be controlled by different D/E ratios either in tablet or capsule dosage
forms. Overall, this study demonstrated that the multiples of enhancement of the oral bioavailability
for nilotinib formulated with sf GRDDS could reach a pharmacokinetic profile that was able to offer
therapeutic effectiveness by QD administration of nilotinib at a reasonable dose while reducing the
number of doses taken, thereby increasing patient compliance and minimizing side effects. However,
the lack of stability testing of these formulations should be considered as a potential limitation.

Author Contributions: Experimental investigation and analysis, H.-L.L. and L.-C.C.; supervision and
writing—original draft preparation, W.-T.C. and W.-J.C.; writing—review and editing, H.-O.H. and M.-T.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology, Taiwan, (MOST
104-2622-B-038-008-CC3).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tojo, A.; Usuki, K.; Urabe, A.; Maeda, Y.; Kobayashi, Y.; Jinnai, I.; Ohyashiki, K.; Nishimura, M.; Kawaguchi, T.;
Tanaka, H.; et al. A phase I/II study of nilotinib in Japanesepatients with imatinib-resistant or -intolerant Ph+

CML or relapsed/refractory Ph+ ALL. Int. J. Hematol. 2009, 89, 679–688. [CrossRef] [PubMed]
2. Tanaka, C.; Yin, O.Q.; Sethuraman, V.; Smith, T.; Wang, X.; Grouss, K.; Kantarjian, H.; Giles, F.; Ottmann, O.G.;

Galitz, L.; et al. Clinical pharmacokinetics of the BCR-ABL tyrosine kinase inhibitor nilotinib. Clin. Pharmacol.
2010, 87, 197–203. [CrossRef] [PubMed]

3. Tasigna_ (Nilotinib) Capsules: US Prescribing Information [Online]. Available online: http://www.pharma.
us.novartis.com/product/pi/pdf/tasigna.pdf (accessed on 28 June 2011).

4. Hazarika, M.; Jiang, X.; Liu, Q.; Lee, S.-L.; Ramchandani, R.; Garnett, C.; Orr, M.S.; Sridhara, R.; Booth, B.;
Leighton, J.K.; et al. Tasigna for chronic and accelerated phasePhiladelphia chromosome-positive chronic
myelogenous leukemia resistantto or intolerant of imatinib. Clin. Cancer Res 2008, 14, 5325–5331. [CrossRef]

5. Zhou, L.; Meng, F.; Yin, O.; Wang, J.; Wang, Y.; Wei, Y.; Hu, P.; Shen, Z. Nilotinib for imatinib-resistant
or -intolerantchronic myeloid leukemia in chronic phase, accelerated phase, or blast crisis:a single- and
multiple-dose, open-label pharmacokinetic study in Chinesepatients. Clin. Ther. 2009, 31, 1568–1575.
[CrossRef] [PubMed]

6. Demetri, G.D.; Casali, P.G.; Blay, J.Y.; von Mehren, M.; Morgan, J.A.; Bertulli, R.; Ray-Coquard, I.; Cassier, P.;
Davey, M.; Borghaei, H.; et al. A phase I study of single-agent nilotinibor in combination with imatinib
in patients with imatinib-resistant gastrointestinalstromal tumors. Clin. Cancer Res. 2009, 15, 5910–5916.
[CrossRef] [PubMed]

7. Kantarjian, H.; Giles, F.; Wunderle, L.; Bhalla, K.; O’Brien, S.; Wassmann, B.; Tanaka, C.; Manley, P.; Rae, P.;
Mietlowski, W.; et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL.
N. Engl. J. Med. 2006, 354, 2524–2551. [CrossRef]

8. European Medicines Agency. Tasigna Capsules: Summary of Product Characteristics.
Available online: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/

human/000798/WC500034394.pdf (accessed on 28 June 2011).
9. Kim, K.P.; Ryu, M.H.; Yoo, C.H.; Ryoo, B.Y.; Choi, D.R.; Chang, H.M.; Lee, J.L.; Beck, M.Y.; Kim, T.W.;

Kang, Y.K. Nilotinib in patients with GIST who failed imatinib and sunitinib: Importance of prior surgery on
drug bioavailability. Cancer Chemother. Pharm. 2011, 68, 285–291. [CrossRef]

http://dx.doi.org/10.1007/s12185-009-0327-0
http://www.ncbi.nlm.nih.gov/pubmed/19449194
http://dx.doi.org/10.1038/clpt.2009.208
http://www.ncbi.nlm.nih.gov/pubmed/19924121
http://www.pharma.us.novartis.com/product/pi/pdf/tasigna.pdf
http://www.pharma.us.novartis.com/product/pi/pdf/tasigna.pdf
http://dx.doi.org/10.1158/1078-0432.CCR-08-0308
http://dx.doi.org/10.1016/j.clinthera.2009.07.016
http://www.ncbi.nlm.nih.gov/pubmed/19695406
http://dx.doi.org/10.1158/1078-0432.CCR-09-0542
http://www.ncbi.nlm.nih.gov/pubmed/19723647
http://dx.doi.org/10.1056/NEJMoa055104
http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000798/WC500034394.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000798/WC500034394.pdf
http://dx.doi.org/10.1007/s00280-010-1479-6


Pharmaceutics 2020, 12, 137 15 of 15

10. Deininger, M.W. Nilotinib. Clin. Cancer Res. 2008, 14, 4027–4031. [CrossRef]
11. Gion, P.D.; Kanefendt, F.; Lindauer, A.; Scheffler, M.; Doroshyenko, O.; Fuhr, U.; Wolf, J.; Jaehde, U.

Clinical Pharmacokinetics of Tyrosine Kinase Inhibitors: Focus on Pyrimidines, Pyridines and Pyrroles.
Clin. Pharmacol. 2011, 50, 551–603. [CrossRef]

12. Yin, O.Q.P.; Gallagher, N.; Fischer, D.; Demirhan, E.; Zhou, W.; Golor, G.; Schran, H. Effect of the Proton
Pump Inhibitor Esomeprazole on the Oral Absorptionand Pharmacokinetics of Nilotinib. J. Clin. Pharmacol.
2010, 50, 960–967. [CrossRef]

13. Ostendorf, B.N.; Coutre, P.; Kim, T.D.; Quintás-Cardama, A. Nilotinib. In Small Molecules in Oncology;
Martens, M.U., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 67–80.

14. Fielding, A.K. Current treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia.
Haematologica 2010, 95, 8–12. [CrossRef] [PubMed]

15. Saglio, G.; Kim, D.W.; Issaragrisil, S.; Coutre, P.l.; Etienne, G.; Lobo, C.; Pasquini, R.; Clark, R.E.; Hochhaus, A.;
Hughes, T.P.; et al. Nilotinib versus Imatinib for Newly Diagnosed Chronic Myeloid Leukemia. N. Engl. J.
Med. 2010, 362, 2251–2259. [CrossRef] [PubMed]

16. Davis, S.S. Formulation strategies for absorption windows. Drug Discov. Today 2005, 10, 249–257. [CrossRef]
17. Bardonnet, P.L.; Faivre, V.; Pugh, W.J.; Piffaretti, J.C.; Falson, F. Gastroretentive dosage forms: Overview and

special case of Helicobacter pylori. J. Control. Release 2006, 111, 1–18. [CrossRef]
18. Park, K.; Robinson, J.R. Bioadhesive polymers as platforms for oral-controlled drug delivery: Method to

study bioadhesion. Int. J. Pharm. 1984, 19, 107–127. [CrossRef]
19. Talukder, R.; Fassihi, R. Gastroretentive delivery systems: A mini review. Drug Dev. Ind. Pharm. 2004,

30, 1019–1028. [CrossRef]
20. Pawar, V.K.; Kansal, S.; Garg, G.; Awasthi, R.; Singodia, D.; Kulkarni, G.T. Gastroretentive dosage forms:

A review with special emphasis on floating drug delivery systems. Drug Deliv. 2011, 18, 97–110. [CrossRef]
21. Strubing, S.; Abboud, T.; Contri, R.V.; Metz, H.; Mader, K. New insights on poly(vinyl acetate)-based coated

floating tablets: Characterisation of hydration and CO2 generation by benchtop MRI and its relation to drug
release and floating strength. Eur. J. Pharm. Biopharm. 2008, 69, 708–717. [CrossRef]

22. Strubing, S.; Metz, H.; Mader, K. Characterization of poly(vinyl acetate) based floating matrix tablets. J. Contr.
Release 2008, 126, 149–155. [CrossRef]

23. Shalaby, W.S.W.; Blevins, W.E.; Park, K. In vitro and in vivo studies of enzyme-digestible hydrogels for oral
drug delivery. J. Contr. Release 1992, 19, 131–144. [CrossRef]

24. Klausner, E.A.; Lavy, E.; Barta, M.; Cserepes, E.; Friedman, M.; Hoffman, A. Novel gastroretentive dosage
forms: Evaluation of gastroretentivity and its effect on levodopa absorption in humans. Pharm. Res. 2003,
20, 1466–1473. [CrossRef] [PubMed]

25. Hatton, G.B.; Yadav, V.; Basit, A.W.; Merchant, H.A. Animal Farm: Considerations in Animal Gastrointestinal
Physiology and Relevance to Drug Delivery in Humans. J. Pharm. Sci. 2015, 104, 2747–2776. [CrossRef]
[PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1158/1078-0432.CCR-07-5015
http://dx.doi.org/10.2165/11593320-000000000-00000
http://dx.doi.org/10.1177/0091270009346061
http://dx.doi.org/10.3324/haematol.2009.015974
http://www.ncbi.nlm.nih.gov/pubmed/20065078
http://dx.doi.org/10.1056/NEJMoa0912614
http://www.ncbi.nlm.nih.gov/pubmed/20525993
http://dx.doi.org/10.1016/S1359-6446(04)03351-3
http://dx.doi.org/10.1016/j.jconrel.2005.10.031
http://dx.doi.org/10.1016/0378-5173(84)90154-6
http://dx.doi.org/10.1081/DDC-200040239
http://dx.doi.org/10.3109/10717544.2010.520354
http://dx.doi.org/10.1016/j.ejpb.2007.12.009
http://dx.doi.org/10.1016/j.jconrel.2007.11.013
http://dx.doi.org/10.1016/0168-3659(92)90071-X
http://dx.doi.org/10.1023/A:1025770530084
http://www.ncbi.nlm.nih.gov/pubmed/14567643
http://dx.doi.org/10.1002/jps.24365
http://www.ncbi.nlm.nih.gov/pubmed/25712759
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Materials 
	Preparation of Gastroretentive Tablets and Capsules 
	Physical Characterization of Tablet Formulations 
	Dissolution Test 
	Animal Study of Oral Bioavailability 
	Animal Dosing 
	Liquid Chromatography Tandem Mass Spectroscopy (LC-MSMS) Analysis of Nilotinib Plasma Concentrations 
	Statistical Analysis of the Pharmacokinetic Study 

	Statistical Analysis 

	Results and Discussion 
	Conclusions 
	References

