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Abstract
Objectives: This study explored the clinical utility of CT radiomics-driven machine learning as a predictive

marker for chemotherapy response in colorectal liver metastasis (CRLM) patients.

Methods: We included 150 CRLM patients who underwent first-line doublet chemotherapy, dividing them

into a training cohort (n=112) and a test cohort (n=38). We manually delineated three-dimensional tumor

volumes, selecting the largest liver metastasis for measurement, using pretreatment portal-phase CT images

and extracted 107 radiomics features. Treatment response was classified as responder (complete or partial

response) or non-responder (stable or progressive disease), based on the best overall response according to

RECIST criteria, version 1.1. Employing Random Forest and Boruta algorithms, we identified significant

features for responder-non-responder differentiation. Radiomics signatures were developed and validated in

the training cohort using five-fold cross-validation, and performance was assessed using the area under the

curve (AUC).

Results: Among the patients, 91 (61%) were responders and 59 (39%) were non-responders. Variable selec-

tion with Boruta revealed three key parameters (“DependenceVariance,” “ClusterShade,” and “RunVari-

ance”). In the training cohort, individual CT texture parameter AUCs ranged from 0.4 to 0.65, while the

machine learning analysis incorporating all valid parameters exhibited a significantly higher AUC of 0.94 (p

<0.01). The validation cohort also demonstrated strong predictive accuracy, with an AUC of 0.87 for treat-

ment response.

Conclusions: This study highlights the potential of CT radiomics-driven machine learning in predicting

chemotherapy responses among CRLM patients.
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Introduction

Colorectal cancer (CRC) is the third most common cancer

worldwide and the second leading cause of cancer-related

deaths[1]. Furthermore, liver metastasis is the most common

type, occurring in 30%-50% of colorectal cancer pa-

tients[2-4]. Patients with colorectal liver metastases (CRLM)

generally present with unresectable disease. The treatment of

metastatic colorectal cancer (mCRC) has advanced signifi-

cantly in the last 20 years. These improvements have mainly

been driven by the availability of novel targeted agents and

biomarkers[5-8]. In particular, molecular biomarkers have

been identified for patients who are candidates for agents

targeting EGFR and HER2, TRK fusion, and immunother-

apy[9-11]. Despite these advances in molecular biomarkers,

the clinical outcomes of unresectable CRC remain inade-

quate, and further development of novel biomarkers is re-

quired.

Computed tomography (CT) texture analysis is an imag-

ing technique involving quantifying spatial heterogeneity

and extracting pixel spatial intensity variations across tissues

of interest[12]. Accumulating evidence indicates that CT tex-

ture analysis of CRLM provides a promising strategy to pre-

dict responses to chemotherapy[13-15]. However, the da-

tasets generated by these analyses, particularly those derived

from three-dimensional CT (3D-CT) texture analysis, are

formidable in size and complexity.

Recent developments in radiomics-based machine learning

have offered a compelling solution to enhance prediction ac-

curacy by distilling actionable rules and algorithms from in-

tricate data[16-18]. Several studies have assessed the poten-

tial of CT radiomics-based machine learning to improve

chemotherapeutic response predictions and confirm the hy-

pothesis that greater tumor heterogeneity indicates chemo-

therapy sensitivity[19-21]. However, the value of CT

radiomics-based machine learning in predicting the che-

motherapeutic responses of liver metastases has not yet been

demonstrated.

In light of these considerations, our study aimed to exam-

ine the clinical efficacy of CT radiomics-based machine

learning as a predictive tool for systemic chemotherapy re-

sponses in patients grappling with the formidable challenge

of CRLM. Through a comprehensive examination of radi-

omics features and machine learning algorithms, we aim to

provide valuable insights into the predictive potential of this

innovative approach, holding promise for enhancing treat-

ment outcomes in this patient population.

Methods

Patients

From January 2005 to January 2019, we performed a ret-

rospective analysis of 150 consecutive patients with liver

metastasis who received first-line chemotherapy for mCRC

at Kumamoto University Hospital (Kumamoto, Japan). The

eligibility criteria included histologically confirmed CRC,

measurable metastatic disease according to Response Evalu-

ation Criteria in Solid Tumors (RECIST), no previous treat-

ment for metastatic disease, and treatment with oxaliplatin

of irinotecan-based doublet chemotherapy. The exclusion cri-

teria included patients without a whole-body enhanced CT

scan one month before first-line chemotherapy. CT was per-

formed at 3-month intervals until disease progression or

death. Additionally, EOB-MRI and PET-CT were not con-

ducted in all patients, and these modalities were reserved for

cases with specific clinical indications that justified their

use. The response to treatment was evaluated according to

the RECIST criteria, version 1.1, with the best overall re-

sponse during the treatment period being recorded. Patients

who showed partial (PR) or complete response (CR) were

considered responders, whereas patients who showed pro-

gression (PD) or stable disease (SD) were classified as non-

responders.

All patients provided informed consent, including consent

for their clinical data and images to explore radiomics pa-

rameters. All patients could revoke their consent before

revocation becomes impracticable, as in the case of samples

being unlinkable anonymized. This retrospective study was

approved by the institutional review board of our hospital

(no. 2000) and conducted in accordance with the Declara-

tion of Helsinki. This study adhered to the REporting rec-

ommendations for tumor MARKer prognostic studies (RE-

MARK)[22].

CT scanning and contrast injection protocols

All patients were scanned with multi-detector row CT

scanners (40 to 320 rows). All CT studies were performed

during a single-breath-hold with the patient in the supine

position. The CT scanning parameters were 0.5-sec rotation

scan, 5.0-mm detector row width, 120 kVp, and automatic

tube current modulation. The scanning time varied from 3 to

10 sec depending on the geometry and CT scanners. The

contrast material dose was tailored using the patient’s body

weight (600 mgI/kg) and injected in 30 seconds. Portal ve-

nous phase (PVP) CT scanning was performed 70 sec after

the start of the contrast material injection. The PVP images

of the liver were reconstructed with a 5-mm slice thickness.

Computation of radiomics features

We imported Digital Imaging and Communications in

Medicine images to compute texture features into 3D Slicer

software (version 4, http://www.slicer.org). One investigator

(23 years of experience in abdominal CT) then manually

traced the outer edge of each metastatic liver tumor on 3D

CT images and selected a volume of interest (VOI) for the
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Figure　1.　The workflow of CT radiomics-based machine learning analysis. 

The tumor lesions were manually segmented from pretreatment contrast-enhanced CT images, and the three-dimensional tu-

mor volume of interest was constructed. The radiomics parameters were then extracted. Significant features for differentiating 

between responders and nonresponders were selected using the Random Forest and Boruta algorithms. Finally, the perfor-

mance of the machine learning models was evaluated using the independent test cohort.

radiomics analysis. In cases with multiple liver metastases,

the largest and most reliably traceable tumor was selected.

In addition, necrotic, cystic areas, or calcifications were in-

cluded for analysis. A total of 107 radiomics features (14

shape features, 18 first-order intensity statistics features, and

75 texture features) were extracted using the 3D Slicer soft-

ware extension, SlicerRadiomics (V2.10, http://download.slic

er.org)[23]. Tumor segmentation was repeated for 20 ran-

domly selected cases to assess reproducibility, with Lin’s

concordance correlation coefficient for the mean value of

CT texture features being 0.91.

Machine learning analysis (Figure 1)

We used free programming software (Python, version 3.8;

https://www.python.org/) and the scikit-learn machine learn-

ing library (version 0.18.1, http://scikit-learn.org/stable/) for

radiomics analysis. We randomly divided 150 patients into

groups of 112 and 38 for training and test data, respectively,

with the “train test split” function in the scikit-learn machine

learning library. Most machine learning models classify ob-

jects by the distance between two points, and when the vari-

ation in a specific feature is extremely large, the distance is

governed by this particular feature. Therefore, we performed

simple normalization using the “StandardScaler().fit_trans-

form” function in the scikit-learn library.

Various feature selection algorithms and machine learning

models, including LASSO, Support Vector Machines, and

Gradient Boosting, were initially considered; however, the

Boruta and Random Forest algorithms were ultimately cho-

sen because of their robustness in handling high-dimensional

data and their abilities to provide interpretable results[24],

which are essential for identifying significant radiomic fea-

tures.

Significant features for differentiating responsive and non-

responsive metastatic liver tumors were selected using the

Boruta algorithms[25] in the training group. Boruta creates

dummy features that should not contribute to discrimination

and uses real and dummy features to train a Random Forest

(RF) classifier, one of the major ensemble machine learning

algorithms[26]. Next, it compares the importance of the real
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and fake features, and features are selected only if their im-

portance values are significantly greater than the maximum

importance values of dummy features. These selected fea-

tures were sorted in descending order of importance. A

higher position of a feature among selected features indi-

cated greater significance and better predictive value of the

feature for the model created. Finally, the Random Forest

was trained and validated with all significant features to dif-

ferentiate between responsive and non-responsive metastatic

liver tumors using 5-fold cross-validation in the training

data. The performance of all models was also evaluated us-

ing the test data.

Statistical analysis

Statistical analyses were performed with Python software

(ver. 3.9, Python Software Foundation, Wilmington, Del)

and JMP software (ver. 10, SAS Institute Inc, USA). All

data are expressed as median (interquartile range). Mann-

Whitney U and χ2 tests were used to compare groups and

proportions between groups, respectively. We calculated fea-

ture importances using SHAP (Sharpley Additive exPlana-

tions). The area under the curve (AUC) of receiver operating

characteristic (ROC) curves obtained by the machine learn-

ing classifier was calculated for both datasets. In addition,

the AUC of selected features was calculated to differentiate

between responsive and non-responsive metastatic liver tu-

mors. Finally, the AUC of the machine learning classifier

was compared with all selected features using the Delong

test. Differences of p < 0.05 were considered statistically

significant.

Results

Baseline characteristics

In total, 150 patients were enrolled, as shown in Table 1,

Figure 2. The median age was 64 years (range 33 to 86),

and most patients were male (59%). Eastern Cooperative

Oncology Group performance status scores were 0, 1, and 2

in 62%, 31%, and 7% of patients, respectively. Primary tu-

mors were located in the right-sided colon (29%), left-sided

colon (37%), and rectum (33%). The median follow-up time

was 27.7 months. All 150 patients had at least one measur-

able liver lesion. The majority of patients (90%) received

oxaliplatin-based doublet chemotherapy. Regarding targeted

agents, 55% of patients received bevacizumab, and 21% re-

ceived anti-EGFR antibodies. There was no significant dif-

ference in variables between the training and validation co-

horts. Responses to treatment are also shown in Table 2.

One patient achieved CR, and 90 (60%) showed PR. Thus,

the overall best response rate was 61%. There was no sig-

nificant difference in response to chemotherapy between the

two cohorts.

Machine learning-based CT texture analysis

Three radiomics factors (“DependenceVariance,” “Cluster-

Shade,” and “RunVariance”) were extracted by variable se-

lection using Boruta. The importance of these features is

shown in Figure 3. In the training group, the AUC of the RF

model using all three parameters was 0.94, which was sig-

nificantly higher (p < 0.01) than the AUC of the “Depend-

enceVariance” (AUC = 0.54), “ClusterShade” (AUC = 0.65),

and “RunVariance” (AUC = 0.56) (Figure 4a). In the test

group, the AUC of the RF model using all three parameters

was 0.87, which was significantly higher (p < 0.01) than the

AUC of the “DependenceVariance” (AUC = 0.56), “Cluster-

Shade” (AUC = 0.62), and “RunVariance” (AUC = 0.64)

(Figure 5a). Although there was substantial overlap in each

feature between the two groups, they were separated to

some degree by integrating the three features. The distribu-

tion of each feature in the response and non-response groups

is shown in Figure 4b, 5b.

Representative cases

Representative cases are shown in Figure 6. The two rep-

resentative cases were selected to illustrate the variable treat-

ment outcomes, with one case showing a positive response

to chemotherapy and the other exhibiting disease progres-

sion. These cases highlight the model’s ability to distinguish

between responders and non-responders based on pretreat-

ment radiomic features.

Case 1 was a 56-year-old male patient with multiple liver

metastases from sigmoid colon cancer. The machine

learning-based CT texture analysis of pretreatment CT im-

ages classified this patient into the responder group, with a

prediction accuracy of 0.973. The patient received FOLFOX

plus bevacizumab. Post-treatment CT imaging (3 months

later) demonstrated PR with decreased lesion size from 86.4

to 50.9 mm. The patient underwent a two-stage hepatectomy

and was alive at the last follow-up 55 months after chemo-

therapy.

Case 2 was a 65-year-old male patient with multiple liver

metastases from cecal colon cancer (KRAS-wild type tumor).

After primary tumor resection, the patient was administered

FOLFOX plus cetuximab. The machine learning-based CT

texture analysis of pretreatment CT images classified this

patient into the responder group, with a prediction accuracy

of 0.973. Post-treatment CT imaging (2 months later) dem-

onstrated progressive disease with an increase in lesion size

from 18.9 to 27.3 mm. The patient did not respond to alter-

native systemic chemotherapy and died approximately 11

months after chemotherapy.

Discussion

We conducted this study to evaluate the value of CT
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Table　1.　Patient Characteristics.

Variables
All

Training 

cohort

Validation 

cohort P valuea

N (%) N (%) N (%)

All 150 112 (75) 38 (25)

Age, years (range) 64 (33-86) 63 (33-84) 66 (42-86) 0.41

Sex 0.86

Male 89 (59) 66 (59) 23 (61)

Female 61 (41) 46 (41) 15 (39)

EOCG-PS 0.84

Grade 0 93 (62) 68 (61) 25 (66)

Grade 1 47 (31) 36 (32) 11 (29)

Grade 2 10 (7) 8 (7) 2 (5)

Timing of metastases 0.58

Synchronous 126 (84) 93 (83) 33 (87)

Metachronous 24 (16) 19 (17) 5 (13)

Primary tumor location 0.31

Right-sided colon 44 (29) 32 (29) 12 (32)

Left-sided colon 56 (37) 39 (35) 17 (45)

Rectum 50 (33) 41 (37) 9 (24)

Extrahepatic disease 0.57

Yes 73 (49) 53 (47) 20 (53)

No 77 (51) 59 (53) 18 (47)

Primary tumor resection 0.30

Performed 58 (39) 46 (41) 12 (32)

Not performed 92 (61) 66 (59) 26 (68)

Number of liver metastases 0.52

1-4 66 (44) 51 (46) 15 (39)

≥5 84 (56) 61 (54) 23 (61)

Maximum size of liver metastases 0.93

≤5 cm 78 (52) 58 (52) 20 (53)

>5 cm 72 (48) 54 (48) 18 (47)

KRAS mutation status 0.33

Wildtype 83 (55) 63 (56) 20 (53)

Mutation 39 (26) 26 (23) 13 (34)

Unknownb 28 (19) 23 (21) 5 (13)

Cytotoxic chemotherapy 0.45

Oxaliplatin-base 135 (90) 102 (91) 33 (87)

Irinotecan-base 15 (10) 10 (9) 55 (13)

Biotarget agents 0.99

Bevacizumab 83 (55) 62 (55) 21 (55)

anti-EGFR antibody 31 (21) 23 (21) 8 (21)

None 36 (24) 27 (24) 9 (24)

ECOG-PS: Eastern Cooperative Oncology Group-Performance Status, EGFR: Epidermal Growth Factor Re-

ceptor

a Based on the χ2 test or the Kruskal–Wallis test when appropriate.

b Not included in the test.

radiomics-based machine learning of liver metastases in pre-

dicting chemotherapeutic responses in patients with CRLM.

The Boruta algorithm ranked 107 (14 shape features, 18

first-order intensity statistics features, and 75 texture fea-

tures) features. The results of this study demonstrated that

CT texture analysis using artificial intelligence is useful for

predicting chemotherapy responses. Machine learning is

changing the field of medical imaging. By applying machine

learning technology, we captured minute differences in CT

images of liver metastases and successfully distinguished be-

tween chemotherapy-sensitive and insensitive liver metasta-

ses.
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Figure　2.　The patient flow of this study.

The present study obtained unique results among studies

combining CT radiomics and machine learning. In contrast

to several prior studies[27-29] that depended on pre- and

post-treatment imaging to predict chemotherapy efficacy, our

approach necessitates only pretreatment images. This dis-

tinction is crucial; while the former methodology provides

retrospective insights, potentially delaying the implementa-

tion of optimal treatment plans, our predictive model en-

ables early therapy customization. This is a significant ad-

vantage, as it allows for the adjustment of treatment strate-

gies before the commencement of therapy, potentially im-

proving patient outcomes. Moreover, while Qi et al.[30] fo-

cused on individual tumors, potentially limiting their

model’s broader clinical utility and achieving a lower pre-

dictive accuracy (AUC = 0.545), our study addresses these

limitations by considering the patient as a whole, signifi-

cantly enhancing the predictive precision (AUC = 0.87). Al-

though Wei et al.[31] achieved high predictive accuracy us-

ing deep learning (AUC = 0.82), the “black box” nature of

such models raises concerns about clinical interpretability

and trust.

Recent studies have provided molecular biomarkers, in-

cluding gene mutations[32], gene or miRNA expression lev-

els[33-35], and ctDNA levels[36], to predict responses to

systemic chemotherapy for mCRC. The predictive accuracy

of these molecular biological markers was lower (AUC =

0.79) than that observed in this study (AUC = 0.87). Radi-

omics is based on discovering imaging features not identifi-

able by simple visual analysis or measurements[36], and

three main processes are involved (VOI segmentation, tex-

ture analysis, and model development). Furthermore,

contrast-enhanced CT remains the primary modality for

staging patients with CRC, and no other special examination

is required. Therefore, this method is less burdensome for

patients and more accessible to apply clinically than other

approaches.

In this study, three texture features (“DependenceVari-

ance,” “ClusterShade”, and “RunVariance”) were identified

as predictable textures. These three features are termed

texture-based metrics or second-order statistic features, and

they analyze the spatial relationships between voxels with

similar intensity values[37,38]. This provides information re-

garding the heterogeneity within the lesion[39]. Although

we cannot explain why these three features were particularly

effective for differentiation, previous studies have reported

that texture features related to tumor heterogeneity are

strongly associated with the expression of specific genes,

and it is possible that a similar relationship exists in this

study[40,41]. Additionally, as shown in the scatter plots,

there were no simple relationships between these texture

features, and a non-linear machine learning method, such as

the RF used in this study, appeared to be necessary for pre-

diction.

The results of this study demonstrated that CT radiomics-

based machine learning is useful in predicting responses to

chemotherapy. Future research will be conducted in the fol-

lowing areas. (1) In the palliative setting, the objective re-

sponse rate is not the best indicator of treatment benefits.

The same validation will be performed for survival predic-

tion. (2) We aim to perform the same analysis for each pa-

tient treated with two types of molecular targeted drugs used

in chemotherapy for CRC, including the angiogenesis in-

hibitor bevacizumab and an anti-EGFR antibody, to predict

which molecular target drug is more useful. (3) One of the

challenges in this study was the time-consuming extraction

of liver metastases from pretreatment CT scans using 3D

Slicer software. Automating this process will enable more

objective extraction.

Certain limitations of our study should be acknowledged.

First, the limited sample size and the disparity in the num-

ber of patients between responder and non-responder groups

may reduce the statistical power of our results. Although

this reflects real-world patient outcomes, future studies

should aim for more balanced cohort sizes to enhance the

robustness of the findings. Second, the study’s retrospective

design and inclusion of various doublet chemotherapy regi-

mens prevent the results from providing specific predictions

by treatment regimen. Furthermore, variations in CT equip-

ment and chemotherapy protocols over the study period

(2005-2019) may introduce additional variability. However,

these variations also allow for the generalization of the re-

sults to patients with diverse backgrounds.
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Figure　3.　Importance of three radiomics features.

Three radiomics factors (“DependenceVariance,” “ClusterShade,” and “Run-

Variance”) were extracted by variable selection using SHAP (Sharpley Additive 

exPlanations).

Figure　4.　Machine learning-based CT texture analysis of liver metastases in the training cohort.

a) The AUC of the Support Vector Machine model using all parameters was 0.90.

b) Distribution of each feature in the response and non-response groups.

Table　2.　Best Overall Response.

Objective response
All

Training 

cohort

Validation 

cohort P valuea

N (%) N (%) N (%)

Complete response 1 (1) 1 (1) 0 (0) 0.73

Partial response 90 (60) 68 (61) 22 (22)

Stable disease 43 (29) 30 (27) 13 (13)

Progressive disease 16 (11) 13 (12) 3 (3)

Responder 91 (61) 69 (62) 22 (58) 0.69

Nonresponder 59 (39) 43 (38) 16 (42)

a Based on the χ2 test or the Kruskal–Wallis test when appropriate.

An additional limitation of this study was the manual seg-

mentation of the VOI, which introduced subjectivity and po-

tential bias, despite the investigator’s extensive experience.

The time required also limits the scalability of the protocol
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Figure　5.　Machine learning-based CT texture analysis for liver metastases in the validation cohort.

a) The AUC of the Support Vector Machine model using all parameters was 0.87.

b) Distribution of each feature in the response and non-response groups.

Figure　6.　Representative cases.

Case 1: (a) Pretreatment CT scan showed extensive liver metastasis at the S8 segment. (b) Post-treatment CT scan showed a 

remarkable decrease in liver metastases after systemic chemotherapy. (c) A 3D-CT texture image of a representative liver tu-

mor.

Case 2: (d) Pretreatment CT scan showed liver metastasis at the S2 segment (arrow). (e) A post-treatment CT scan revealed 

that the liver tumor increased in size, and the treatment response was classified as a progressive disease according to the RE-

CIST criteria. (f) A 3D-CT texture image of a representative liver tumor.

to larger clinical settings. Future research should thus focus

on developing and implementing automated segmentation

techniques to improve the objectivity and efficiency of the

procedure.

Our study is the first to demonstrate that machine

learning-based CT texture analysis of liver metastases pre-

dicts responses to systemic chemotherapy in mCRC patients.

Machine learning-based CT texture analysis showed high

predictive accuracy in the validation cohort. This method

may be used to predict chemotherapy efficacy in the future.

Further clinical and technical validation of this texture

analysis is needed to confirm our results.
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