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Compartmental models have emerged as robust computational frameworks and have yielded 
remarkable success in the fight against COVID-19. This study proposes a vaccination-based 
compartmental model for COVID-19 transmission dynamics. The model reflects the specific 
stages of COVID-19 infection and integrates a vaccination strategy, allowing for a comprehensive 
analysis of how vaccination rates influence the disease spread. We fit this model to daily 
confirmed COVID-19 cases in Tennessee, United States of America (USA), from June 4 to 
November 26, 2021, in a Bayesian inference approach using the Hamiltonian Monte Carlo 
(HMC) algorithm. First, excluding vaccination dynamics from the model, we estimated key 
epidemiological parameters like infection, recovery, and disease-induced death rates. This analysis 
yielded a basic reproduction number (𝑅0) of 1.5. Second, we incorporated vaccination dynamics 
and estimated the vaccination rate for three vaccines: 0.0051 per day for both Pfizer and Moderna 
and 0.0059 per day for Janssen. The fitted curves show reductions in the epidemic peak for all 
three vaccines. Pfizer and Moderna vaccines bring the peak down from 8,029 infected cases to 
5,616 infected cases, while the Janssen vaccine reduces it, to 6,493 infected cases. Simulations of 
the model by varying the vaccination rate and vaccine efficacy were performed. A highly effective 
vaccine (95% efficacy) with a daily vaccination rate of 0.006 halved COVID-19 infections, reducing 
cases from 8,029 to around 4,000. The results also show that the model’s prediction accuracy for 
new observations improves with the number of observed data used to train the model.

1. Introduction

Approximately four years after its first identification in Wuhan, China in late December 2019 [1], COVID-19 remains an ongoing 
global crisis affecting different sectors of society. Although the incidence of COVID-19 is decreasing, there is still the threat of emerging 
new waves [2], especially with the parallel spread of several strains of COVID-19 [3]. Therefore, continuing to combat the disease that 
has caused 6,972,152 deaths and 771,407,825 confirmed cases worldwide as of October 19, 2023 [4], is crucial to prevent further 
loss of life and mitigate the impact of the current pandemic.

Compartmental models have emerged as a robust computational framework and have demonstrated remarkable success in the fight 
against COVID-19 disease. These models have been used to understand the dynamics of COVID-19 [5–7], assess intervention strategies 
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[8–10], predict disease outcomes [11–13], estimate resource needs [14–16], evaluate vaccine impact [17–19], allow data analysis 
and surveillance [20–22], and scenario planning [19,23,24]. Despite their particularities, most of these models have adopted the 
Susceptible-Infected-Recovered (SIR) [25] and Susceptible Exposed Infectious Recovered (SEIR) [26] frameworks as their foundation, 
expanding upon them through integrating additional compartments.

In the context of enhancing the understanding of COVID-19 dynamics, various approaches have been explored. For instance, a 
fractional-order compartmental model incorporating asymptomatic and hospitalized populations has improved accuracy in captur-
ing the disease’s dynamics [27]. Another significant contribution to the field is a model that considers both human-to-human and 
environment-to-human transmission, underlining the environment’s critical role in virus spread [28]. The interaction between SARS-
CoV-2 and other infections, such as HBV, has been explored using a co-dynamical model, emphasizing the importance of time-variant 
controls in mitigating dual infections [29].

Understanding the impact of control measures on COVID-19 transmission is crucial for effective outbreak management. A study 
demonstrated the effectiveness of various control measures in preventing disease transmission [30]. Additionally, models focusing 
on COVID-19 dynamics in the presence of comorbidities, like diabetes mellitus, have been developed to identify optimal control 
strategies for disease prevention [31]. Innovative approaches have also been applied to specific regions, such as Hermosillo, Mexico, 
where population movement patterns and local demographics were incorporated into a model using the HMC algorithm to address 
parameter estimation challenges [32].

Modeling studies have extensively investigated the impact of vaccination on controlling COVID-19 outbreaks, especially focusing 
on developing optimal vaccination strategies. Kiem et al. [24] examined vaccine prioritization and the relaxation of control measures, 
stressing the importance of targeting at-risk populations to reduce morbidity and mortality, and pointed out that very high vaccination 
coverage may be required to relax control measures. Additionally, an analysis in [33] assessed multiple vaccination policies using 
different vaccines, achieving significant reductions in severe COVID-19 cases through diverse approaches.

Research by [17] developed policies based on varying vaccine efficacies and immunity periods to minimize the disease burden 
and maintain hospital occupancy below critical levels. Similarly, a dynamic model projected the epidemic trajectory of COVID-19 in 
major US states under different vaccine effectiveness and social distancing scenarios, underscoring the need for high vaccine coverage 
and continued non-pharmaceutical interventions (NPIs) to suppress the epidemic [19].

Herd immunity is identified as fundamental in informing the required immunization coverage to control disease spread and 
protect the population effectively [34]. In their study, [18] assessed the impact of an imperfect vaccine on transmission dynamics of 
COVID-19 in the US, highlighting that combining vaccination with interventions such as face masks and social distancing is crucial 
for achieving herd immunity. Likewise, the study in [35] focused on achieving herd immunity under limited and full vaccine supply 
scenarios, indicating that mass vaccination, efficient post-exposure prophylaxis, and rapid distribution are essential for effective 
outbreak control.

Further studies have explored the evolution of the COVID-19 pandemic through multiple waves, the emergence of new variant 
strains, and the impact of vaccination efforts. Study [3] described the progression through three distinct waves, noting variations in 
disease severity, symptoms, and public attitudes, and emphasized the challenges posed by highly transmissible variants like Delta and 
Omicron, raising concerns about vaccine efficacy and the potential need for annual vaccinations. Parolini et al. [36] also highlighted 
the impact of vaccination campaigns and the dominance of new virus variants in shaping the dynamics of the COVID-19 pandemic 
in Italy, offering insights into effective control strategies.

In building epidemic models, the values of the parameters play a determining role in the reliability of the results provided by 
the model. Thus, the numerical technique for inferring model parameters from infectious disease count data is essential and must 
be chosen carefully to formulate a mathematical model usable in practice. In this context, Bayesian statistical inference [37] has 
received increasing attention from the scientific community because of its capability to accurately estimate numerous parameters, 
even though they are highly correlated.

Over recent years, the Hamiltonian Monte Carlo (HMC) algorithm [38], a robust Markov Chain Monte Carlo (MCMC) method, 
has proven efficient in searching high-dimensional parameter spaces [39]. This method has become a vital tool for fitting epidemic 
models, addressing challenges in parameter estimation and uncertainty quantification [10,21,32,39,40]. During the 2020 COVID-19 
outbreak in Hermosillo, Mexico, HMC was leveraged in a multi-patch epidemic model to tackle these challenges effectively [32]. 
Similarly, Iyaniwura et al. [40] employed HMC to fit an age-structured model to COVID-19 data in British Columbia, demonstrating 
the utility of time-varying contact rates for precise analysis of transmission dynamics.

Furthermore, HMC has been applied in innovative ways to enhance the accuracy of epidemiological parameter estimation. One 
study used HMC to estimate delay distributions in COVID-19 surveillance data, highlighting the necessity of high-resolution data 
[21]. Another study integrated HMC within a semiparametric framework using the rstan package in R to model COVID-19, resulting 
in accurate short-term forecasts for healthcare indicators in Slovenia [10].

Efforts in this field also include the development of tutorials and methodological enhancements to support the effective use 
of HMC in epidemic modeling. A comprehensive tutorial provides an in-depth guide on building, fitting, and diagnosing disease 
transmission models in Stan, underscoring Bayesian modeling’s strength in quantifying uncertainty and incorporating prior knowledge 
[41]. Moreover, a detailed investigation into the application of HMC within Stan software emphasized the trade-off between statistical 
efficiency and computational speed when fitting epidemic models to real outbreak data [42].

In this study, we propose a vaccination-based compartmental model to capture, analyze, and predict the transmission of COVID-19. 
The model reflects individuals’ specific stages of COVID-19 infection and presents a vaccination strategy, allowing for a comprehensive 
analysis of how vaccination rates influence the disease spread. To estimate key epidemiological parameters including infection rates 
2

and 𝑅0, we fit our model to COVID-19 incidence data for Tennessee, USA, using a Bayesian inference approach with the HMC 
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Fig. 1. Schematic illustration of the proposed epidemic model. The total population is partitioned into nine classes: Susceptible 𝑆 , Exposed 𝐸, Symptomatic Infectious 
𝐼𝑆 , Asymptomatic Infectious 𝐼𝐴 , Quarantined 𝐼𝑄 , Hospitalized 𝐼𝐻 , Recovered 𝑅, Deceased 𝐷, and Vaccinated 𝑉 . The four classes 𝐼𝑆 , 𝐼𝐴 , 𝐼𝑄 , and 𝐼𝐻 contribute to 
COVID-19 infection.

algorithm. Our model involves estimating vaccination rates for Pfizer, Moderna, and Janssen vaccines. It analyzes how vaccination 
impacts and potentially controls COVID-19 incidence. Furthermore, the model’s predictive ability for unseen data (new observations) 
increases with the amount of training data (observed days).

Our paper is structured as follows. Section 2 provides the groundwork by formulating an epidemiological model. We then present 
the COVID-19 data used in our analysis (Section 3). Next, Section 4 delves into the model by deriving the basic reproduction number 
(𝑅0). Section 5 outlines the Bayesian inference approach, which allows us to estimate unknown model parameters and generate 
predictions. Section 6 details the calibration process using COVID-19 data and subsequent evaluation of its predictive capabilities. 
Finally, Section 7 summarizes key findings and future directions of our research.

2. Model formulation

To conceive a relatively basic epidemiological model for capturing the dynamics of COVID-19 in a human community, we par-
titioned the overall size of the population of interest at a given time t defined by N(t) into nine classes or compartments. Based 
on the infection state of individuals, these classes are: Susceptible 𝑆(𝑡), Exposed 𝐸(𝑡), Symptomatic Infectious 𝐼𝑆 (𝑡), Asymptomatic 
Infectious 𝐼𝐴(𝑡), Quarantined 𝐼𝑄(𝑡), Hospitalized 𝐼𝐻 (𝑡), Recovered 𝑅(𝑡), Deceased 𝐷(𝑡), and Vaccinated 𝑉 (𝑡). The diagram in Fig. 1
provides a schematic representation of how individuals transition between different classes.

The infection process for COVID-19 is as follows: At the beginning of the outbreak, all individuals are assumed to be equally 
susceptible, and they contract the virus upon contact with an asymptomatic, symptomatic, quarantined, or hospitalized individual. 
The transmission coefficients were 𝛽𝐴𝐼𝐴(𝑡), 𝛽𝑆𝐼𝑆 (𝑡), 𝑚𝑄𝛽𝑆𝐼𝑄(𝑡), and 𝑚𝐻𝛽𝑆𝐼𝐻 (𝑡). 𝛽𝐴 and 𝛽𝑆 indicate the rates of asymptomatic and 
symptomatic infections, respectively. 𝑚𝑄 and 𝑚𝐻 represent the reduction factors of infectivity by a quarantined and hospitalized 
individual, compared with the symptomatic infectious class, and are constrained by 0 < 𝑚𝑄 < 1 and 0 <𝑚𝐻 < 1. Individuals infected 
with the SARS-CoV-2 virus typically experience a time delay before the onset of symptoms. This time delay, referred to as the 
incubation period [43], has an average duration ranging between 5 and 5.2 days, as reported in [43–45]. During this period 

( 1
𝛼

)
, we 

assume that exposed individuals cannot transmit the disease to others. At the end of the incubation period, a fraction 𝜌 of the exposed 
individuals displayed no clinical symptoms and transitioned to the 𝐼𝐴 class. The remaining fraction (1 − 𝜌) develops clinical signs of 
COVID-19 and moves to the 𝐼𝑆 class. Asymptomatic carriers, a major factor in COVID-19 transmission dynamics [46–48], exhibit viral 
loads similar to symptomatic individuals [49]. Compartment 𝐼𝐴 in our model represents these asymptomatic infectious individuals 
who go unreported by authorities. They naturally recover from the illness at a rate of 𝛾𝐴 . Class 𝐼𝑆 encompasses symptomatic infectious 
individuals diagnosed and officially reported by the authorities. Diagnosed cases of COVID-19 may be admitted to the hospital (moved 
to class 𝐼𝐻 ) for treatment and isolation, enter home quarantine (moved to class 𝐼𝑄) to avoid contact with others, naturally recover 
from the disease, or, unfortunately, die from it. Intra-hospital transmission of COVID-19 from patients to visitors or healthcare workers 
is a critical issue in the COVID-19 outbreak owing to imperfect isolation. Thus, we assumed that hospitalized patients are isolated and 
treated but can still transmit the disease to others, with a reduction factor of infectivity 𝑚𝐻 . They recovered from COVID-19 at a rate 
of 𝛾𝐻 or suffered disease-related mortality at a rate of 𝛿𝐻 . Infectious individuals quarantined at home can still spread the disease with 
3

a reduction factor of infectivity 𝑚𝑄. These individuals are monitored, and if their disease condition progresses, they are promptly 
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Table 1

Meanings of the parameters in the epidemic model.

Parameter Interpretation

𝑁 Population size

𝛽𝑆 Rate of infection from symptomatic to susceptible people

𝛽𝐴 Rate of infection from asymptomatic to susceptible people

𝛼 Incubation rate

𝜌 Proportion of asymptomatic individuals

𝛾𝑆 Recovery rate for symptomatic individuals

𝛾𝐴 Recovery rate for asymptomatic individuals

𝛾𝐻 Recovery rate for hospitalized individuals

𝛾𝑄 Recovery rate for quarantined individuals

𝜎𝑆 Rate of transition from symptomatic to hospitalized class

𝜎𝑄 Rate of transition from quarantined to hospitalized class

𝜂 Rate of transition from symptomatic to quarantined class

𝛿𝑆 Disease-induced death rate due to symptomatic class

𝛿𝑄 Disease-induced death rate due to quarantined class

𝛿𝐻 Disease-induced death rate due to hospitalized class

𝜔𝑅 Rate of waning immunity among recovered individuals

𝜔𝑉 Rate of waning immunity among vaccinated individuals

𝜃𝑉 Vaccination rate

𝜉𝑉 Vaccine efficacy

hospitalized at the rate of 𝜎𝑄. They recovered from COVID-19 and died because of it at the rates of 𝛾𝑄 and 𝛿𝑄, respectively. A report 
suggests that natural immunity to SARS-CoV-2 may decline over time [50], increasing the risk of reinfection. Consequently, recovered 
individuals might experience waning immunity and return to a susceptible state at a rate of 𝜔𝑅 . Compartment 𝐷 incorporates those 
who have died from the disease. Because the simulation was limited to a short period, the model did not include the potential effects 
of births and natural deaths on disease transmission.

When formulating the vaccination strategy, the following assumptions are taken into account:

• The only variant under consideration is COVID-19.

• The vaccine is only administered to the susceptible population.

• Given the vaccine’s profile, an individual eligible for vaccination is expected to get one or two doses.

• Only susceptible individuals exhibit the effects of the vaccine.

• The COVID-19 vaccine is administered to the susceptible population at a rate of 𝜃𝑉 .

• The vaccine’s efficacy, denoted by 𝜉𝑉 , is assumed to be imperfect, where 0 < 𝜉𝑉 < 1.

• The likelihood of vaccinated individuals being infected with COVID-19 is possible, with a probability of (1 − 𝜉𝑉 ).
• Vaccinated individuals will experience a reduction in immunity at a rate of 𝜔𝑉 .

• The immunity acquired through vaccination is identical to that achieved through natural infection (𝜔𝑉 = 𝜔𝑅).

Table 1 summarizes the interpretations of the epidemiological parameters applied in the model. The system of ordinary differential 
equations (ODEs) that controls the dynamics of the disease is expressed by Equation (1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

d𝑆(𝑡)
d𝑡 = 𝜔𝑅𝑅(𝑡) +𝜔𝑉 𝑉 (𝑡) − (𝜆+ 𝜃𝑉 )𝑆(𝑡),

d𝐸(𝑡)
d𝑡 = 𝜆𝑆(𝑡) + (1 − 𝜉𝑉 )𝜆𝑉 (𝑡) − 𝛼𝐸(𝑡),

d𝐼𝐴(𝑡)
d𝑡 = 𝜌𝛼𝐸(𝑡) − 𝛾𝐴𝐼𝐴(𝑡),

d𝐼𝑆 (𝑡)
d𝑡 = (1 − 𝜌)𝛼𝐸(𝑡) − (𝛿𝑆 + 𝜎𝑆 + 𝛾𝑆 + 𝜂)𝐼𝑆 (𝑡),

d𝐼𝑄(𝑡)
d𝑡 = 𝜂𝐼𝑆 (𝑡) − (𝛿𝑄 + 𝜎𝑄 + 𝛾𝑄)𝐼𝑄(𝑡),

d𝐼𝐻 (𝑡)
d𝑡 = 𝜎𝑆𝐼𝑆 (𝑡) + 𝜎𝑄𝐼𝑄(𝑡) − (𝛿𝐻 + 𝛾𝐻 )𝐼𝐻 (𝑡),

d𝑅(𝑡)
d𝑡 = 𝛾𝐴𝐼𝐴(𝑡) + 𝛾𝑆𝐼𝑆 (𝑡) + 𝛾𝑄𝐼𝑄(𝑡) + 𝛾𝐻𝐼𝐻 (𝑡) −𝜔𝑅𝑅(𝑡),

d𝐷(𝑡)
d𝑡 = 𝛿𝑆𝐼𝑆 (𝑡) + 𝛿𝑄𝐼𝑄(𝑡) + 𝛿𝐻𝐼𝐻 (𝑡),

d𝑉 (𝑡)
d𝑡 = 𝜃𝑉 𝑆(𝑡) − (𝜔𝑉 + (1 − 𝜉𝑉 )𝜆)𝑉 (𝑡),

(1)

where 𝜆 refers to the force driving infection among susceptible individuals, as defined in Equation (2):

𝜆 =
𝛽𝐴𝐼𝐴(𝑡) + 𝛽𝑆𝐼𝑆 (𝑡) +𝑚𝑄𝛽𝑆𝐼𝑄(𝑡) +𝑚𝐻𝛽𝑆𝐼𝐻 (𝑡)

𝑁(𝑡)
, (2)
4

and N(t), representing the total population at time t, is given in Equation (3) by:
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𝑁(𝑡) = 𝑆(𝑡) +𝐸(𝑡) + 𝐼𝐴(𝑡) + 𝐼𝑆 (𝑡) + 𝐼𝑄(𝑡) + 𝐼𝐻 (𝑡) +𝑅(𝑡) +𝐷(𝑡) + 𝑉 (𝑡). (3)

2.1. Non-negativity and boundedness of the solutions

We assume the model described by Equation (1) starts with the given initial conditions (𝑆(0), 𝐸(0), 𝐼𝐴(0), 𝐼𝑆 (0), 𝐼𝑄(0), 𝐼𝐻 (0), 𝑅(0),
𝐷(0), 𝑉 (0)) ∈ ℝ9

+, where ℝ9
+ = {(𝑋1, … , 𝑋9) | 𝑋𝑖 ≥ 0, 𝑖 = 1, … , 9} denotes the non-negative cone of ℝ9. We demonstrate that all 

solutions to model (1) remain within the non-negative orthant ℝ9
+ , starting from any point within this region [51].

Theorem 1. The model system (1) is bounded in the region ℝ9
+.

Proof. See Appendix A. □

3. Data

This study used state-level time series for daily confirmed COVID-19 cases data publicly accessible via the repository [52] main-

tained by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). Tennessee State in the USA is 
chosen as a case study, with its total population estimated at 6,910,840 inhabitants based on the 2020 US Decennial Census data [53]. 
The model was parameterized on these data over six months, from June 4 to November 26, 2021, with Tennessee’s total population 
size being the key parameter N of the model.

4. Basic reproduction number

The basic reproduction number, 𝑅0, serves as a fundamental epidemiological metric representing the expected number of sec-

ondary infections generated by a single infected individual during the infection period in a population entirely susceptible to the 
disease [54]. 𝑅0 determines whether a pathogen can persist within a population. If 𝑅0 is greater than one, it indicates that each 
infectious individual, on average, is infecting more than one other individual, which suggests that the disease has the potential to 
spread in the population. Conversely, if 𝑅0 is less than one, it means that each infected individual, on average, is infecting less than 
one other individual, indicating that the disease is likely to die out in the population [55]. In the computation of 𝑅0, we excluded 
vaccination dynamics from our model (Equation (1)), as 𝑅0 represents a scenario of complete susceptibility to the disease, assum-

ing no immunity exists in the population [34,56]. The Disease-Free Equilibrium (DFE) state, 𝑋0 = (𝑆0, 𝐸0, 𝐼0
𝐴
, 𝐼0

𝑆
, 𝐼0

𝑄
, 𝐼0

𝐻
, 𝑅0, 𝐷0), 

is obtained by setting the right-hand sides of the equations in the system (1) to zero. When no disease is present in the population 
(𝐼𝐴 = 𝐼𝑆 = 𝐼𝑄 = 𝐼𝐻 = 0), the system leads to the DFE state, as detailed in Equation (4):

𝑋0 = (𝑁(0),0,0,0,0,0,0,0), (4)

where 𝑁(0) is the initial total population size.

The analytical expression of 𝑅0 is determined using the next-generation matrix method, following the notation of Van den Driess-

che and Watmough in [55]. Let 𝑋 = (𝐸, 𝐼𝐴, 𝐼𝑆 , 𝐼𝑄, 𝐼𝐻 )𝑇 be the vector of infected compartments. Then, for each compartment 𝑖
representing infected individuals, the dynamics are given by Equation (5):

�̇�𝑖 = 𝑖(𝑋) − 𝑖(𝑋), (5)

where 𝑖 represents the rate at which new infections arise in compartment 𝑖 and 𝑖 is the rate at which individuals enter or leave 
infected compartments by all other means. From system (1), we derive  and  , such that  = (1, … , 5)𝑇 and  = (1, … , 5)𝑇 , 
respectively, as

 (𝑋) =

⎛⎜⎜⎜⎜⎜⎝

(𝛽𝐴
𝐼𝐴

𝑁
+ 𝛽𝑆

𝐼𝑆

𝑁
+𝑚𝑄𝛽𝑆

𝐼𝑄

𝑁
+𝑚𝐻𝛽𝑆

𝐼𝐻

𝑁
)𝑆

0
0
0
0

⎞⎟⎟⎟⎟⎟⎠
,

and,

(𝑋) =

⎛⎜⎜⎜⎜⎜⎝

𝛼𝐸

𝛾𝐴𝐼𝐴 − 𝜌𝛼𝐸

(𝛿𝑆 + 𝜎𝑆 + 𝛾𝑆 + 𝜂)𝐼𝑆 − (1 − 𝜌)𝛼𝐸
(𝛿𝑄 + 𝜎𝑄 + 𝛾𝑄)𝐼𝑄 − 𝜂𝐼𝑆

(𝛿𝐻 + 𝛾𝐻 )𝐼𝐻 − 𝜎𝑆𝐼𝑆 − 𝜎𝑄𝐼𝑄

⎞⎟⎟⎟⎟⎟⎠
.

5

The Jacobians 𝐹 and 𝑉 of  and  evaluated at the DFE are defined such that
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𝐹 =
[

𝜕𝑖

𝜕𝑋𝑗

]
𝑋=𝑋0

, 𝑉 =
[

𝜕𝑖

𝜕𝑋𝑗

]
𝑋=𝑋0

, with 1 ≤ 𝑖, 𝑗 ≤ 5. That is,

𝐹 =

⎛⎜⎜⎜⎜⎜⎝

0 𝛽𝐴 𝛽𝑆 𝑚𝑄𝛽𝑆 𝑚𝐻𝛽𝑆
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
,

and,

𝑉 =

⎛⎜⎜⎜⎜⎜⎝

𝛼 0 0 0 0
−𝜌𝛼 𝛾𝐴 0 0 0

−(1 − 𝜌)𝛼 0 𝜀1 0 0
0 0 −𝜂 𝜀2 0
0 0 −𝜎𝑆 −𝜎𝑄 𝜀3

⎞⎟⎟⎟⎟⎟⎠
,

where 𝜀1 = 𝛿𝑆 + 𝜎𝑆 + 𝛾𝑆 + 𝜂, 𝜀2 = 𝛿𝑄 + 𝜎𝑄 + 𝛾𝑄 and 𝜀3 = 𝛿𝐻 + 𝛾𝐻 .
The basic reproduction number 𝑅0 is determined as the spectral radius of the next-generation matrix 𝐹𝑉 −1, as defined in Equation 

(6):

𝑅0 = 𝜌(𝐹𝑉 −1). (6)

By performing a straightforward calculation, we find that

𝑉 −1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
𝛼

0 0 0 0
𝜌

𝛾𝐴

1
𝛾𝐴

0 0 0
1−𝜌
𝜀1

0 1
𝜀1

0 0
(1−𝜌)𝜂
𝜀1𝜀2

0 𝜂

𝜀1𝜀2

1
𝜀2

0
(1−𝜌)(𝜎𝑆𝜀2+𝜂𝜎𝑄)

𝜀1𝜀2𝜀3
0 𝜎𝑆𝜀2+𝜂𝜎𝑄

𝜀1𝜀2𝜀3

𝜎𝑄

𝜀2𝜀3

1
𝜀3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

and,

𝐹𝑉 −1 =

⎛⎜⎜⎜⎜⎜⎝

𝑏11 𝑏12 𝑏13 𝑏14 𝑏15
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
,

where,

𝑏11 =
𝜌𝛽𝐴

𝛾𝐴
+

(1 − 𝜌)𝛽𝑆
𝜀1

+
(1 − 𝜌)𝜂𝑚𝑄𝛽𝑆

𝜀1𝜀2
+

(1 − 𝜌)(𝜎𝑆𝜀2 + 𝜂𝜎𝑄)𝑚𝐻𝛽𝑆

𝜀1𝜀2𝜀3
,

𝑏12 =
𝛽𝐴

𝛾𝐴
,

𝑏13 =
𝛽𝑆

𝜀1
+

𝜂𝑚𝑄𝛽𝑆

𝜀1𝜀2
+

(𝜎𝑆𝜀2 + 𝜂𝜎𝑄)𝑚𝐻𝛽𝑆

𝜀1𝜀2𝜀3
,

𝑏14 =
𝑚𝑄𝛽𝑆

𝜀2
+

𝑚𝐻𝛽𝑆𝜎𝑄

𝜀2𝜀3
,

𝑏15 =
𝑚𝐻𝛽𝑆

𝜀3
.

Solving Equation (6) gives Equation (7)

𝑅0 =
𝜌𝛽𝐴

𝛾𝐴
+

(1 − 𝜌)𝛽𝑆
𝜀1

+
(1 − 𝜌)𝜂𝑚𝑄𝛽𝑆

𝜀1𝜀2
+
(
(1 − 𝜌)𝜎𝑆

𝜀1
+

(1 − 𝜌)𝜂𝜎𝑄
𝜀1𝜀2

)
𝑚𝐻𝛽𝑆

𝜀3
. (7)

The Basic reproduction number depicted in Equation (7) can be expressed as the sum of the reproduction numbers associated 
with each infected compartment: 𝑅𝐼𝐴

, 𝑅𝐼𝑆
, 𝑅𝐼𝑄

, and 𝑅𝐼𝐻
. The reproduction number 𝑅𝐼𝐴

is the product of the proportion of exposed 
individuals that transition to the asymptomatic class (𝜌), the infection rate of the asymptomatic individuals (𝛽𝐴), and the average 
duration of infection in the asymptomatic individuals 

( 1
𝛾𝐴

)
. Similarly, the reproduction number 𝑅𝐼𝑆

is the product of the fraction 
of exposed people who survived the incubation time and transitioned to the symptomatic class (1 − 𝜌), the infection rate of the ( )
6

symptomatic individuals (𝛽𝑆 ), and the average duration of infection in the symptomatic clinical status 1
𝜀1

. The reproduction number 
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𝑅𝐼𝑄
is derived as the product of the proportion of symptomatic individuals that move to the quarantined class 

( (1−𝜌)𝜂
𝜀1

)
, the rate at 

which quarantined individuals transmit the disease (𝑚𝑄𝛽𝑆 ), and the average infectious period of the quarantined category 
( 1
𝜀2

)
. 

Finally, the reproduction number 𝑅𝐼𝐻
is given by the sum of the proportions of symptomatic and quarantined individuals who move 

to the hospitalized class 
(
(1−𝜌)𝜎𝑆

𝜀1
+ (1−𝜌)𝜂𝜎𝑄

𝜀1𝜀2

)
multiplied by the rate at which hospitalized individuals transmit the disease (𝑚𝐻𝛽𝑆 ) 

and the average infectious period of the hospitalized people 
( 1
𝜀3

)
.

5. Parameter estimation and predictions

This section addresses a procedure to estimate unknown epidemiological parameters in the ODEs system (1) from COVID-19 
incidence data and generate predictions in a Bayesian inference approach.

5.1. Inference method

We are interested in estimating infection rates 𝛽𝑆 and 𝛽𝐴, recovery rates 𝛾𝑆 , 𝛾𝐴, 𝛾𝐻 , and 𝛾𝑄, disease-induced death rates 𝛿𝑆 , 
𝛿𝑄, and 𝛿𝐻 , and transition rates 𝜎𝑆 , 𝜎𝑄, and 𝜂. Therefore, given the vector Θ = (𝛽𝑆 , 𝛽𝐴, 𝛾𝑆 , 𝛾𝐴, 𝛾𝐻 , 𝛾𝑄, 𝛿𝑆 , 𝛿𝑄, 𝛿𝐻 , 𝜎𝑆 , 𝜎𝑄, 𝜂) 
of unknown parameters, the first step is to define for these parameters prior distributions that capture our prior beliefs about them 
before observing any data. Then, given the observed data 𝑦𝑜𝑏𝑠 = {𝑦𝑜𝑏𝑠

𝑖
} of 𝑦𝑜𝑏𝑠1 , ..., 𝑦𝑜𝑏𝑠

𝑁
points, we apply the Bayes rule [57] using a 

likelihood function to update the priors. The result is a posterior distribution defined by Equation (8)

𝑃 (Θ ∣ 𝑦𝑜𝑏𝑠) = 𝑃 (𝑦𝑜𝑏𝑠 ∣ Θ)𝑃 (Θ)
𝑃 (𝑦𝑜𝑏𝑠)

, (8)

where 𝑃 (𝑦𝑜𝑏𝑠 ∣ Θ) stands for the likelihood function, 𝑃 (Θ) is the prior distribution, 𝑃 (𝑦𝑜𝑏𝑠) denotes the evidence, and 𝑃 (Θ ∣ 𝑦𝑜𝑏𝑠) the 
posterior distribution, also known as target distribution.

In Bayesian inference, the evidence function 𝑃 (𝑦𝑜𝑏𝑠) in Equation (8) is considered fixed and independent of the vector Θ. So, it 
acts like a normalizing constant to ensure that the target/posterior distribution is a valid distribution. Since the normalizing constant 
(also known as the marginal distribution of the data) is independent of the unknown parameters, it can be omitted when writing the 
posterior distribution in Equation (8). In effect, the target distribution becomes proportional to the product of the likelihood function 
and the priors as expressed in Equation (9).

𝑃 (Θ ∣ 𝑦𝑜𝑏𝑠) ∝ 𝑃 (𝑦𝑜𝑏𝑠 ∣ Θ)𝑃 (Θ). (9)

Here, to compute the posterior distribution, we use the HMC algorithm, whose theoretical foundation relies on Hamiltonian 
dynamics [58]. HMC uses gradient calculations to generate efficient samples from the posterior distribution. This property allows 
HMC to be fit for high-dimensional and complex models even if there is a strong correlation among the parameters [42]. So, the 
HMC algorithm converges quickly to a given target distribution, taking a few iterations. However, the HMC’s performance can be 
influenced by the manual tuning of some of its parameters. To overcome this problem, [59] proposed the No-UTurn Sampler (NUTS) 
algorithm. The NUTS algorithm, a type of HMC, automatically tunes its parameters to maximize efficiency and is highly effective in 
exploring complex posterior distributions. It is adopted by Stan software [60], a statistical modeling platform that can be used to 
model compartmental epidemic models [42,41], as the default algorithm for Bayesian inference based on MCMC sampling with the 
HMC algorithm.

5.2. Observation model

Because observed COVID-19 data do not directly correspond to a specific quantity in the deterministic model (1), a likelihood 
function is necessary to link these observations to changes in model compartments. We achieved this by assuming that the daily 
reported incidence of symptomatic infected cases is related to the reported incidence in the model (1) by a negative binomial dis-

tribution defined in Equation (10). The negative binomial distribution is an alternative to the Poisson distribution when modeling 
count data with over-dispersion, where the variance exceeds the mean [7,10,17,41,40]. This flexibility allows us to account for the 
inherent variability and uncertainty in epidemiological data, which often exhibits over-dispersion. While the Poisson distribution is 
typically used for modeling events that occur within a given period, such as infection count data, the negative binomial distribution 
is better suited when there is significant variability beyond what the Poisson distribution can accommodate [61].

𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑜𝑏𝑠
𝑖

∼𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑂𝐷𝐸
𝑖

(Θ), 𝜙), (10)

with 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑂𝐷𝐸
𝑖

(Θ) = (1 − 𝜌)𝛼𝐸𝑖.

In Equation (10), 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑜𝑏𝑠
𝑖

is the observed incidence of infected cases reported on day 𝑖. The corresponding symptomatic 
infection incidence, denoted as 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑂𝐷𝐸

𝑖
(Θ), is produced by the ODEs (1), where Θ is the vector of parameters with values 

yet to be determined. NegBinomial(𝜇, 𝜙) represents the Negative Binomial distribution in which 𝜇 indicates the mean and 𝜙 is the 
7

dispersion parameter. 𝜙 is unknown and needs to be estimated.
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We adopted the parameterization outlined in Gelman et al. [62] for the Negative Binomial distribution and gave its expression by 
Equation (11)

NegBinomial(𝑛|𝜇,𝜙) =(
𝑛+ 𝜇 − 1
𝜇 − 1

)(
𝜙

𝜙+ 1

)𝜇 ( 1
𝜙+ 1

)𝑛

, (11)

where 𝜇 ∈ℝ+, 𝜙 ∈ℝ+, and 𝑛 ∈ ℕ represents the observed number of new infections.

5.3. Prior specification

After determining the likelihood function that models the observed data, we must specify the prior distribution, 𝑃 (Θ), of the set of 
unknown parameters in the vector, Θ = (𝛽𝑆 , 𝛽𝐴, 𝛾𝑆 , 𝛾𝐴, 𝛾𝐻 , 𝛾𝑄, 𝛿𝑆 , 𝛿𝑄, 𝛿𝐻 , 𝜎𝑆 , 𝜎𝑄, 𝜂, 𝜙) which is viewed as random. This allowed 
us to include our pre-existing beliefs about the epidemiological parameters in the model by establishing a prior distribution for each 
quantity in vector Θ, as provided in Equation (12)

𝑃 (Θ) = 𝑃 (𝛽𝑆 )𝑃 (𝛽𝐴)𝑃 (𝛾𝑆 )𝑃 (𝛾𝐴)𝑃 (𝛾𝐻 )𝑃 (𝛾𝑄)𝑃 (𝛿𝑆 )𝑃 (𝛿𝑄)𝑃 (𝛿𝐻 )𝑃 (𝜎𝑆 )𝑃 (𝜎𝑄)𝑃 (𝜂)𝑃 (1∕𝜙). (12)

Previous studies estimated the infection rate from 0.5 to 1.5 𝑑𝑎𝑦−1 [63–65] and found similar viral loads for asymptomatic 
and symptomatic individuals [49]. To ensure positive and reliable estimates for 𝛽𝐴 and 𝛽𝑆 , we choose an informative normal prior 
distribution with a mean of 1 and a standard deviation of 0.2. This prior reflects our belief that these parameters will likely be around 
1, with limited variability. Our model considers recovery for individuals in various states: symptomatic and asymptomatic infectious, 
quarantined, and hospitalized. As reported in [18,66,67], recovery rates for symptomatic and asymptomatic infectious individuals are 
observed to be faster (0.1429 𝑑𝑎𝑦−1) compared to hospitalized and quarantined individuals (0.0714 𝑑𝑎𝑦−

1
). To reflect this finding, 

the recovery rates (𝛾𝑆 and 𝛾𝐴) for the symptomatic/asymptomatic subpopulations are modeled as normally distributed with a mean 
of 0.1429 and a standard deviation of 0.1. Similarly, the recovery rates (𝛾𝐻 and 𝛾𝑄) for hospitalized and quarantined individuals are 
set to follow a normal distribution with a mean of 0.0714 and a standard deviation of 0.01. In this way, we constrain the model to 
generate reliable estimates of recovery rates, all of which will be positive. The disease-induced death rate is estimated to be 0.0016 
𝑑𝑎𝑦−1 in symptomatic individuals, 0.0025 𝑑𝑎𝑦−1 in quarantined individuals [8], and ranges from 0.001 to 0.1 𝑑𝑎𝑦−1 in hospitalized 
patients [63,68]. We then draw 𝛿𝑆 and 𝛿𝑄 from a uniform distribution on the interval (0, 0.004) and 𝛿𝐻 from a uniform distribution 
on the interval (0, 0.04). The transition rate from the quarantined to hospitalized class (𝜎𝑄) is estimated to be 0.14 𝑑𝑎𝑦−1 [68–70]. 
Similarly, the transition rate from symptomatic to hospitalized class (𝜎𝑆 ) ranges from 0.0514 𝑑𝑎𝑦−1 to 0.14 𝑑𝑎𝑦−1 [18,37,69]. For 
the transition from symptomatic to quarantined, the rate (𝜂) is estimated to be 0.1327 𝑑𝑎𝑦−1 [66]. We chose uniform distributions 
for these rates. 𝜎𝑄 is drawn from a uniform distribution of (0.125, 0.166), 𝜎𝑆 from a uniform distribution of (0.06, 0.14), and 𝜂
from a uniform distribution of (0.1, 0.25). This selection of uniform distributions reflects the limited prior information available from 
the literature on the specific distribution of these parameters. This aligns with the established scientific understanding that disease-
induced death rates (𝛿𝑆 , 𝛿𝑄, and 𝛿𝐻 ) and the rates of transition (𝜎𝑄 , 𝜎𝑆 , and 𝜂) are inherently positive. As recommended in [41], 
we specify the prior distribution 𝑃 (1∕𝜙) as an exponential distribution with a scale parameter value of 5 to prevent an excessive 
concentration of prior mass on models exhibiting significant over-dispersion.

5.4. Assessing the model

We conduct posterior predictive checks [41] to evaluate the model’s fit to the observed data. After fitting the model, we leverage 
the estimated posterior distribution 𝑃 (Θ ∣ 𝑦𝑜𝑏𝑠), of the model parameters Θ, to generate simulated predictions (simulated datasets), 
denoted as 𝑦𝑠𝑖𝑚. These simulated datasets represent the outcomes the model would anticipate if it were responsible for generating 
the data. Then, we compare these datasets with the observed data to assess the consistency between model predictions and reality. 
We draw simulated datasets, 𝑦𝑠𝑖𝑚, by following this procedure:

Θ𝑝𝑜𝑠𝑡 ∼ 𝑃 (Θ ∣ 𝑦𝑜𝑏𝑠),

𝑦𝑠𝑖𝑚 ∼ 𝑃 (𝑦𝑜𝑏𝑠 ∣ Θ𝑝𝑜𝑠𝑡).

This procedure samples simulated predictions based on parameter values drawn from the posterior distribution, incorporating 
information from observed data into the parameter estimates.

5.5. Predictions

An essential step in developing epidemic models is model validation, which involves assessing the accuracy and the performance of 
the model to predict future observations. The ability of the model to make predictions is related to the accurate and reliable estimates 
of its parameters. Hence, after estimating the unknown quantity Θ in the model (1), we evaluated the model’s predictive capacity by 
comparing model predictions with the observed data. To generate predictions, we divided the observed data 𝑦𝑜𝑏𝑠 into a training set 
𝑦𝑡𝑟𝑎𝑖𝑛 and test set 𝑦𝑡𝑒𝑠𝑡 such that 𝑦𝑡𝑟𝑎𝑖𝑛 = (𝑦𝑜𝑏𝑠1 , 𝑦𝑜𝑏𝑠2 , ..., 𝑦𝑜𝑏𝑠

𝑛
), and 𝑦𝑡𝑒𝑠𝑡 = (𝑦𝑜𝑏𝑠

𝑛+1, 𝑦
𝑜𝑏𝑠
𝑛+2, ..., 𝑦

𝑜𝑏𝑠
𝑁

), with n representing the size of the training 
set and N the number of observations. Next, we apply a fit-and-predict approach built-in Stan [71]. In this approach, the predictive 
8

model is encapsulated within the generated quantities block of the Stan program. This block is where we specify the quantities of 
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Table 2

Predetermined parameter values in the system of equation (1).

Parameter Mean value 95% Confidence Interval (CI) Source

𝛼 0.1923 𝑑𝑎𝑦−1 [0.1429, 0.2439] [43–45]

𝜌 0.1790 [0.1550, 0.2020] [46–48]

𝜔𝑅 0.0050 𝑑𝑎𝑦−1 - Assumed

𝑚𝐻 0.01 - Assumed

𝑚𝑄 0.1 - Assumed

interest generated based on the parameters estimated by the model. By placing the predictive model within this block, we ensure 
that predictions are made based on the posterior distribution of parameters obtained from the fitted model. When new predictions 
are required, the entire model-fitting process is repeated. This involves re-estimating model parameters using the updated dataset, 
which includes any new observations that have become available. This iterative process ensures that the model remains current and 
that predictions are based on the most recent data.

6. MCMC simulations and results

This section focuses on fitting the proposed epidemic model (Equation (1)) to incidence data under two scenarios. The first scenario 
explores the model’s behavior without vaccination, while the second scenario incorporates vaccination dynamics. We further evaluate 
the model’s ability to generate predictions for new observations.

6.1. Model fitting without vaccination

We fit the vaccination-free version of our deterministic compartmental model (1)
(
𝜃𝑉 = 0 𝑎𝑛𝑑 𝑉 (0) = 0

)
to the daily confirmed 

cases of COVID-19 in the State of Tennessee from June 4 to November 26, 2021, to estimate its unknown parameters Θ. The other 
parameters in the model (1) are obtained from existing literature on COVID-19. The mean incubation period of COVID-19 ranges 
between 5 and 5.2 days [43–45]. We take the base value as 𝛼 = 0.1923 𝑑𝑎𝑦−1 (95% confidence interval (CI), 0.1429 to 0.2439). The 
estimated proportion of asymptomatic individuals in all infected cases with SARS-CoV-2 ranges between 0.1572 and 0.308 [46–48]. 
We set the base value as 𝜌 = 0.1790 (95% credible interval (CrI): 0.155 to 0.202). As reported in [50], reinfections are prompting 
inquiries regarding long-term immunity to COVID-19 and its implications for vaccine development. We assumed waning immunity 
among recovered individuals at 183 days (𝜔−1

𝑅
= 183). Given that the reduction factors of infectivity, 𝑚𝐻 and 𝑚𝑄, must be strictly 

between 0 and 1, we have chosen 𝑚𝐻 = 0.01 and 𝑚𝑄 = 0.1 to illustrate a specific scenario in our simulations. These values represent 
the significant decrease in transmission from hospitalization (𝑚𝐻 ) and the moderate reduction from quarantine (𝑚𝑄). Table 2 lists 
the fixed and assumed parameters of our model. We also set initial conditions for the state variables as follows: 𝐸(0) = 35, 870, 
𝐼𝐴(0) = 2, 701, 𝐼𝑆 (0) = 15, 890, 𝐼𝑄(0) = 18, 905, 𝐼𝐻 (0) = 28, 686, 𝑅(0) = 30, 417, 𝐷(0) = 11, 372, and 𝑆(0) = (𝑁 − 𝐸(0) − 𝐼𝐴(0) −
𝐼𝑆 (0) − 𝐼𝑄(0) − 𝐼𝐻 (0) −𝑅(0) −𝐷(0)). Here, N refers to the Tennessee population size as is given in Section 3.

We employ the NUTS algorithm based on the RStan package [71] in R software version 4.3.1 to draw samples. In the settings 
of NUTS, we set the number of parallel chains to four, the number of iterations per chain to 2000, and the number of iterations 
to discard per chain (warm-up) to 1000. For each estimated parameter and the associated function, Basic reproduction number 𝑅0 , 
4000 samples were obtained (1000 sample draws per chain). These samples are utilized in computing summary statistics for the fitted 
parameters, including posterior mean, standard deviation, quantiles, effective sample size (𝑛𝑒𝑓𝑓 ), and �̂� statistics to assess the MCMC 
chains.

To gauge if our inference is reliable, we first provide in Table 3 a summary of statistical metrics of the fitted quantities. Next, 
we examine the central posterior uncertainty intervals (Figs. 2 and 3), marginal posterior densities (Fig. 4), and trace plots (Fig. 5) 
for parameters of interest. As shown in Table 3, the �̂� value is close to 1 for all parameters, indicating good convergence of the 
MCMC chains. In addition, the effective sample sizes for all sampled parameters were high, with the parameter 𝜂 having the lowest 
number of effective samples at 3168, a value still regarded as high. This indicates that the MCMC chains have successfully explored the 
posterior distribution. The NUTS algorithm uses the �̂� statistics and 𝑛𝑒𝑓𝑓 as diagnostic tools to assess the quality of the MCMC samples 
generated by the algorithm [41,72]. �̂� with values close to 1 indicates the convergence of parallel chains, and higher values of 𝑛𝑒𝑓𝑓
(over 100) signify more informative samples [73]. Figs. 2 and 3 show that the parameters have narrow intervals for central posterior 
uncertainty with �̂� near 1 (�̂� ⩽ 1.05). In Fig. 4, we observe that the four parallel Markov chains for each parameter distribution, 
ignoring the influence of other parameters, are overlapped, confirming that the MCMC chains converge. The mixing and agreement 
of the Markov chains can also be seen in the traceplots, as presented in Fig. 5.

After evaluating the inference, we assess model fit using posterior predictive checks (Section 5.4), and we provide the result in 
Fig. 6. This assessment involves generating simulated predictions for daily confirmed cases and plotting the constructed curve with 
uncertainty measures, 50% and 97.5% credible intervals (CrI) (Fig. 6(a)). Using the estimated parameters, we present in Fig. 6(b) the 
fitted curve for confirmed cases from model (1) with 97.5% CrI.

Fig. 6(a) shows a good fit between the observed incidence data (black dots) and the posterior median of the simulated predictions 
(solid blue line). The model uncertainty, visualized by the credible intervals (CrIs), captures the structure of the variability in the data. 
9

The dark blue shaded area represents the 50% CrI and encompasses the most likely range of predictions. The wider light blue shaded 
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Table 3

Estimates of the model parameters in the absence of vaccination dynamics.

Parameter Posterior mean Standard deviation Quantile 2.5% Quantile 97.5% 𝑛𝑒𝑓𝑓 �̂� Source

𝛽𝑆 0.7161 𝑑𝑎𝑦−1 0.1138 0.5016 0.9389 6128 0.9996 Fitted

𝛽𝐴 1.2446 𝑑𝑎𝑦−1 0.2104 0.8341 1.6524 5166 0.9995 Fitted

𝛾𝑆 0.3712 𝑑𝑎𝑦−1 0.0850 0.2084 0.5403 3807 0.9993 Fitted

𝛾𝐴 0.4157 𝑑𝑎𝑦−1 0.0633 0.3040 0.5504 6378 1.0002 Fitted

𝛾𝐻 0.0724 𝑑𝑎𝑦−1 0.0102 0.0518 0.0929 6458 0.9995 Fitted

𝛾𝑄 0.0725 𝑑𝑎𝑦−1 0.0100 0.0525 0.0921 6396 0.9995 Fitted

𝛿𝑆 0.0020 𝑑𝑎𝑦−1 0.0012 0.0001 0.0039 5336 0.9991 Fitted

𝛿𝑄 0.0020 𝑑𝑎𝑦−1 0.0012 0.0001 0.0039 5135 0.9994 Fitted

𝛿𝐻 0.0125 𝑑𝑎𝑦−1 0.0103 0.0004 0.0370 4376 0.9995 Fitted

𝜎𝑆 0.1140 𝑑𝑎𝑦−1 0.0207 0.0714 0.1419 4930 1.0008 Fitted

𝜎𝑄 0.1475 𝑑𝑎𝑦−1 0.0120 0.1265 0.1659 5297 0.9993 Fitted

𝜂 0.2013 𝑑𝑎𝑦−1 0.0374 0.1150 0.2483 3168 1.0001 Fitted

1∕𝜙 0.2559 0.0262 0.2097 0.3113 5265 0.9996 Fitted

𝜙 3.9489 0.4012 3.2123 4.7676 6143 0.9995 Fitted

Fig. 2. The plot depicts the median estimates and their credible intervals for parameters 𝛽𝑆 (beta_S), 𝛽𝐴 (beta_A), 𝛾𝑆 (gamma_S), and 𝛾𝐴 (gamma_A). The color scheme 
corresponds to the �̂� value for each parameter. A long, thin blue line signifies the 90% credible interval, while the short, thick blue line represents the 50% credible 
interval. The large, shaded blue circle denotes the median estimate of the parameter.

Fig. 3. The plot depicts the median estimates and their credible intervals for parameters 𝛾𝐻 (gamma_H), 𝛾𝑄 (gamma_Q), 𝛿𝑆 (delta_S), 𝛿𝑄 (delta_Q), 𝛿𝐻 (delta_H), 𝜎𝑆
(sigma_S), 𝜎𝑄 (sigma_Q), 𝜂 (eta), and 1∕𝜙 (phi_inv). The color scheme corresponds to the �̂� value for each parameter. A long, thin blue line signifies the 90% credible 
interval, while the short, thick blue line represents the 50% credible interval. The large, shaded blue circle denotes the median estimate of the parameter.

area represents the 97.5% CrI, highlighting the broader range of possible outcomes considering the model’s uncertainty. Similarly, 
Fig. 6(b) depicts a satisfactory fit between the model estimation (solid blue line) and the observed data points. Likewise, the model 
uncertainty is represented by the 97.5% CrI (light blue shaded area), accounting for the variability observed in the data. Hence, using 
the HMC algorithm, our epidemiological model produces the COVID-19 incidence in Tennessee State.

Table 3 shows that the estimated infection rates, 𝛽𝑆 and 𝛽𝐴, are 0.716 and 1.244 𝑑𝑎𝑦𝑠−1, respectively. These values align with the 
range of 0.5–1.5 𝑑𝑎𝑦𝑠−1 supported by [63–65]. Furthermore, the estimated values for 𝛽𝑆 and 𝛽𝐴 suggest that the effective contact 
rate for asymptomatic individuals (𝛽𝐴) is higher than that of symptomatic individuals (𝛽𝑆 ). This result emphasizes the importance 
10

of asymptomatic carriers as the main contributors to the COVID-19 pandemic in Tennessee. However, a study [49] estimated the 
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Fig. 4. Marginal posterior densities plot for parameters 𝛽𝑆 , 𝛽𝐴 , 𝛾𝑆 , 𝛾𝐴 , 𝛾𝐻 , 𝛾𝑄 , 𝛿𝑆 , 𝛿𝑄 , 𝛿𝐻 , 𝜎𝑆 , 𝜎𝑄 , 𝜂, 1∕𝜙, 𝜙, and lp__ (log-posterior). A line depicts a Markov chain.

Fig. 5. Trace plots for parameters 𝛽𝑆 , 𝛽𝐴 , 𝛾𝑆 , 𝛾𝐴 , 𝛾𝐻 , 𝛾𝑄 , 𝛿𝑆 , 𝛿𝑄 , 𝛿𝐻 , 𝜎𝑆 , 𝜎𝑄 , 𝜂, 1∕𝜙, 𝜙, and lp__ (log-posterior) indicating the value for each MCMC chain at every 
11

iteration during the stationary phase (excluding the warm-up period). A line depicts a Markov chain.
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Fig. 6. Model (1) fitted in the absence of vaccination to daily COVID-19 confirmed cases (black dots) from June 4 to November 26, 2021. (a) Posterior predictive 
check for COVID-19 incidence. The solid blue line represents the median posterior, the dark blue shaded area represents the 50% credible interval (CrI), and the light 
blue shaded area indicates the 97.5% CrI. (b) The solid blue line shows the model estimation and the light blue shaded area illustrates the corresponding 97.5% CrI.

Fig. 7. Trace plot and posterior distribution of the Basic reproduction number. (a) Trace plot indicating the value of each MCMC chain at each iteration of the stationary 
phase. (b) Posterior distribution with median and 95% interval.

viral load of COVID-19 to be similar for both asymptomatic and symptomatic persons. Thus, we can explain the high probability of 
COVID-19 transmission by asymptomatic individuals as follows. First, because asymptomatic carriers do not show clinical signs, they 
may be unaware that they have the virus and are infectious. Therefore, they inadvertently transmit the virus. Second, asymptomatic 
individuals are likely to continue their normal activities, including social interactions, with no precautions taken. This behavior can 
lead to increased contact with others and a greater likelihood of transmission. Finally, asymptomatic individuals are less likely to be 
diagnosed unless they have had direct contact with a confirmed case or through targeted screening. This delay in diagnosis allows 
asymptomatic carriers more time to spread the virus unknowingly. The average recovery rates for hospitalized (𝛾𝐻 ) and quarantined 
(𝛾𝑄) individuals are 0.0724 and 0.0725 𝑑𝑎𝑦𝑠−1, respectively, consistent with the findings of [18,66,67]. The average recovery rates 
for symptomatic (𝛾𝑆 ) and asymptomatic (𝛾𝑄) individuals are estimated to be around 0.37 𝑑𝑎𝑦𝑠−1, which is faster than those reported 
in [18,66,67]. Disease-induced death rates are estimated to be relatively low, ranging from 0.002 𝑑𝑎𝑦−1 for symptomatic infectious 
and quarantined individuals to 0.0125 𝑑𝑎𝑦−1 for hospitalized individuals. These estimates support the findings reported in [8] for 
symptomatic infectious and quarantined individuals, and in [63,68] for hospitalized individuals. Our estimates for transition rates 
align with previous studies: 0.1475 𝑑𝑎𝑦−1 from quarantined to hospitalized and 0.1140 𝑑𝑎𝑦−1 from symptomatic to hospitalized 
[18,37,69,68,70]. However, the estimated transition rate from symptomatic to quarantined (0.2013 𝑑𝑎𝑦−1) is higher than the value 
reported in [66].

We estimated the basic reproduction number (𝑅0) by incorporating Equation (7) into the block of generated quantities within 
the Stan program. The mean of 𝑅0 , as estimated from the observed data, was 1.5 (97.5% credible interval (CrI): 1.46–1.56). Fig. 7
displays both the trace plot and the posterior distribution of 𝑅0 . Specifically, Fig. 7(a) demonstrates the mixing and convergence of 
the MCMC chains, whereas Fig. 7(b) illustrates the posterior distribution of 𝑅0 with a median estimate of 1.5. Our estimated value 
of 𝑅0 (approximately 1.5) aligns closely with early estimates from other studies conducted in Tennessee. For instance, [27] reported 
an 𝑅0 of 1.0343, while [28] estimated 𝑅0 at 1.791 in Hamilton County, Tennessee. The observed discrepancies may be due to the 
difference in model assumptions and structures.

6.2. Model fitting with vaccination

Throughout this section, we fit the model in Equation (1) to COVID-19 confirmed cases on incidence, from June 4 to November 
26, 2021, by accounting for vaccination 

(
𝜃𝑉 ≠ 0 𝑎𝑛𝑑 𝑉 (0) ≠ 0

)
. To implement a vaccination strategy, we examined three COVID-19 

vaccines: Pfizer-BioNTech with 95% efficacy [74], Moderna with 94.5% efficacy [74], and Janssen with 67% efficacy [75]. These 
vaccines have received emergency use authorization from the Food and Drug Administration (FDA) in Tennessee State [76]. Our 
primary objective is to estimate the vaccination rate from the data for each of the three COVID-19 vaccines. Following the same 
12

procedure described above, the model was calibrated separately for each vaccine efficacy. We inform the prior distribution for 𝜃𝑉
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Table 4

Mean vaccination rate estimates for each COVID-19 vaccine.

𝜃𝑉 mean Standard deviation Quantile 2.5% median Quantile 97.5% 𝑛𝑒𝑓𝑓 �̂� Source

Pfizer 0.0051 0.0009 0.0034 0.0051 0.0068 3129 0.9993 Fitted

Moderna 0.0051 0.0009 0.0034 0.0051 0.0069 3492 0.9999 Fitted

Janssen 0.0059 0.0018 0.0025 0.0059 0.0095 3356 0.9997 Fitted

Fig. 8. Trace plot and posterior distribution of the parameter 𝜃𝑉 (or theta_V) when we use the Pfizer COVID-19 Vaccine. (a) Trace plot indicating the value of each 
MCMC chain at each iteration with the grey area showing the warm-up phase. (b) Posterior distribution with median and 95% interval.

Fig. 9. Trace plot and posterior distribution of the parameter 𝜃𝑉 (or theta_V) when we use the Moderna COVID-19 Vaccine. (a) Trace plot indicating the value of each 
MCMC chain at each iteration with the grey area showing the warm-up phase. (b) Posterior distribution with median and 95% interval.

Fig. 10. Trace plot and posterior distribution of the parameter 𝜃𝑉 (or theta_V) when we use the Janssen COVID-19 Vaccine. (a) Trace plot indicating the value of each 
MCMC chain at each iteration with the grey area showing the warm-up phase. (b) Posterior distribution with median and 95% interval.

(vaccination rate) from the literature. A previous study [27] estimated the Pfizer, Moderna, and Janssen vaccine vaccination rates to 
be 0.0059 𝑑𝑎𝑦−1, 0.0042 𝑑𝑎𝑦−1, and 0.0059 𝑑𝑎𝑦−1, respectively. Another study [17] suggested a wider range of 0 to 0.009 𝑑𝑎𝑦−1 for 
the vaccination rate. Given this information, we choose a uniform distribution for 𝜃𝑉 , with a lower bound of 0.002 𝑑𝑎𝑦−1 and an upper 
bound of 0.01 𝑑𝑎𝑦−1

(
𝜃𝑉 ∼𝑈 (0.002, 0.01)

)
. The initial number of vaccinated individuals was set to 25,460. That is, 𝑉 (0) = 25, 460.

Our estimates reveal a mean vaccination rate of 0.0051 𝑑𝑎𝑦−1 for both the Pfizer and Moderna vaccines, while the Janssen vaccine 
showed a slightly higher rate of 0.0059 𝑑𝑎𝑦−1 (see Table 4). Figs. 8, 9, and 10 present the trace plots and posterior distributions with 
median values and 95% credible intervals for the vaccination rates of the three vaccines. From Figs. 8(a), 9(a), and 10(a), we observe 
the mixing and convergence of the MCMC chains, even during the warm-up phase, for the vaccination rates of all three vaccines. 
Figs. 8(b), 9(b), and 10(b) illustrate the posterior distributions of the vaccination rates, with a median estimate of 0.0051 for both 
the Pfizer and Moderna vaccines and 0.0059 for the Janssen vaccine. The estimated values make scientific sense. First, because the 
Moderna vaccine has efficacy in the same order as the Pfizer vaccine, we obtain a similar estimate of the vaccination rate for both 
vaccines. Second, as expected [17,35], the vaccination rate for Janssen’s vaccine is higher than for Pfizer’s and Moderna’s vaccines. 
13

Model fitting for all three vaccines yields approximately the same estimated values for the other parameters.
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Fig. 11. Model (1) with vaccination dynamics fitted to daily COVID-19 confirmed cases (black dots) from June 4 to November 26, 2021, using the Pfizer-BioNTech 
COVID-19 Vaccine. (a) Posterior predictive check for COVID-19 incidence. The solid blue line represents the median posterior, the dark blue shaded area represents 
the 50% credible interval (CrI), and the light blue shaded area indicates the 97.5% CrI. (b) The solid blue line shows the model estimation and the light blue shaded 
area illustrates the corresponding 97.5% CrI.

Fig. 12. Model (1) with vaccination dynamics fitted to daily COVID-19 confirmed cases (black dots) from June 4 to November 26, 2021, using the Janssen COVID-19 
Vaccine. (a) Posterior predictive check for COVID-19 incidence. The solid blue line represents the median posterior, the dark blue shaded area represents the 50%
credible interval (CrI), and the light blue shaded area indicates the 97.5% CrI. (b) The solid blue line shows the model estimation and the light blue shaded area 
illustrates the corresponding 97.5% CrI.

Calibration of the model using the efficacy of the Pfizer and Moderna vaccines produced a similar fit curve, so we present only the 
fit for Pfizer in Fig. 11. Fig. 12 shows the fit for the Janssen vaccine. Figs. 11(a) and 12(a) display a good fit between the observed 
incidence data (black dots) and the posterior median of the simulated predictions (solid blue line). The model’s uncertainty is captured 
by the credible intervals (CrIs), with the dark blue shaded area representing the 50% CrI and the light blue shaded area illustrating 
the 97.5% CrI, reflecting the range of likely outcomes based on the model. By comparing Figs. 6(b), 11(b), and 12(b), there was a 
reduction in the epidemic peak, from 8,029 infected cases on August 30 (Fig. 6(b)) to 5,616 on August 30 (Fig. 11(b)) and 6,493 
on August 30 (Fig. 12(b)). Thus, a decrease in the number of daily cases of infection is observed when a vaccination strategy is 
implemented.

To explain the effects of vaccination on the incidence of COVID-19, we simulated our model (1) using the estimated parameter 
values in Table 3, the fixed parameter values in Table 2, and the initial conditions mentioned previously from June 4 to November 
26, 2021. To do this, we first set the vaccine efficacy to that of the Pfizer vaccine (𝜉𝑉 = 0.95) and varied the vaccination rate. Next, 
we kept the vaccination rate at 0.0051 𝑑𝑎𝑦−1 and varied the vaccine efficacy. Fig. 13 shows the numerical simulations. Fig. 13(a) 
shows that increasing the vaccination rate by maintaining vaccine effectiveness at 0.95 reduces the number of daily infections and 
flattens the epidemic curve. Likewise, Fig. 13(b) shows that adopting highly effective vaccines decreases the incidence but not as 
much as when increasing vaccination rate. Therefore, the effectiveness of a vaccination strategy in reducing COVID-19 incidence 
depends on the vaccine uptake or vaccination rate and the vaccine efficacy. It also depends on other factors, such as vaccination 
coverage [17–19] and the characteristics of the disease itself [3,24].

Overall, a vaccination strategy intends to reduce disease incidence in a population by increasing the proportion of individuals 
who are immune to the disease. Vaccinating a large proportion of the population reduces the spread of the disease and, ultimately, 
the incidence of new cases. The success of a vaccination strategy can be assessed by monitoring changes in incidence over time.

6.3. Model prediction

Considering the vaccination-free version of our model and the data of Tennessee State, from June 4 to November 26, 2021, we 
explore four distinct scenarios with the size of training set 𝑛 ∈ {52, 88, 123, 158}. So, the training set includes 30%, 50%, 70%, and 
14

90% of the observations 𝑦𝑜𝑏𝑠, respectively. In Fig. 14, we present the prediction results for the four scenarios.
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Fig. 13. Effect of vaccination on the incidence behavior of COVID-19. (a) Evolution of daily confirmed cases with the vaccination rate by keeping constant the vaccine 
efficacy to 95%. (b) progression of daily confirmed cases with vaccine efficacy by holding the vaccination rate at 0.0051 𝑑𝑎𝑦−1.

Fig. 14. Predictions for Tennessee are generated using training data of 52, 88, 123, or 158 days. The solid blue curve represents the model trained to real data (black 
dots). The solid green curve depicts the predicted daily confirmed COVID-19 cases. The light blue and green shaded areas illustrate the 97.5% credible interval (CrI) 
for model training and prediction. The vertical dashed red line indicates the starting prediction date.

When we train the model with only 30% of observations (52 days, June 4 to July 25, 2021), we see from Fig. 14(a) that the 
prediction uncertainty (green area) is wide and doesn’t match the shape of the data before and after observing the inflection point of 
the outbreak. In addition, the predicted curve (solid green line) underestimates the observed data from the July 26-August 31 period 
and overestimates the observed data for the latter period. However, from Fig. 14(b), increasing the training data from 30% to 50%
of the observations (88 days, June 4 to August 30, 2021) improves the model’s predictive performance. Indeed, from this Figure, we 
observe that the predicted curve roughly predicts the epidemic peak, and the prediction uncertainty decreases and captures the shape 
of the new data after the inflection point. From Fig. 14(c), by augmenting training data to 70% of observations (123 days, June 4 
to October 4, 2021), we find that the prediction uncertainty becomes narrow, and the model predictions improve considerably. In 
Fig. 14(d), training the model on 90% of the observed data (158 days, June 4 to November 8, 2021) shows that the model accurately 
generates predictions in new data. So, the model prediction line is approximately close to the fitted curve in Fig. 6(b).

In summary, predictions for new observations are generated using Stan’s fit-predict approach. Our analysis demonstrates that the 
quality of these predictions is closely related to the number of observed days used to train the model. As the size of the training 
dataset increases, the prediction accuracy improves, evidenced by a reduction in bias and more precise estimates. This is illustrated 
15

in Fig. 14(c, d), where larger training sets lead to better alignment between predicted and observed data. Additionally, our posterior 
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predictive checks confirm that the credible intervals realistically capture the variability in the data, maintaining that the reduction 
in uncertainty remains well-calibrated and not attributed to overfitting. This approach can guide public health decision-making by 
providing insights into the trajectory of COVID-19 transmission. Besides, the model can be leveraged for further analyses to assess the 
impact of various non-pharmaceutical interventions (NPIs) such as social distancing, mask-wearing, and lockdowns. This capability 
can also be extended to evaluate the effectiveness of different vaccination coverage levels. By combining these NPIs with vaccination 
programs, the model can inform the development of optimal control strategies for COVID-19.

7. Conclusions

In this work, we introduced a vaccination-based compartmental model to capture, analyze, and predict the transmission of COVID-

19. The model represents different stages of COVID-19 infection and includes a vaccination strategy, enabling a thorough analysis 
of the influence of vaccination rates on the spread of the disease. This model was calibrated using daily confirmed COVID-19 cases 
in Tennessee, USA, from June 4 to November 26, 2021. A Bayesian inference framework with the HMC algorithm was employed to 
explore the posterior distribution of model parameters.

We presented results from two scenarios. In the first scenario, we fit the model (Equation (1)) from June 4 to November 26, 2021, 
excluding vaccination, to estimate the epidemiological parameters such as infection, recovery, and disease-induced death rates. 
During this period, the Tennessee population was undergoing a vaccination campaign. Although the model in this scenario does 
not explicitly account for vaccination, the effects of vaccination are inherently reflected in the data. Vaccination efforts reduce the 
number of susceptible individuals, affecting disease transmission by limiting the number of effective contacts between infected and 
susceptible individuals [56]. Consequently, the estimates of the underlying epidemiological parameters can be modified, potentially 
leading to a bias in capturing the true dynamics of an unvaccinated population.

In the second scenario, we incorporated vaccination dynamics into the model (Equation (1)) and estimated the vaccination rate 
for each vaccine type: Pfizer, Moderna, and Janssen. These estimates are 0.0051 per day for both the Pfizer and Moderna vaccines 
and 0.0059 per day for the Janssen vaccine. The fitted curves for these vaccines all show reductions in the epidemic peak. Pfizer and 
Moderna vaccines achieved a greater reduction, bringing the peak down from 8,029 infected cases to 5,616 infected cases, while the 
Janssen vaccine reduced it, to 6,493 infected cases.

We assessed the impact of vaccination on epidemic control through simulations. Fixing vaccine efficacy at 95% and varying the 
vaccination rate from 0.006 to 0.01 𝑑𝑎𝑦𝑠−1 reduces daily infections and flattens the epidemic curve. Likewise, with the vaccination 
rate fixed at 0.0051 𝑑𝑎𝑦𝑠−1, varying vaccine efficacy from 67% to 95% decreases the incidence, but not as much as when increasing 
the vaccination rate. These simulations suggest that a highly effective vaccine provides a strong foundation for reducing infections, 
but achieving a high vaccination rate is also crucial to maximize the impact.

We evaluated our model’s ability to predict unseen data (new observations). The amount of training data directly impacts the 
accuracy of these predictions. As the training data increases, the model’s predictive accuracy improves for future cases.

The model’s basic reproduction number (𝑅0) was estimated from the fitting to be 1.5, implying that an infected individual will, 
on average, transmit the infection to 1.5 other people in a completely susceptible population. This indicates moderate COVID-19 
transmissibility, highlighting the need for vigilance and interventions like vaccination to curb the spread and prevent outbreaks. Our 
findings further emphasize this, showing that Pfizer and Moderna vaccines significantly reduce infections. Combining vaccination 
with NPIs like social distancing, mask-wearing, and lockdowns can strategically form optimal control strategies for COVID-19.

Although this framework is particularly suitable for capturing COVID-19 spread in homogeneous populations, real-world com-

munities are more complex due to heterogeneous factors like age, disease severity, and health status. In future work, we will extend 
our model to incorporate age stratification, allowing us to explore COVID-19 dynamics in diverse community settings. This approach 
will leverage datasets from the Tennessee Department of Health [77], which provide comprehensive data on confirmed cases, testing, 
deaths, hospitalizations, and vaccinations, as well as trends over time and demographic breakdowns. By utilizing this wealth of infor-

mation, we aim to tailor strategies that target high-risk groups more effectively and maximize the impact of vaccination campaigns 
on reducing transmission and mortality rates. This targeted approach will enable us to optimize vaccination programs and improve 
public health outcomes across various population segments.

In addition to enhancing our model’s ability to capture population heterogeneity, future research will also focus on establishing 
a robust mathematical foundation by conducting a well-posedness analysis. This will involve proving the existence of a unique 
solution that changes continuously with the variations in the data. Furthermore, we will perform a stability analysis to understand 
the model’s long-term behavior under varying conditions. By addressing these aspects, we aim to strengthen the model’s reliability 
and applicability, ultimately improving its capacity to predict the impact of vaccination strategies on COVID-19 transmission and 
contributing to more effective public health interventions.
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Appendix A

Proof of Theorem 1. By re-writing the model system (1), we obtain

𝑑𝑋

𝑑𝑡
= 𝐹 (𝑡,𝑋), 𝑋(0) =𝑋0 ≥ 0,

where,

𝑋(𝑡) = (𝑆(𝑡),𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼𝑆 (𝑡), 𝐼𝑄(𝑡), 𝐼𝐻 (𝑡),𝑅(𝑡),𝐷(𝑡), 𝑉 (𝑡))𝑇 ,

𝐹 (𝑡,𝑋) =
(
𝐹1(𝑡,𝑋),… , 𝐹9(𝑡,𝑋)

)𝑇
.

𝐹 (𝑡, 𝑋) is defined for all 𝑡 ≥ 0, 𝑋 ∈ℝ9
+, with

𝐹1(𝑡,𝑋) = 𝜔𝑅𝑅(𝑡) +𝜔𝑉 𝑉 (𝑡) − (𝜆+ 𝜃𝑉 )𝑆(𝑡),

𝐹2(𝑡,𝑋) = 𝜆𝑆(𝑡) + (1 − 𝜉𝑉 )𝜆𝑉 (𝑡) − 𝛼𝐸(𝑡),

……………………………

𝐹9(𝑡,𝑋) = 𝜃𝑉 𝑆(𝑡) − (𝜔𝑉 + (1 − 𝜉𝑉 )𝜆)𝑉 (𝑡).

We note that

𝑑𝑆

𝑑𝑡

||||𝑆=0 = 𝜔𝑅𝑅(𝑡) +𝜔𝑉 𝑉 (𝑡) ≥ 0,

𝑑𝐸

𝑑𝑡

||||𝐸=0
= 𝜆𝑆(𝑡) + (1 − 𝜉𝑉 )𝜆𝑉 (𝑡) ≥ 0,

𝑑𝐼𝐴

𝑑𝑡

||||𝐼𝐴=0 = 𝜌𝛼𝐸(𝑡) ≥ 0,

𝑑𝐼𝑠

𝑑𝑡

||||𝐼𝑆=0 = (1 − 𝜌)𝛼𝐸(𝑡) ≥ 0,

𝑑𝐼𝑄

𝑑𝑡

|||||𝐼𝑄=0
= 𝜂𝐼𝑆 (𝑡) ≥ 0,

𝑑𝐼𝐻

𝑑𝑡

||||𝐼𝐻=0
= 𝜎𝑆𝐼𝑆 (𝑡) + 𝜎𝑄𝐼𝑄(𝑡) ≥ 0,

𝑑𝑅

𝑑𝑡

||||𝑅=0 = 𝛾𝐴𝐼𝐴(𝑡) + 𝛾𝑆𝐼𝑆 (𝑡) + 𝛾𝑄𝐼𝑄(𝑡) + 𝛾𝐻𝐼𝐻 (𝑡) ≥ 0,

𝑑𝐷

𝑑𝑡

||||𝐷=0
= 𝛿𝑆𝐼𝑆 (𝑡) + 𝛿𝑄𝐼𝑄(𝑡) + 𝛿𝐻𝐼𝐻 (𝑡) ≥ 0,

𝑑𝑉 || = 𝜃 𝑆(𝑡) ≥ 0.
17

𝑑𝑡 ||𝑉 =0
𝑉

https://github.com/CSSEGISandData/COVID-19
https://github.com/touria2000/COV19Sim


Heliyon 10 (2024) e38204T. Jdid, M. Benbrahim, M.N. Kabbaj et al.

The previously established inequalities hold throughout the positive orthant ℝ9
+ , including its boundary hyperplanes. Given solutions 

starting from non-negative initial conditions and non-negative time derivatives, system (1) remains in the region ℝ9
+. This ensures 

our model system (1) is biologically realistic and well-defined. □
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