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Siglec-15-induced autophagy promotes 
invasion and metastasis of human 
osteosarcoma cells by activating the epithelial–
mesenchymal transition and Beclin-1/ATG14 
pathway
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Wenfang Chen5, Wei Guo6, Chuanli Zhou7* and Bin Yue1*   

Abstract 

Background: Pulmonary metastasis is the main cause of poor prognosis in osteosarcoma. Sialic acid-bound immu-
noglobulin lectin 15 (Siglec-15) has been demonstrated to be obviously correlated with pulmonary metastasis in 
osteosarcoma patients. However, the effect of Siglec-15 on autophagy in osteosarcoma remains unclear, while the 
role and mechanism of Siglec-15-related autophagy in lung metastasis also remain unknown.

Methods: The expression levels of Siglec-15 and Beclin-1 were detected in osteosarcoma tissues using immunohis-
tochemistry (IHC). The effect of Siglec-15 on metastasis was investigated using Transwell, wound healing and animal 
experiments with osteosarcoma cells. Corresponding proteins were confirmed using Western blotting when Siglec-15 
or Beclin-1 was silenced or overexpressed. Changes in autophagy and the cytoskeleton were detected using immu-
nofluorescence and transmission electron microscopy.

Results: Siglec-15 and Beclin-1 expression was evaluated both in lung metastases and in patients who presented 
with pulmonary metastasis of osteosarcoma. Immunoprecipitation experiments revealed that Siglec-15 interacts 
directly with Beclin-1, an important autophagic protein. Moreover, loss of Siglec-15 distinctly inhibited autophagy 
and reduced Beclin-1/ATG14 expression. The decreased invasion and migration caused by Siglec-15 silencing could 
be reversed by Beclin-1 overexpression. Additionally, autophagy can promote the epithelial–mesenchymal transition 
(EMT) and affect cytoskeletal rearrangement, which was confirmed by overexpression or silencing of Beclin-1.

Conclusions: These findings confirmed the role of Siglec-15 in the regulation of autophagy and elaborated the rela-
tionship and mechanisms between autophagy and the metastasis of osteosarcoma cells.
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Background
As the most common malignant bone tumor, osteosar-
coma occurs mainly in children and adolescents [1], 
and the pulmonary metastasis rate of osteosarcoma 
patients is approximately 20–30% [2]. Patients with 
lung metastases tend to be resistant to chemotherapy 
and have a poor 5-year survival of only approximately 
10–20% [3]. Therefore, targeted treatment for pulmo-
nary metastasis is important to improve the prognosis 
of patients with osteosarcoma. With the development 
of immunotherapy, many immunosuppressive mole-
cules, such as programmed cell death ligand 1 (PD-L1), 
programmed cell death ligand 2 (PD-L2), programmed 
cell death 1 (PD-1), T-cell immunoglobulin and mucin 
domain-3 (TIM-3) and lymphocyte-activation gene 3 
(LAG-3), have been studied in depth [4–6]. However, 
these studies focus mainly on their expression and 
functions in immune cells, and there are few studies 
on their effects on the intrinsic function and mecha-
nism of tumor cells. Sialic acid-bound immunoglobu-
lin lectin 15 (Siglec-15) was previously found to play 
a role in osteogenic differentiation and microbial 
infection [7], but was later found to have an immu-
nosuppressive function [8]. Siglec-15 was reported to 
be highly expressed in various solid tumors [9, 10], 
while its expression was limited in normal tissue. 
Siglec-15 is partially homologous with PD-L1 on the 
structure, while the relationship between Siglec-15 
expression and PD-L1 expression in some cancers is 
mutually exclusive [8]. Siglec-15 may function similarly 
to PD-L1, both in the immune microenvironment and 
in tumor cells [11]. Hence, Siglec-15 may play impor-
tant roles and functions in some tumors, especially 
in tumor patients with low expression of PD-L1. For 
osteosarcoma, a recent study suggested that Siglec-15 
is involved in pulmonary metastasis [12]. To the best 
of our knowledge, there are no studies reporting on 
the effect of Siglec-15 on autophagy in osteosarcoma, 
nor have studies on the role of autophagy in metastasis 
been performed.

In this study, both Siglec-15 and Beclin-1 expression 
were detected in primary and metastatic osteosar-
coma lesions. The roles of Siglec-15 in the migration, 
invasion and autophagy of osteosarcoma cells were 
researched both in  vitro and in  vivo. In addition, we 
explored the role and potential mechanism of Siglec-
15-related autophagy in the process of pulmonary 
metastasis in osteosarcoma patients.

Materials and methods
Tissue samples and patient information
Formalin-fixed and paraffin-embedded primary tis-
sue specimens of histopathologically diagnosed osteo-
sarcoma and matched pulmonary metastasis lesions 
were obtained from the Department of Pathology of the 
Affiliated Hospital of Qingdao University and the Mus-
culoskeletal Tumor Center of Peking University Peo-
ple’s Hospital. Informed consent was obtained from all 
patients. The study was also approved by the ethics com-
mittees of the Affiliated Hospital of Qingdao University 
and Peking University People’s Hospital.

Cell culture and antibodies
The osteosarcoma cell lines U2OS and KHOS were 
acquired from the American Type Culture Collection 
(ATCC, MD, USA). U2OS and KHOS cells were main-
tained in Roswell Park Memorial Institute (RPMI)-1640 
supplemented with 10% fetal bovine serum and 1% anti-
biotics, and the used cell lines were cultured at 37 °C with 
5%  CO2.

Antibodies used in the experiments were as follows: 
antirabbit Siglec-15 antibody (AP11503b) (Abcepta, 
Suzhou, China ), antirabbit Beclin-1 antibody (ab210498) 
(Abcam, Cambridge, UK), antirabbit P62 antibody 
(ab207205) (Abcam, Cambridge, UK), antirabbit ATG14 
antibody (bs-7462R) (Bioss, Beijing, China), antirabbit 
LC3A/B antibody (12,741) (CST, MA, USA), antirab-
bit LC3B antibody (3868) (CST, MA, USA), antirabbit 
E-cadherin antibody (bs-1519R) (Bioss, Beijing, China), 
antirabbit N-cadherin antibody (bs-1172R) (Bioss, Bei-
jing, China), antirabbit Vimentin antibody (bs-0756R) 
(Bioss, Beijing, China), antirabbit MMP-9 antibody 
(13,667) (CST, MA, USA), antirabbit GAPDH antibody 
(AB0037) (ShareBio, Shanghai, China), antirabbit IgG 
(Hazel) labeled antibody (AB0101) (ShareBio, Shanghai, 
China), the RhoA activation assay (ab211164) (Abcam, 
Cambridge, UK).

Gene knockdown and ectopic expression
ShSiglec-15 lentiviruses were acquired from RiboBio 
(Guangzhou, China). The Siglec-15 shRNA sequences 
were as follows: #1, sense strand 5′-CTA CGG AGA ACT 
TGC TCA A-3′ and antisense strand 5′-TTG AGC AAG 
TTC TCC GTA G-3′; #2, sense strand 5′-GGC CCA GGA 
GTC CAA TTA T-3′ and antisense strand 5′-ATA ATT 
GGA CTC CTG GGC C-3′. ShSiglec-15 stably expressing 
cells were acquired using 2 mg/ml puromycin selection.
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SiBeclin-1 was purchased from RiboBio (Guangzhou, 
China). The sequences targeting Beclin-1 were as follows: 
#1, 5′-CAG GAU GAU GUC CAC AGA ATT-3′ (sense) and 
5′- UUC UGU GGA CAU CAU CCU GGC-3′ (antisense); 
#2, 5′-CAA GUU CAU GCU GAC GAA UTT-3′ (sense) and 
5′-AUU CGU CAG CAU GAA CUU GAG-3′ (antisense); 
#3, 5′- CGU GGA AUG GAA UGA GAU UTT-3′ and 
(sense) and 5′-AAU CUC AUU CCA UUC CAC GGG-3′ 
(antisense). SiRNAs were transfected into osteosarcoma 
cells using Lipofectamine 3000 (Invitrogen, CA, USA).

The plasmid containing Beclin-1 and Siglec-15 cDNA 
or negative control were obtained from RiboBio (Guang-
zhou, China) and used to transfect KHOS cells with 
Lipofectamine 3000 (Invitrogen, CA, USA). The medium 
was replaced after 24 h of incubation. The corresponding 
functional assays were carried out after 24 h, and protein 
was extracted after 48 h of transfection.

Transwell assays
Cells were planted into chambers coated with or without 
Matrigel (Corning, NY, USA, 354480, 3422) for migra-
tion capacity and invasion ability analysis. After culturing 
for 24  h, cells that passed through Transwell chambers 
were fixed with methanol and stained with Giemsa stain-
ing solution. The number of migrated cells was counted 
under a microscope in five random fields per well.

Wound healing assays
U2OS and KHOS cells were plated into 6-well plates for 
cell mobility evaluation. When the cells were cultured to 
90% confluence, a scratch was made carefully across the 
plates by using a 200-µl sterile pipette tip. Images were 
captured after incubation for 0 and 24  h and analyzed 
using ImageJ.

RNA‑sequencing and bioinformatics analyses
Total RNA of each sample was extracted according to the 
instruction manual of the TRIzol Reagent (Life Technolo-
gies, CA, USA). Subsequently, RNA qualification, library 
construction and sequencing were conducted by Beijing 
Biomarker Technologies Co., Ltd. (Beijing, China). The 
abundant differences in gene expression between these 
samples were determined based on the ratio of the FPKM 
values (fragments per kilobase of exon per million frag-
ments mapped) by Cufflinks software [13]. The false dis-
covery rate (FDR) control method was used to recognize 
the threshold of the P value in multiple tests to calculate 
the significance of the differences. Only the genes with 
an absolute value of  log2 ratio ≥ 2 and FDR significance 
score < 0.01 were used for further analysis.

The potential interaction between Siglec-15 and Bec-
lin-1 was investigated by bioinformatic analysis. Broadly, 
we typed the target gene names via the website (http:// 

genem ania. org/) and performed the corresponding set-
tings to investigate the associations between these genes.

Western blotting and GTPase assay
Briefly, cell lysates were acquired from the correspond-
ing groups using radioimmunoprecipitation assay (RIPA) 
lysis buffer. The proteins were separated on 7.5–15% 
sodium dodecyl sulfate-polyacrylamide gel electrophore-
sis (SDS-PAGE) gels using a NuPAGE system and trans-
ferred to polyvinylidene difluoride membranes. Then, the 
membranes were incubated with the corresponding pri-
mary antibodies overnight at 4 °C after blocking for 1 h. 
The protein bands were visualized by electrochemilumi-
nescence. The GTPase assay was implemented according 
to the kit instructions.

Immunoprecipitation
A suitable amount of antibody was added to the cell lysis 
solution and then incubated for 3 h at 4 °C. Subsequently, 
protein A-agarose (Vigorous Biotechnology, Beijing, 
China; P007) was incubated with the solution for 1 h. The 
immune precipitates were washed three times using a 
lysis solution followed by elution with SDS loading buffer. 
The eluent was subjected to Western blotting.

In vitro beclin‑1‑Siglec‑15 pulldown
GST protein interaction pull-down kits were obtained 
from Thermo Fisher (MA, USA). Bind recombinant 
Beclin-1 protein to glutathione high-capacity magnetic 
agarose beads according to the manufacturer’s instruc-
tions. KHOS osteosarcoma cells at 80% density were 
lysed in the above co-immunoprecipitation buffer for 
15 min at 4  °C and centrifuged at 15,000×g for 15 min. 
While the cells were lysed, an appropriate amount of the 
bead slurry was blocked with 5% BSA in lysis buffer for 
10 min at 4 °C. The lysed protein was then incubated with 
the blocked bead slurry for 60  min at 37  °C. After pro-
tein binding, resuspend in 1× SDS sample buffer and boil 
for 5 min, separate by SDS-PAGE, and probe by western 
blot.

Transmission electron microscopy(TEM)
For the TEM assay, the cells of the corresponding groups 
were digested with 0.25% trypsin. Then, 1.5% glutaralde-
hyde was used to fix the cells at 4  °C for 6  h. Ultrathin 
Sect. (100 nm) were stained with uranyl acetate and lead 
citrate and then examined under a TEM (H-600; Hitachi, 
Tokyo, Japan).

Immunohistochemistry assay
Immunohistochemistry (IHC) staining was conducted 
as described previously [14]. Briefly, the paraffin sections 
were deparaffinized and exposed to the corresponding 

http://genemania.org/
http://genemania.org/
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primary antibodies overnight at 4  °C. Then, the sec-
tions were reacted with secondary antibody for 30  min 
at 37  °C. The positive staining score was defined as the 
sum of the staining percentage (0: 0% positive; 1: < 5% 
positive; 2: 5–50% positive; and 3: > 50% positive) and 
staining intensity (0: none; 1: weak; 2: moderate; and 3: 
intense). More than 10 representative fields (400× mag-
nification) were used for the assay. The immunostaining 
was evaluated by two independent pathologists who were 
unfamiliar with the clinical specimens.

Immunofluorescence assay
Cells were plated onto coverslips in 6-well plates with 
corresponding treatments. Next, 4% paraformaldehyde 
was used to fix cells for 20 min. Then, the cells were incu-
bated with 0.1% Triton X-100 for 5 min. For the immu-
nofluorescence assay of the cytoskeleton, the coverslips 
shielded from light were cultivated with phalloidin-iFluor 
594 reagent (ab176757) (Abcam, Cambridge, UK) for 
45  min at room temperature. For the immunofluores-
cence assay of LC3, the cells were incubated with antiLC3 
antibody overnight at 4 °C and then washed 3 times with 
phosphate buffered saline (PBS). The cells were exposed 
to a suitable secondary antibody at room temperature. 
4′,6-Diamidino-2-phenylindole (DAPI) staining was used 
for nuclear staining in the immunofluorescence assay. All 
the cells were ultimately observed using confocal micros-
copy (FV10i, Olympus, Tokyo, Japan).

Generation of xenografts
For the analysis of the effect of Siglec-15 knockdown 
on the metastatic capacity of KHOS cells, 3 ×  106 cells 
(KHOS-shSiglec-15 or KHOS-shNC) were intravenously 
injected into the tail vein of 6-week-old female BALB/c 
nude mice (Vitalriver, Beijing, China). All mice were sac-
rificed after 30 days. The lungs of mice were routinely 
obtained, fixed and prepared for subsequent hematox-
ylin-eosin (H&E) and immunohistochemical staining. 
Then, the number of pulmonary metastatic nodules was 
quantified. All the animal care and processes involved 
in this experiment were enforced in conformity with the 
National Institutes of Health Guide for the Care and Use 
of Laboratory Animals.

Statistical analysis
Data are presented as the mean ± standard deviation 
(SD). SPSS v.21.0 software (SPSS, Chicago, IL, USA) was 
used for statistical analyses. χ2 test and Student’s t-test 
were used for statistical evaluation. A P value < 0.05 was 
considered to indicate significant differences.

Results
Siglec‑15 and Beclin‑1 expression is closely related to lung 
metastases of osteosarcoma
IHC experiments were conducted to investigate Siglec-15 
and Beclin-1 expression in osteosarcoma. First, the 
Siglec-15 and Beclin-1 proteins were detected in pri-
mary osteosarcoma specimens (n = 52), and the primary 
osteosarcoma specimens were divided into two groups 
according to the presence or absence of pulmonary 
metastasis at the time of surgical resection (evidenced 
by medical imaging). Both Siglec-15 and Beclin-1 were 
highly expressed in the osteosarcoma group presenting 
with lung metastasis compared to the group without lung 
metastasis (Fig. 1a). However, the expression of Siglec-15 
and Beclin-1 had no correlation with sex, age, tumor 
location or histological classification (Table  1). Second, 
we further examined the expression of Siglec-15 and 
Beclin-1 in paired primary osteosarcoma samples and 
corresponding pulmonary metastases (n = 21 pairs). The 
expression of Siglec-15 in the lung metastases was sig-
nificantly higher than the expression of Siglec-15 in the 
primary lesions, while Beclin-1 was also expressed more 
strongly in the lung metastases (Fig. 1b). Moreover, fur-
ther analysis revealed a positive correlation between the 
expression of Siglec-15 and Beclin-1 in lung metastases 
(Fig.  1c). In conclusion, these results suggested that the 
expression of Siglec-15 and Beclin-1 was associated with 
pulmonary metastasis in osteosarcoma patients.

Potential mechanisms that underlie the Siglec‑15 
associations with metastasis
Transcriptomic analysis was used to examine the effect 
of Siglec-15 on osteosarcoma metastasis. After Siglec-15 
knockdown in KHOS cells, the heat map of the top dif-
ferentially expressed genes (versus the control group) was 
shown in Fig. 2a. A gene map of co-expression of these 
differentially expressed genes was also shown in Fig. 2b. 
The Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis revealed that the genes linked to focal 
adhesion, and adherens junction pathways were signifi-
cantly involved in the Siglec-15 associations with metas-
tasis (Fig.  2c). It is known that autophagy is a complex 
process of cell self-degradation, in which many signaling 
pathways are involved, including Wnt, mTOR, PI3K-Akt, 
MAPK [15–18], etc. Through KEGG analysis, we also 
found that Wnt, mTOR, PI3K-Akt, MAPK and AMPK 
signaling pathways were involved in the relationship 
between Siglec-15 and autophagy (Fig. 2c). Furthermore, 
based on these autophagy related pathways, heatmap 
analysis of differentially expressed genes revealed the 
potential genes that may be involved in Siglec-15-medi-
ated autophagy (Fig. 2d). Additionally, the GSEA results 
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also indicated that Siglec-15 was positively associated 
with focal adhesion and cell adhesion molecules (Fig. 2e). 
In brief, these transcriptomic-level findings supported 
that Siglec-15 depletion could inhibit the invasive ten-
dency of osteosarcoma, and autophagy may be one of the 
important influencing factors.

Siglec‑15 depletion suppresses the migration and invasion 
of osteosarcoma cells in vitro
ShRNA lentiviruses targeting Siglec-15 were used for 
the functional examination of Siglec-15 in osteosarcoma 
cells, and Siglec-15 expression was significantly inhibited 
in the Siglec-15 knockdown group (Fig. 3a). To ascertain 
the role of Siglec-15 in the migration and invasiveness 
of osteosarcoma cells, both Transwell assays and wound 
healing assays were conducted. The results indicated that 
Siglec-15 depletion significantly decreased the migration 
and invasive capacity of KHOS and U2OS cells (Fig. 3b). 
Because epithelial–mesenchymal transition (EMT) is 
also a crucial point involved in tumor metastasis [19], 
we examined the effect of Siglec-15 knockdown on EMT 
by Western blotting. E-cadherin, an epithelial marker, 
was increased in the shSiglec-15 group compared to the 

control group (Fig. 3a). Decreased expression of N-cad-
herin and vimentin, which are mesenchymal character-
istics, was detected in the shSiglec-15 group (Fig.  3a). 
Matrix metalloproteinase-9 (MMP-9) was also decreased 
in the Siglec-15-depletion group (Fig.  3a). Conversely, 
the Siglec-15 expression recovery increased Vimen-
tin and decreased E-cadherin levels, and induced EMT 
in shSiglec-15-KHOS cells (Additional file  2: Fig. S2a). 
The Siglec-15 expression recovery increased the migra-
tion and invasion of shSiglec-15-KHOS cells (Additional 
file 2: Fig. S2c). The quantification of Western blot results 
was shown in Additional file 1: Fig. S1a.

The cytoskeleton plays a vital role in cell migration [20]. 
As mentioned before, cytoskeletal rearrangement was 
involved in the potential mechanisms that underlie the 
Siglec-15 associations with metastasis. Cytoskeletal assay 
of KHOS and U2OS cells was visualized using confocal 
microscopy. As shown in the results, conspicuous lamel-
lipodial protrusions were formed in the submembranous 
area of the control cells, but the opposite phenomenon 
was observed in the Siglec-15-depletion group, which 
represented the rearranged cytoskeleton and well-dis-
tributed F-actin in both KHOS and U2OS cells (Fig. 3c). 

Fig. 1 Siglec-15 and Beclin-1 expression is closely related to lung metastases of osteosarcoma. a Contrasting with those without lung metastases, 
osteosarcoma patients with lung metastasis had higher expression of Siglec-15 and Beclin-1 in the primary tumor using immunohistochemistry. b 
The immunohistochemistry results indicated that significantly higher expression levels of Siglec-15 and Beclin-1 were detected in lung metastases. 
c Siglec-15 and Beclin-1 expression levels show a positive correlation in lung metastases. Representative immunohistochemical images are shown 
at ×200 and ×400 magnification. Data are presented as the mean ± SD. *P < 0.05
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Additionally, LIMK and cofilin, the downstream mol-
ecules of RhoA, are crucial regulators in the regulation 
of the actin cytoskeleton [20]. Since RhoA could regulate 
the phosphorylation of LIMK and cofilin, we detected 
changes in RhoA after Siglec-15 deletion. Decreased 
RhoA activation was observed in the Siglec-15-depletion 
group compared to the control group using the GTPase 
assay (Fig. 3c). These outcomes suggested that Siglec-15 
expression could distinctly influence cytoskeletal rear-
rangement in osteosarcoma cells.

Siglec‑15 is involved in the regulation of autophagy
The bioinformatics prediction suggested that there 
may be an interaction between Siglec-15 and Beclin-1 
(Fig.  4a). Subsequently, a coimmunoprecipitation study 
was used to test this prediction. This predicted interac-
tion was validated through co-immunoprecipitation 
experiments (Fig.  4b), and the directly physical inter-
action between Siglec-15 and Beclin-1 was confirmed 
via co-precipitation using recombinant Beclin-1 by 
GST-pulldown (Fig.  4b). To identify whether Siglec-15 
participates in autophagy, autophagy-related proteins 
were detected by Western blotting. Our results verified 
that Siglec-15 knockdown decreased LC3-II, ATG14 
and Beclin-1 expression combined with increased p62 
expression in KHOS and U2OS cells (Fig. 4c). Then, the 

ultrastructures during autophagy were explored using 
TEM. Siglec-15 silencing caused few autophagic vacuoles 
compared with the controls in KHOS and U2OS cells 
(Fig. 4d). As shown in Fig. 4e, decreased punctate LC3-II 
fluorescence was detected in the shSiglec-15 group cells 
by immunofluorescence assay, indicating the reduced 
expression of LC3-II in autophagosomes. In brief, our 
results revealed that Siglec-15 knockdown induced 
the inhibition of autophagy in osteosarcoma cells. The 
Siglec-15 expression recovery increased LC3-II and 
beclin-1 levels, and decreased p62 expression in shSi-
glec-15-KHOS cells (Additional file  2: Fig. S2a), which 
indicated Siglec-15 promoted autophagy (Additional 
file 2: Fig. S2b). In addition, Siglec-15-induced autophagy 
in osteosarcoma cells promotes invasion and migra-
tion of osteosarcoma cells, which can be reversed by the 
autophagy inhibitor 3-MA (Additional file 2: Fig. S2a–c). 
The quantification of Western blot results was shown in 
Additional file 1: Fig. S1b.

Autophagy inhibition attenuates the migration 
and invasion of osteosarcoma cells by inactivating 
the epithelial–mesenchymal transition and affecting 
cytoskeletal rearrangement
As a double-edged sword, autophagy can boost tumor 
cell metastasis and inhibit tumor metastasis [21]. To 

Table 1 Relationship between clinicopathologic parameters and Siglec-15 and Beclin-1 expression in human osteosarcoma tissues

Variables N (52) Siglec‑15 expression Beclin‑1 expression

+ − P + − P

Age

 ≤ 25 17 7 10 0.257 11 6 0.622

 > 25 35 9 26 25 10

Sex

 Male 33 11 22 0.598 23 10 0.924

 Female 19 5 14 13 6

Size (cm)

 ≤ 5 15 5 10 1.000 13 2 0.161

 > 5 37 11 26 23 14

Histological classification

 Osteoblastic 20 5 15 0.610 17 3 0.149

 Chondroblastic 20 6 14 12 8

 Others 12 5 7 7 5

Main tumor location

Limb bone 38 13 25 0.795 27 11 0.892

 Spine 6 1 5 4 2

 Pelvis 8 2 6 5 3

Lung metastasis

 Yes 21 11 10 0.005 18 3 0.034

 No 31 5 26 18 13
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Fig. 2 Potential mechanisms that underlie the Siglec-15 associations with metastasis. a Heatmap of representative differentially expressed gene 
resulting from the control group and Siglec-15 knockdown group through transcriptomic sequencing. b A gene map of coexpression of these 
differentially expressed genes. c KEGG pathway analysis of differentially expressed genes revealed Siglec-15 associations with cell autophagy and 
migration. d Heatmap of differentially expressed genes, based on autophagy-related pathway analysis, revealed Siglec-15-mediated autophagy in 
osteosarcoma cells. e GSEA of the genes associated with the focal adhesion and cell adhesion molecules in control group and Siglec-15 knockdown 
group
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confirm the role of Siglec-15-induced autophagy in oste-
osarcoma cell metastasis, we knocked down Beclin-1, 
a crucial element for the autophagy process, in KHOS 
cells by siRNA. While Beclin-1 has been reported to 
regulate the EMT process [22], decreased expression of 
N-cadherin, vimentin and MMP-9 and increased expres-
sion of E-cadherin were observed after Beclin-1 silencing 

(Fig.  5a). Transwell and wound healing experiments 
proved that Beclin-1 silencing significantly weakened the 
migratory and invasive capacities of KHOS cells (Fig. 5b). 
In contrast to those in the Beclin-1-depletion group, the 
lamellipodial prominences and F-actin filaments gath-
ered near the edge of the control group (Fig. 5c). Further-
more, the relationship between autophagy and RhoA, an 

Fig. 3 Siglec-15 knockdown suppresses the migration and invasion of osteosarcoma cells in vitro. a ShRNA sequences targeting Siglec-15 were 
used, and the knockdown efficiency was measured by Western blotting. Siglec-15 depletion inhibits epithelial–mesenchymal transition, as shown 
by Western blotting. b Transwell assays and wound healing assays indicate that Siglec-15 depletion significantly decreased the migration and 
invasive capacity of KHOS and U2OS cells. c Cytoskeletal assays show that more conspicuous lamellipodial protrusions were formed in the control 
cells than in the Siglec-15-depletion group. Representative images are shown. Cell nuclei are stained with DAPI. The scale bar represents 50 μm. 
Decreased RhoA activation was also observed in the Siglec-15-depletion group. All experiments were repeated three times. Data are presented as 
the mean ± SD. **P < 0.01, ***P < 0.001
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important regulator of actin reorganization, was inves-
tigated. Beclin-1 silencing resulted in decreased RhoA 
activation (Fig.  5d). The quantification of Western blot 
results was shown in Additional file 1: Fig. S1c.

The decreased invasion and migration caused by Siglec‑15 
silencing could be reversed by Beclin‑1 overexpression 
by targeting the EMT and Beclin‑1/ATG14 pathway
To further confirm the role of Siglec-15-induced 
autophagy in osteosarcoma cell metastasis, KHOS cells 
were transfected with a Beclin-1 overexpression vector, 
and Beclin-1 overexpression increased MMP-9 expres-
sion levels and promoted EMT, as shown by West-
ern blotting (Fig.  6a). Additionally, the expression of 
Siglec-15 did not change after Beclin-1 overexpression 
in KHOS cells (Fig. 6a), which means that Beclin-1 was 
a downstream molecule of Siglec-15. Siglec-15 knock-
out obviously inhibited Beclin-1 overexpression-induced 
autophagic flux, as shown by Western blotting (Fig. 6a), 

and similar results were observed by LC3-II immuno-
fluorescence (Fig.  6c). Mechanistically, Siglec-15 silenc-
ing decreased the EMT process and affected cytoskeletal 
rearrangement, while all these phenomena were reversed 
by Beclin-1 overexpression (Fig.  6a, b). The results of 
Transwell experiments were also consistent with the 
above results (Fig.  6d). Ultimately, all these findings, 
through both genetic inhibition and overexpression of 
autophagy, indicated that Siglec-15-induced autophagy 
promoted the invasive and migratory ability of human 
osteosarcoma cells by targeting the EMT and Beclin-1/
ATG14 pathway. The quantification of Western blot 
results was shown in Additional file 1: Fig. S1d.

Siglec‑15 knockdown attenuates pulmonary metastasis 
of osteosarcoma cells in vivo
To further confirm these findings obtained in  vitro, we 
used an in  vivo xenograft model built according to the 
description in “Materials and methods” section. The 

Fig. 4 Siglec-15 inhibition diminishes the autophagy process by inactivating the Beclin-1/ATG14 pathway. a Bioinformatics prediction of the 
interaction between Siglec-15 and Beclin-1 (http:// genem ania. org/). b Immunoprecipitation was used to evaluate the interaction between 
Siglec-15 and Beclin-1 (up). Recombinant GST-Beclin-1 conjugated beads were used to examine relative amounts of co-precipitating Siglec-15 
(down). c Western blotting was used to evaluate the expression of autophagy-related proteins, including Beclin-1, ATG14, LC3 and p62. 
d Representative TEM images present the ultrastructures during autophagy after Siglec-15 depletion. The images show more autophagic vacuoles 
(arrows) observed in control cells. e Punctate LC3 levels in the control and Siglec-15 inhibition groups are presented and quantified. Data are 
presented as the mean ± SD. of three independent experiments. **P < 0.01, ***P < 0.001

http://genemania.org/


Page 10 of 15Zheng et al. Cell & Bioscience          (2022) 12:109 

shSiglec-15 group exhibited significantly fewer lung 
metastases and smaller volumes than the shNC group 
(Fig.  7a). Furthermore, IHC analyses of lung metastases 
showed elevated E-cadherin in lung metastases of the 
shSiglec-15 group compared with controls. Moreover, 
the expression of Siglec-15, vimentin and Beclin-1 was 
significantly decreased in lung metastases of the shSi-
glec-15 group compared with the control group (Fig. 7b). 
Taken together, these results suggested that Siglec-15 loss 
inhibited EMT and autophagy, through which Siglec-15 
reduced osteosarcoma cell metastasis.

Discussion
Siglec-15 was originally categorized as one of the Siglec 
family members. Previous studies have focused on its 
role in bone differentiation, bone remodeling and micro-
bial infection [7, 23, 24]. Recently, due to the therapeu-
tic effect of immunotherapy in numerous solid tumors, 
an increasing number of scholars have begun to pay 
attention to its immune function. Studies have con-
firmed that the expression of Siglec-15 is upregulated on 

tumor-associated macrophages (TAMs) and on tumor 
cells but not in normal tissues [25, 26]. Interestingly, 
Siglec-15 shows a similar domain composition and high 
homology with PD-L1, while the expression of Siglec-15 
and PD-L1 is mutually exclusive in human lung cancer 
tissues [10]. Therefore, the Siglec-15 molecule is charac-
terized as a potential immune suppressive molecule and 
may be used for immunotherapy, especially for tumor 
patients with low expression of PD-L1.

In recent years, some studies have found that Siglec-15 
is involved in the progression of various tumors [10, 
27, 28]. At present, there are few studies on this aspect 
of osteosarcoma, and a previous study showed that 
Siglec-15 is involved in the invasion and migration of 
osteosarcoma [12]. Our previous study examined the 
relationship between Siglec-15 and the apoptosis and 
pyroptosis of osteosarcoma cells. In this study, we first 
proved that Siglec-15 interacted immediately with 
autophagy-related proteins and was involved in the regu-
lation of autophagy. Additionally, we demonstrated that 
Siglec-15 silencing reduced the expression of Beclin-1/

Fig. 5 Autophagy inhibition attenuates the migration and invasion of osteosarcoma cells by inactivating epithelial–mesenchymal transition and 
affecting cytoskeletal rearrangement. a SiRNA sequences targeting Beclin-1 were used, and the knockdown efficiency was detected using Western 
blotting. Beclin-1 silencing inhibits the epithelial–mesenchymal transition and MMP-9 expression via Western blot. b Inhibition of autophagy by 
Beclin-1 knockdown significantly restrained the migration and invasion of osteosarcoma cells. c In contrast to the Beclin-1-depletion group, the 
lamellipodial prominences and F-actin filaments gathered near the edge of the control group. Representative images are shown. Cell nuclei are 
stained with DAPI. The scale bar represents 50 μm. d Beclin-1 silencing results in decreased RhoA activation
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ATG14, and Siglec-15-related autophagy could promote 
EMT and affect cytoskeletal rearrangement, through 
which Siglec-15-induced autophagy participated in the 
regulation of osteosarcoma cell metastasis.

Osteosarcoma is the most common primary malig-
nant bone tumor in children and adolescents, with a 
high risk of pulmonary metastasis [29]. Pulmonary 
metastasis is a critical factor associated with poor 
prognosis in osteosarcoma patients. How to prevent 

and control pulmonary metastasis of osteosarcoma 
has always been an intractable clinical problem. Most 
studies on immunosuppressive molecules, such as 
Siglec-15, PD-L1, and PD-L2, have concentrated mainly 
on immune cells or the interaction between immune 
cells and tumor cells in the tumor microenvironment 
(TME) [30–34]. However, few studies have focused on 
the tumor cell intrinsic functions of these immuno-
suppressive molecules, especially Siglec-15, which are 
highly expressed in many tumor cells.

Fig. 6 The decreased invasion and migration caused by Siglec-15 silencing could be reversed by Beclin-1 overexpression. a Beclin-1 overexpression 
increased MMP-9 levels and induced EMT, while Siglec-15 expression did not change (left). Overexpression of Beclin-1 promoted the decreased 
EMT and autophagy processes caused by Siglec-15 silencing, and the expression levels of related protein markers were tested by Western blotting 
(right). b Immunofluorescence assays of the cytoskeleton were used to detect changes in the cytoskeleton after Beclin-1 overexpression combined 
with Siglec-15 silencing. c An immunofluorescence assay of LC3 was used to verify changes in autophagy after Beclin-1 overexpression combined 
with Siglec-15 silencing. d Transwell assays indicate that the decreased invasion and migration caused by Siglec-15 silencing could be reversed by 
Beclin-1 overexpression. Data are presented as the mean ± SD from three experiments. **P < 0.01, ***P < 0.001
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A previous study suggested that Siglec-15 expression 
was positively associated with lung metastasis, and dual-
specificity phosphatase 1 (DUSP1) expression was posi-
tively associated with the Enneking stage [12]. Their study 
demonstrated that Siglec-15 promoted the migration and 
invasion of osteosarcoma cells via the DUSP1-inactivated 
MAPK pathway [12]. In our study, we demonstrated that 
both Siglec-15 and Beclin-1 expression was evaluated in 
lung metastases compared with paired primary osteo-
sarcoma specimens using IHC. Similarly, both Siglec-15 
and Beclin-1 were also highly expressed in the group with 
pulmonary metastasis of osteosarcoma compared to the 
group without lung metastasis. In addition, Siglec-15 
expression was positively correlated with the expression 
of Beclin-1 in lung metastases. Based on these results, we 
hypothesized that Siglec-15 was involved in autophagy in 
osteosarcoma and that autophagy was closely related to 
pulmonary metastasis. Therefore, in  vitro experiments 
were conducted to verify the effect of Siglec-15 on metas-
tasis and autophagy in osteosarcoma. On the one hand, 
Siglec-15 depletion significantly decreased the migration 
and invasive capacity of osteosarcoma cells. On the other 
hand, the outcomes confirmed for the first time that 
Siglec-15 knockout inhibited autophagy in osteosarcoma 

cells. Next, we further investigated the possible effects 
of Siglec-15-induced autophagy on metastasis and the 
underlying mechanisms.

To explore the potential mechanisms of the Siglec-15 
associations with lung metastasis, mRNA expression 
after Siglec-15 silencing in osteosarcoma cells was clus-
tered and visualized using bioinformatics analysis. The 
differentially expressed gene patterns, gene set enrich-
ment analysis (GSEA) and KEGG pathway enrichment 
analysis of Siglec-15-related genes were also investigated. 
The results revealed that Siglec-15 may be related to focal 
adhesion, adherens junction pathways. Next, we verified 
these results by in vitro and in vivo experiments.

The relationship between autophagy and tumor metas-
tasis remains complex and unclear, and autophagy may 
be able to both restrain and accelerate tumor metas-
tasis in different circumstances. How autophagy influ-
ences metastasis remains unclear. Both knockout and 
overexpression of Beclin-1 were used for osteosarcoma 
cells to verify the role of Siglec-15-induced autophagy in 
metastasis. Our studies confirmed that Siglec15-induced 
autophagy could promote the invasion and migration 
of osteosarcoma cells. Furthermore, bioinformatics 
analysis and coimmunoprecipitation demonstrated that 

Fig. 7 Siglec-15 knockdown attenuates pulmonary metastasis of osteosarcoma cells in vivo. a Representative images of lungs from the 
shSiglec-15 group and the control group. Different sizes of pulmonary metastases were quantitated on the basis of H&E staining results. 
b Immunohistochemistry results indicated the differences in the expression of Siglec-15, Beclin-1 and EMT markers (E-cadherin, vimentin) in lung 
metastases from the shSiglec-15 group and the control group. Representative images are shown at ×200 magnification
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Beclin-1, a pivotal autophagy protein, interacted directly 
with Siglec-15, consistent with the IHC results. In sum-
mary, these results suggested that autophagy was a bridge 
between Siglec-15 and metastasis and that Beclin-1 was 
an important junction.

To confirm the results of bioinformatics analysis, we 
examined the effect of Siglec-15-induced autophagy 
on cytoskeletal structure and EMT in osteosarcoma. 
Changes in the actin cytoskeleton have been shown to 
play a considerable role in cell migration and motil-
ity [20]. Actin reorganization is regulated by cofilin and 
LIMK, which are downstream molecules of RhoA, and 
their phosphorylation is regulated by RhoA activation 
[35]. The regulation between autophagy and the RHO 
family has double-planedness in some studies [36, 37]. 
Herein, we found that both Siglec-15 silencing and Bec-
lin-1 depletion could decrease RhoA activation and lessen 
the formation of lamellipodial protrusions in the sub-
membranous area in osteosarcoma cells. Moreover, the 
increased lamellipodial protrusions induced by Beclin-1 
overexpression can be rescued by Siglec-15 knockdown. 
Thus, Siglec15-induced autophagy is a prometastatic 
mechanism that affects cytoskeletal rearrangement.

Previous studies revealed the influence of autophagy 
on EMT regulation [38, 39]. Similar to its double-sided 
effect on the tumor, the effect of autophagy on the EMT 
process was also complicated depending on the cellular 
condition [40]. Our data clearly showed that Beclin-1 
depletion resulted in reduced migration of osteosarcoma 
cells by suppressing EMT, and the increased migration 
caused by Beclin-1 overexpression could be reversed by 
Siglec-15 silencing. Therefore, the autophagy produced 
by Siglec-15 promoted metastasis by facilitating EMT.

Overall, to the best of our knowledge, studies on the 
relationship between Siglec-15 and autophagy are scarce. 
Our study demonstrated that Siglec-15 could inter-
act immediately with Beclin-1 and regulate autophagy. 
In addition, the autophagy induced by Siglec-15 could 
promote EMT and affect cytoskeletal rearrangement 
through the effect of these two pathways, and Siglec-
15-induced autophagy promoted the invasion and metas-
tasis of human osteosarcoma cells via the Beclin-1/
ATG14 pathways.

Conclusions
In summary, our study reveals for the first time the pro-
metastatic mechanism of Siglec15-induced autophagy 
in osteosarcoma. Siglec-15-induced autophagy pro-
motes migration and invasion by targeting Beclin-1/
ATG14 pathways and activating EMT both in  vitro and 
in  vivo, and Siglec-15-induced autophagy extends our 
comprehension of the regulation of autophagy on tumor 

metastasis and provides a potential target for metastatic 
osteosarcoma treatment.
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