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Abstract: We report new classes of wearable sensors that monitor touch between fully-abled and
disabled players in order to empower collaborative digital gaming between the two. Our approach
relies on embroidered force-sensitive resistors (FSRs) embedded into armbands, which outperform
the state-of-the-art in terms of sensitivity to low applied forces (0 to 5 N). Such low forces are
of key significance to this application, given the diverse physical abilities of the players. With a
focus on effective gameplay, we further explore the sensor’s touch-detection performance, study
the effect of the armband fabric selection, and optimize the sensor’s placement upon the arm. Our
results: (a) demonstrate a 4.4-times improvement in sensitivity to low forces compared to the most
sensitive embroidered FSR reported to date, (b) confirm the sensor’s ability to empower touch-based
collaborative digital gaming for individuals with diverse physical abilities, and (c) provide parametric
studies for the future development of diverse sensing solutions and game applications.

Keywords: collaborative digital gaming; conductive threads; embroidery; force-sensitive resistor;
wearable sensors

1. Introduction

Over 5.5 million children in the United States have a cognitive or physical disability
that results in at least some difficulty with activities, including play [1–3]. Example develop-
mental disabilities include cerebral palsy (CP), autism spectrum disorder (ASD), muscular
dystrophy (MD), and Down’s syndrome, etc. [4], and are often accompanied by physical
impairments such as spasticity, muscle contracture, bone deformity, muscle weakness, and
coordination disorders. These conditions cause deficits in day-to-day activities, such as
grabbing or holding objects [5,6]. In turn, these children may lose their ability to play with
their family, friends, or primary caregivers, and are less able to express themselves and
make meaningful connections with others [1,7].

According to The American Academy of Pediatrics, play is essential to development
because it contributes to the cognitive, physical, social and emotional wellbeing of children
and youth [8]. Play has also been recognized by the United Nations High Commission for
Human Rights as a right of every child [9]. Research in [10–16] indicates how cognitive
abilities such as language, memory, self-regulation, and the ability to plan, focus and
execute tasks can be improved with gaming. To date, several digital games have been
developed for children with CP, ASD and other disabilities, but they are either single player
or rely on a virtual assistant. For example, ‘A Sunny Day: Ann and Ron’s World’ uses an
iPad game application [17], while ‘TeachTown: Basics’ adopts computer-assisted instruc-
tions and gamifies traditional treatment exercises into rewards to motivate learning [18].
Unfortunately, the concept of single-player games undermines the idea of collaborative
gameplay. By contrast, projects like ‘Invasion of the Wrong Planet’ [19], ‘Collaborative
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Puzzle Game’ [20], and ‘SIDES’ [21] encourage collaboration (e.g., to defend a planet or
solve a jigsaw puzzle). Nevertheless, they are only suitable for children with mild dis-
abilities. For moderate developmental delays, commercial gaming platforms (X-box [22],
Nintendo [23], etc.) are taking initiatives to adapt their consoles. However, these gaming
consoles are usually challenging. Finally, for children with severe disabilities, communities
like The AbleGamers [24], Special Effect [25] and Warfighter Engaged [26] take major steps,
as does eye-gaze-based interaction integrated with Digital Games-Based Learning [27].
Nevertheless, games designed for children with severe disabilities tend to target learning
instead of bonding with a parent or caregiver, which is an aspect that is critical to the child’s
development [28].

In order to address shortcomings in the state-of-the-art, we propose collaborative
games that rely on touch between fully-abled and disabled players, i.e., physical touch
between the players is sent as an input for the gameplay. Wearable sensors capable of detect-
ing touch play a key role in this regard. Here, we focus on FSRs as a reliable, cost-effective,
and flexible solution [29]. We also focus on embroidered FSRs, as embroidered surfaces
are known to be mechanically robust, tolerant to repetitive deformations, and washable. A
key requirement for this FSR design is to be highly sensitive to low forces applied upon
the sensor by individuals with disabilities; a performance metric that previously reported
FSRs failed to meet. More specifically, Ref. [29] describes a significant decrease in gross
and fine finger dexterity in children with ASD, Ref. [30] reports lower peak grasp forces
for children with ASD compared to typically developing children, and Ref. [31] shows
that children with ASD and MD have impaired lower-hand symmetry. With the touch
force applied by healthy individuals ranging from 1.27 N to 3.22 N [32], the forces applied
by children with disabilities are expected to be even lower. Referring to Table 1, most of
the previously reported embroidered FSRs focus on wide dynamic ranges of employed
forces (e.g., up to 20 N [33], 30 N [34], or 56.7 N [35]) and exhibit poor sensitivity in the
detection of small forces. The work in [36] studies a narrow dynamic range of 0–5 N, but
the resulting sensitivity is poor, which was attributed to the high resistivity of the employed
threads. Relatively newer techniques other than FSR sensors highlighted in [37,38] use
hydrogel elastomer ionic sensors for hand motion monitoring. However, the fabrication
is sophisticated and expensive compared to FSR sensors. Likewise, there are potential
problems with hydrogel dehydration and limited temperatures of operation. The previous
solutions are, thus, unsuitable for the application under consideration.

Table 1. Comparison of the reported solution compared to previously reported embroidered FSR.

Ref. Application Dynamic Range
Explored

Sensitivity 1 (Change in
Resistance) from 0 to 5 N

E-Thread
Resistivity

(Ω/m)

This work Collaborative
gaming <5 N >8000 1.9

[33] Driving gloves 0–20 N 80 127

[34] Object
Recognition 0–30 N 1000 200 (Ω/m2)

[35] Respiration/Posture
Monitoring 0.56–56.7 N 40 -

[36] Mobility
Detection 0–5 N 1800 120

1 The calculation of the sensitivity is explained in Section 3.3.

In this paper, we report new classes of embroidered FSR sensors that are optimized
for collaborative gameplay between individuals of various physical abilities, and which
outperform the state-of-the-art in terms of sensitivity to low forces (<5 N). In order to
optimize the experience of gameplay, we study the ergonomics of the proposed sensors by
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exploring various fabrics and various locations upon the human body. Section 2 presents
the system architecture and provides details on the employed materials and methods.
Section 3 reports our results, while Section 4 discusses our findings. The paper concludes
in Section 5.

2. Materials and Methods
2.1. System Overview

Figure 1a depicts the proposed mechanism of gameplay. The two players sit facing
each other with a mobile device (e.g., a tablet) placed in-between them. Wearable sensors in
the form of an armband are worn by either or both players, depending on their physical and
cognitive abilities. The sensors are functionalized with FSRs that are specifically designed
and optimized for this application (see Section 2.2), such that when a player touches the
sensor, an input is sent wirelessly (e.g., via Bluetooth) to the tablet. This input may enable a
frog to jump, a car to switch lanes, or a rocket to shoot, depending on the game’s design.
Depending on the number of inputs the game is designed for, more than one armband
may be employed. For example, in Figure 1a, Player 1 may be a child with disabilities and
Player 2 may be a parent without disabilities, playing a game with a total of three inputs
(touching sensor 1, touching sensor 2, and concurrently touching sensors 1 and 2). In this
case, the passive mode of operation for Player 1 accommodates the entire spectrum of mild
to severe disabilities.
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Figure 1. (a) Mechanism of gameplay using wearable sensors functionalized with FSRs; (b) block
diagram of the proposed wearable sensor communicating wirelessly with a mobile device.

The block diagram of the proposed FSR-based sensor is shown in Figure 1b. The FSR
is embedded in fabric, the selection of which is subject to optimization in this research. This
fabric integration serves two purposes. First, it keeps the FSR in place in a comfortable
manner for the wearer. Second, it prevents direct contact between the FSR and the human
skin, preserving the FSR’s electrical properties and minimizing drifts in performance.
An example implementation of an armband with embedded FSR is shown in Figure 2a.
This FSR-functionalized armband is then connected to a microcontroller (in this case the
ESP32 module developed by ESPRESSIF Systems) using the general-purpose input/output
(GPIO)/touchpad pins; see Figure 2b. The ESP32 was chosen due to its low cost and power
consumption. Whenever the FSR senses the touch, it wakes up the ESP32 from deep-sleep
mode and stores the data in a register of the ESP32 memory. The process for the data
storage and handling is explained in [39,40]. Data from the ESP32 memory are then sent to
a mobile device via Bluetooth Low Energy (BLE) [41], and are used to control the mechanics
of the game. For power, we connect the microcontroller to a power bank via a USB cable.
However, batteries can be used instead. Specifically, the ESP32 microcontroller operates at
3.3 V and has 500 mA of current handling capacity [42]. The BLE component consumes
130 mA to transmit data and 95–100 mA to receive data. This corresponds to 0.429 W of
power consumed. Considering 1 h of active gameplay, we consume 130 mAh of power.
When the ESP32 is used in deep-sleep mode, the current consumption is 150 µA, resulting
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in 0.495 mW or 0.15 mAh of power consumption, which significantly saves battery life and
increases play time.
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Figure 2. (a) Armband prototype with embedded FSR; (b) wearable sensor showing the casing for
the ESP32 and the wristband with the FSR.

2.2. Research Design

The step-by-step methodology pursued in this work is outlined below.
First, in Section 3.1, we confirm the need to integrate the FSR in fabric (rather than

exposing it directly to the skin) and optimize the fabric selection. In order to lower risk in
this first stage of validation, and without a loss of generality, we use an off-the-shelf shunt-
mode FSR which is circular in shape, with a diameter of 12.5 mm (see Figure 3a) [43]. In the
selection of the fabric, both the thickness and elasticity are of relevance to this application.
The thickness relates to the isolation between the FSR and the skin, while elasticity relates
to the potential deformations/wrinkles on the sensors that could cause false positives. With
these in mind, we test four types of fabrics (see Figure 4) that vary in terms of thickness
and elasticity: Fabric 1 is a polyester, stretchable, 0.35-mm-thick fabric; Fabric 2 is a cotton,
stretchable, 0.54-mm-thick fabric; Fabric 3 is a polyester, stretchable, 0.82-mm-thick fabric;
and Fabric 4 is a cotton, non-stretchable, 0.38-mm-thick fabric. The ESP32 register values
are recorded during ‘no touch’ and ‘touch’ to identify the setup resulting in the maximum
changes of the registered values.
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touch-based collaborative digital gaming.

Second, in Section 3.2, we explore the optimal placement of the FSR-functionalized
armband, considering the gameplay scenario of Figure 1a. This is critical to evaluate, as
our sensor is intended for specially-abled children with limited limb movement and a
compromised ability to apply force. Similarly to the above, and without a loss of generality,
we use the same off-the-shelf shunt-mode FSR of Figure 3a and place it upon three different
locations, i.e., the forearm, the palmar side of the hand, and the dorsal side of the hand.
The ESP32 register values are again recorded during ‘no touch’ and ‘touch’ to identify the
location resulting in maximum changes of the register values.

Third, in Section 3.3, we demonstrate the superiority of textile-based FSRs optimized
for this particular application and fabricated in-house, and particularly an embroidered FSR
(see Section 3.3). Specifically, a major limitation in the case of the off-the-shelf prototype
of Figure 3a is that it is not mechanically robust. That is, the FSR can easily break or
permanently deform over the course of time/gameplay, losing its functionality. This
prototype is also not washable/dryable, which is a major inconvenience for a textile-based
sensor. Finally, as demonstrated in our Results section, this off-the-shelf sensor is by no
means optimized for the application under consideration, leading to an increased number
of false positives. In order to address the shortcomings above, we expand our study with
two in-house FSRs. We pursue Thru-mode FSRs with a Velostat placed in-between two
conductive plates, with the potential to be implemented fully on textiles. Both FSRs are
5 cm × 1 cm in size, selected so as to maximize the sensing area when integrated into
an armband:

• The first implementation shown in Figure 3b uses woven conductive fabric from
Adafruit Industries, LLC made of copper, and nickel-plated polyester with a surface
resistivity of 0.05 Ω/sq [44]. Velostat of 0.1 mm thickness is sandwiched between the
two conducting sheets using a permanent fabric adhesive to form the FSR.

• The second implementation shown in Figure 3c relies on the embroidery of seven-
filament silver-plated copper Elektrisola e-threads exhibiting a very low resistivity of
1.9 Ω/m and a fine diameter of 0.12 mm. These e-threads are placed in the bobbin case
of an automated Brother 4500D embroidery machine, whereas the non-conductive
polyester threads are placed in the spool pin. Referring to Figure 5, the target design
is first digitized (i.e., the path of the needle is determined) and then embroidered in
an automated manner. As discussed in Section 3, the selection of high-conductivity
e-threads (see the resistivity comparison in Table 1) is the key to boosting the FSR’s
sensitivity at low applied forces. Similarly to the above, we prototype two conductive
sides and adhere Velostat in-between them using fabric adhesive. We expect that the
improved conductivity of the embroidered (vs. the woven) surface, as has been ex-
tensively validated in the past [45,46], will improve the FSR’s performance. E-threads
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are also known to be much more tolerant to mechanical deformations, high/low
temperatures, and laundering, adding to the superiority of the embroidered FSR.
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Finally, in Section 3.4, we explore the trade-offs associated with the varying embroi-
dered densities of the FSR shown in Figure 3c. We identify an optimal embroidery density
value while also providing an extensive discussion and experimental results to guide future
implementations.

3. Results
3.1. Optimization of the Fabric Selection

As a proof-of-concept, we used the off-the-shelf FSR of Figure 3a and placed it on the
forearm, in direct contact with the skin, and when embedded within each of the four fabrics
of Figure 4. Table 2 shows the ESP32 register values for the ‘no touch’ and ‘touch’ cases,
including touches with one finger, two fingers, the palmar side of the hand, and the dorsal
side of the hand. In order to quantify these touches, we estimate the one-finger touch to an
average applied force of 1 N. Similarly, the two finger, palmer side and dorsal side of the
hand are estimated to an average applied force of 2 N, 4 N and 6 N, respectively.

Table 2. Performance of off-the-shelf FSR for different types of touches when placed on the forearm.

Value in ESP32 GPIO/Touch Pin Register

Direct Skin Fabric 1 Fabric 2 Fabric 3 Fabric 4

no touch (a) 15–18 23–24 26–27 26–27 24–26

1-finger touch (b) 0–2 1–3 1–2 1–2 1–2

2-finger touch (c) 0–1 1–2 1–2 0–1 1–2

palmar side of
hand touch (d) 0–1 1–2 1–3 0–2 1–2

dorsal side of
hand touch (e) 0–2 1–3 1–3 1–2 1–3

Max. change in
register value (c)–(a) 14–18 21–23 24–26 25–27 22–25

Referring to Table 2, when someone touches the FSR, the voltage drops across the
touch pin of the ESP32 microcontroller, causing the values in the ESP32 register to drop as
well. It can be observed in Table 2 that the low thicknesses of Fabrics 1 and 4 provide the
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poor isolation of the FSR sensor from the skin, causing poor dynamic range. Fabrics 2 and
3 provide better dynamic range. Thick fabrics are thus preferred. Taking all of the listed
touches into account, the maximum change in register values for ‘touch’ vs. ‘no touch’ is
the highest when using the stretchable thick fabric, referred to as Fabric 3 in Figure 4. This
is because its thickness provides good isolation from the skin, while its elasticity preserves
the shape of the FSR. Thick and elastic fabrics were, hence, considered for the further
analysis with textile-based FSRs for the proposed application, and we proceeded with the
embedding of the textile FSR sensor in Fabric 3.

3.2. Optimization of the Sensor Placement

When the sensor is placed on curved surfaces such as an arm, the sensor deforms,
resulting in decreased sensitivity to applied forces. It is thus crucial to study the perfor-
mance of the FSR sensor on different curvatures, as highlighted in Table 3. In order to
account for different curvatures and understand the effect on the FSR performance, we
again considered the off-the-shelf FSR of Figure 3a and placed it upon three different
locations, i.e., the forearm, palmar side of the hand, and dorsal side of the hand. The ESP32
register values were recorded during ‘no touch’ and ‘touch’, and are summarized in Table 3.
Here, we selected one-finger touch as a worst-case scenario (i.e., gentle touch ~1 N of force)
to help assess the sensor’s sensitivity. As seen, Fabric 3 provides the best dynamic range,
further validating our conclusion from Table 2. The placement of the sensor on the forearm
provides poor results compared to the palmer/dorsal side of hand, especially when placed
directly on the skin. This is because the sensor is less conformal, implying that a relatively
flat/uniform surface is better to place the sensor on. It was observed that the placement
of the FSR sensor on the palm-side of the hand provides the best performance, followed
by placement on the forearm, and then placement on the dorsal side of the hand. This
is because sensor deformation degrades the performance, resulting in the poor sensing
capabilities of the FSR, as is also discussed in Table 2. In our case, we target gameplay for
children with disabilities who may have contracted limbs (e.g., arms, hands and fingers
curled inwards), and, thus, proceed with placing the FSR sensor on the forearm. Of course,
this is not limiting, and may vary per application scenario.

Table 3. Performance of the off-the-shelf FSR for one-finger touch when placed on different locations.

Value in ESP32 GPIO/Touch Pin Register

Direct Skin Fabric 1 Fabric 2 Fabric 3 Fabric 4

forearm
no touch (a) 15–18 23–24 26–27 26–27 24–26

1-finger touch (b) 0–2 1–3 1–2 1–2 1–2

palmar side of hand
no touch (c) 13–16 24–25 26–27 28–29 27–28

1-finger touch (d) 0–1 1–2 0–2 1–2 1–2

dorsal side of hand
no touch (e) 24–25 24–26 25–27 26–27 26–28

1-finger touch (f) 0–2 0–2 0–1 1–3 1–2

Max. change in register value 22–25 (e)–(f) 22–26 (e)–(f) 24–27 (c)–(d) 26–28 (c)–(d) 25–27 (c)–(d)

3.3. Demonstration of the Improved Sensitivity of the Embroidered FSR

The performance of the embroidered FSR was measured under an applied force of
up to 10 N, and the results are plotted in Figure 6. Because the objective is to measure
small forces, we calculated the sensitivity of the FSR up to 5 N using the equation given
in (1). The applied force was changed from 0 N to 5 N, and the corresponding change in
the resistance value of the FSR was measured. The embroidered FSR is non-linear up to
2 N, and then exhibits a relatively linear relationship up to 10 N. The maximum deviation
of the resistance value from the nominal resistance for an applied force is 12% at 4 N,
while for all other cases, the deviation is less than 10%. The reliable dynamic range of the
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embroidered FSR sensor is up to 20 N. However, we plotted the data only up to 10 N, as
the range of operation for touch-based operation is less than 10 N. The dynamic range and
sensitivity can be altered by adjusting the stitching density of the embroidery. Compared
to previously reported embroidered FSRs (see Table 1), our embroidered FSR exhibits
significantly higher sensitivity. As such, it can be readily implemented to detect small
forces, such as one-finger touch.

Sensitivity of FSR =
Rmax − Rmin

Change in applied force
=

41.992k − 1.355k
5 − 0

= 8073.4 kΩ/N (1)
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We embedded the three FSRs in Fabric 3, placed the resulting armband on the forearm,
and recorded the ESP32 register values during ‘no touch’ and ‘touch’ in Table 3. Similarly
to Table 1, four different types of touch were considered in order to account for different
mechanics of gameplay. Referring to Table 4, textile-based FSRs are promising substitutes
to off-the-shelf FSR sensors. Both woven and embroidered FSRs exhibit a dynamic range
that is suitable for differentiation between ‘no touch’ and ‘touch’ cases. Nevertheless,
the embroidered FSR considerably outperforms the woven FSR and the off-the-shelf FSR
via an impressive dynamic range that can minimize false positives. In order to further
explore the latter, we pursued 50 trials where we randomly touched the sensor in different
orientations and configurations outlined in Table 5. This is of critical importance for
the target population, as players with motor disabilities may not be able to precisely
touch the sensor. As expected, the error rates associated with the embroidered FSR are
much smaller than those of the woven FSR and the off-the-shelf FSR. The reason for the
significant improvement in the embroidered FSR is the very low resistivity of the e-threads,
as indicated in Section 2.2. The ability to control the stitch density based on the application
allows the improvement in flexibility and conformability of the FSR sensor, reducing the
number of false positives, as highlighted in Table 4.
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Table 4. Performance comparison of the three FSRs shown in Figure 3.

Value in ESP32 GPIO/Touch Pin Register

Off-the-Shelf
FSR

Woven Fabric
FSR

Embroidered
FSR

no touch (a) 26–27 19–21 57–58

1-finger touch (b) 1–2 0–2 0–1

2-finger touch (c) 0–1 0–1 0–1

palmar side of hand touch (d) 0–2 0–1 0–1

dorsal side of hand touch (e) 1–2 0–1 0–1

Max. change in
register value (a)–(c) 25–27 18–21 56–58

Table 5. Error calculation for different touch patterns.

Off-the-Shelf FSR Woven Fabric FSR Embroidered FSR

Trials
No. of

Touches
Registered

% Error
No. of

Touches
Registered

% Error
No. of

Touches
Registered

% Error

1-finger precision touch 50 48 4% 47 6% 49 2%

2-finger precision touch 50 49 2% 46 8% 49 2%

1-finger partial touch 50 45 10% 46 8% 47 6%

2-finger partial touch 50 43 14% 44 12% 48 4%

random palm touch 50 49 2% 47 6% 49 2%

center of palm touch 50 26 48% 36 28% 42 16%

3.4. Optimization of the Embroidery Density

Finally, we remark that the embroidered FSR of Tables 4 and 5 is realized using
a density of 4 e-threads/mm. This density selection is justified in Table 6, in which
three embroidered FSRs of different e-thread densities are compared: 1 e-thread/mm,
4 e-threads/mm, and 7 e-threads/mm. The experimental setup embedded these three
embroidered FSRs in Fabric 3, placed the bands on the arm, and evaluated ‘no touch’ vs.
‘one-finger touch’ cases. As seen, the embroidery density of 4 e-threads/mm performs the
best, as it is an optimal compromise between conductivity and mechanical performance.
Specifically, at 1 thread/mm, the surface conductivity of the FSR is poor. At 7 e-threads/mm,
the surface conductivity is improved, but the resulting thickness and stiffness of the FSR
increase the chance of the top and bottom conductor pressing against each other. In turn,
this lowers the cut-off for the ‘no touch’ scenario, degrading the sensitivity to touch.

Table 6. Effect of the e-thread density on the performance of embroidered FSRs.

Value in ESP32 GPIO/Touch Pin Register

1 e-Thread/mm 4 e-Threads/mm 7 e-Threads/mm

no touch 43–44 49–50 39–41

1-finger touch 19–21 0–1 0–1

Max. change in
register value 22–25 48–50 38–41
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4. Discussion

The proposed wearable sensors functionalized with FSRs provide a promising solution
to enable collaborative digital gaming and other touch-based solutions. The results indicate
that textile-based FSRs can replace off-the-shelf FSRs in this regard to make the sensor more
seamless and durable. In particular, embroidered FSRs provide a high level of control over
the resulting conductivity and mechanical performance, enabling optimized sensors with
minimal false positives in the detection of ‘touch’ vs. ‘no touch’. Regardless of the FSR
selection, a need was demonstrated to separate the sensing element from the human skin.
Fabrics were explored to this end that considered thickness and stretchability factors to
optimize performance. It was found that thick and stretchable fabrics work the best. It can
be noted that the studies reported in Tables 2 and 3 were performed using off-the-shelf FSRs,
which account for the worst-case scenario. In-house FSRs (woven fabric/embroidered) can
be designed to be conformal to the arm, i.e., the forearm, the palmar/dorsal side and so
on, as per the requirements of the user, thus reducing the errors seen in off the shelf FSRs.
Fabric 4 was chosen in the same way because of the skin isolation it provided. As a result,
the performance of any type of FSR on a similar fabric type would be identical.

The resulting armband can then be designed in a form factor that fits the application
needs under consideration. For example, we selected a small width of 2 cm for the armband
of Figure 2a to minimize the fabric coverage upon the arm and enhance skin-to-skin contact
between the players. Similarly, the sensor placement upon the human body may vary per
the application needs, though the performance was shown to improve upon flat/uniform
areas. Various types were also explored, and the robustness of the idea was confirmed in
all cases. Overall, multiple possibilities can be explored should the designer have a specific
game application and target demographic in hand.

On a system level, ‘touch’ and ‘no touch’ inputs can be registered on an ESP32 micro-
controller and transmitted wirelessly via Bluetooth to a remote mobile device (e.g., a tablet).
ESP32 in the deep-sleep mode and BLE mode of operation are ideal for reducing power
consumption and increasing the time of play. Though we have experimented with a power
bank, Li-Ion or Li-Po batteries are also suitable. These batteries are rechargeable, and range
from 150 mAh to 2500 mAh.

In the future, we can explore more seamless sensor designs by implementing shunt-
based FSRs on embroidered e-threads, and by designing in-house electronics. Textile-
based piezo-resistive materials can also be explored to replace the Velostat, and to enable
fully-textile substitutes for the FSR sensors. The mechanical/thermal performance and
launderability will also be explored for the sensors. Finally, we have the option to use
multiple FSR sensors to further expand the sensing area and potentially improve the
resulting sensitivity.

5. Conclusions

New classes of wearable sensors functionalized with FSRs were reported for touch-
based collaborative gaming. An off-the-shelf FSR was originally selected and connected
to an ESP32 microcontroller to ultimately transfer data to a remote tablet in a wireless
manner. The placement of the sensor directly on the skin was found to compromise
performance, and necessitated fabrics to be placed in between. Four different types of
fabrics were tested in this regard, indicating that thick and stretchable options were the
most suitable. Multiple on-body locations were analyzed for the sensor, and placement
on the palm side of the hand was identified as optimal, followed by placement on the
forearm. Depending on the application and target audience, different placements can be
considered. Different touch scenarios were also explored to consider players with physical
disabilities. Finally, textile-based FSRs were explored, including an embroidered version
that was shown to considerably outperform the rest in terms of sensitivity to low applied
forces. The stitching density was altered during the embroidery process to identify an
optimal value for effective gameplay.
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As an example application, this work intends to enhance the bonding between children
with disabilities and their parents without disabilities. In the future, we plan to use the FSR
sensors in a real-world game environment, connected to an iPad or other Bluetooth-enabled
device. The study aims to evaluate the performance of the fabricated FSR sensors compared
to commercial sensing systems. However, numerous other applications may be considered
for diverse age groups and/or medical conditions. Our sensors can also be expanded
to textile-based force-sensing alternatives, such as pressure sensing mats for bed-bound
patients, or pressure sensitive socks for sprinters and marathon runners.
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