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Abstract: Infectious diseases pose one of the greatest health challenges in the medical world. Though
numerous antimicrobial drugs are commercially available, they often lack effectiveness against
recently developed multidrug resistant (MDR) microorganisms. This results in high antibiotic dose
administration and a need to develop new antibiotics, which in turn requires time, money, and labor
investments. Recently, biogenic metallic nanoparticles have proven their effectiveness against MDR
microorganisms, individually and in synergy with the current/conventional antibiotics. Importantly,
biogenic nanoparticles are easy to produce, facile, biocompatible, and environmentally friendly in
nature. In addition, biogenic nanoparticles are surrounded by capping layers, which provide them
with biocompatibility and long-term stability. Moreover, these capping layers provide an active
surface for interaction with biological components, facilitated by free active surface functional
groups. These groups are available for modification, such as conjugation with antimicrobial drugs,
genes, and peptides, in order to enhance their efficacy and delivery. This review summarizes the
conventional antibiotic treatments and highlights the benefits of using nanoparticles in combating
infectious diseases.

Keywords: antibiotics; nanoparticles; biogenic nanoparticles; antimicrobial; antibiotic resistance;
multidrug resistant (MDR) microorganisms

1. Introduction

The term ‘antibiotic’ hails from the word ‘antibiosis’ (meaning against life). Antibiotics are
chemical compounds, which can either kill or inhibit the growth of microorganisms. Antibiotics can
be classified as antibacterial, antifungal, and antiviral, depending on their target group. However,
generally speaking, the term antibiotic is most commonly used to describe antibacterial compounds [1].
For decades, antibiotics have been used to treat diseases, as well as for providing support in various
medical procedures ranging from organ transplant to chemotherapy. Various classes or generations
of antibiotics have been developed depending upon developing MDR and their mode of resistance.
The widely known antimicrobial mechanism of antibiotics includes, inhibition of enzymes, interference
in DNA, RNA and protein synthesis, and disruption of membrane structure [2]. A world without
antibiotics is difficult to imagine. However, this could turn into a reality owing to the emergence
of antibiotic resistance in microorganisms [3]. As aptly described by González-Candelas et al.,
‘Antibiotic resistance represents one of the best examples of natural selection in action; and also
one of the major hurdles in humankind’s fight against infectious diseases’ [4]. The development
of drug resistance in microorganisms leads to usage of high drug doses, higher toxicity treatments,
longer stays in hospitals, and an increase in mortality [5]. There are various factors which contribute
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towards antibiotic resistance in microorganisms, such as misuse and overuse of antibiotics, their
extensive agricultural use, and availability of fewer new antibiotics [6]. Furthermore, the ease of
transportation (of affected individuals and food commodities) in today’s era helps spreading of
pathogenic microorganisms farther and faster around the globe [7].

Apart from the negative social and economic effects on society, antibiotic resistance poses
a serious threat of spread of epidemic infections [7]. The World Health Organization (WHO) has
declared antimicrobial resistance (AMR) as one of the ‘biggest threats to global health’ [8]. Around
25,000 deaths per annum have been estimated in the European Union because of AMR [3]. Globally,
the estimated number of deaths due to multidrug resistant microorganisms is around 700,000 per
year [9]. The possible known mechanisms of antibiotic resistance in bacteria are; (1) reduced
uptake of antimicrobial drugs and/or increased efflux of drugs, (2) alterations of antibiotic target,
(3) development of drug degrading/modifying enzymes in microorganisms, and (4) formation of
biofilm layer which surrounds the bacteria and avoids its exposure to antibiotics [10]. These possibilities
ultimately result in either less accumulation of drugs in microbial cells or short intracellular residence
of drugs, due to which the therapeutic levels of drugs cannot be easily achieved [11]. Consequently,
a higher amount and repeated administration of drugs is required, leading to adverse side effects on
human beings and animals.

Pathogenic microorganisms have developed resistance against almost all the types of antibiotics
currently being used [12]. Most importantly, there have been no reports on the development of any
new antibiotics class in the past few decades. In addition, antibiotics innovation and commercialization
is an expensive and long process, which includes discovery of new antibiotics, several clinical trials,
and licensing [13]. This situation is compounded by the fact that bacterial resistance can emerge quickly
to any new antibiotics, resulting in a reduction in antibiotic use and a decline in sales. Thus, lack of
antibiotics development will ultimately result in an increased risk of death from infections following
surgeries such as organ transplants or chemotherapy [14]. Therefore, there is an imperative need to
develop new drugs to tackle these problems.

To answer these problems, scientists became interested in achieving a rapid diagnostic and
targeted therapy by either completely avoiding or modifying the use of conventional antibiotics.
This search led to investigating the metals such as silver, copper, zinc, and titanium, which are
originally antimicrobial in nature. Metals have been used as antimicrobial agents from centuries.
Unlike antibiotics, metals act against microorganisms through several different mechanisms such
as membrane disintegration, damage of cellular components (DNA, protein and electron transport
chain), and reactive oxygen species (ROS) generation [15]. The emergence of nanotechnology helped in
understanding and exploring the unique properties of these metals. Conversion of bulk metal-to-metal
nanoparticles demonstrated the enhancement of all the properties of parent metal at nano scale [16].
Transformation of bulk element to nano level, not only reduces its size, but also leads to the
formation of different shapes at nano level, such as spherical, triangular, truncated triangle, octahedral,
rod, and flower-shaped [17,18]. This variation in geometry facilitates applications in various fields.
Especially, it is very advantageous for antimicrobial applications, since the antimicrobial action of
nanoparticles is directly proportional to the surface area available for interaction with biological
components. Thus, the metallic nanoparticles became one of the most promising choices to overcome
the microbial resistance and fight MDR microorganisms [11].

To produce the metallic nanoparticles, several conventional methods have been in use for decades.
For instance, physical methods such as melt mixing, laser ablation, physical vapor deposition,
sputtering, and chemical methods like thermolysis, photoreduction, microemulsion and sol-gel.
These methodologies often result in instability of nanoparticles, attachment of toxic substances
on nanoparticle surface, and production of hazardous byproducts. For instance, to produce silver
nanoparticles (AgNPs) chemically, a reducing agent (borohydrite), capping agent (starch, polyethyl
glycol), and other stabilizing agents are required. By contrast, “green” methodologies have overcome
all these limitations [19]. Green methodologies involve biogenic synthesis of metallic nanoparticles
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by using biological resources such as microorganisms and plants [20–22]. Microorganisms usually
exhibit a process called bioreduction, which involves the accumulation of metallic ions in order to
reduce their toxicity. Microorganisms bioreduce intracellularly with the help of various reducing
species present either inside the cell and on the cell wall, or extracellularly by different metabolites.
Plants also possess the reducing capability because of various flavonoids, proteins, and water-soluble
biomolecules. The advantages of green synthesis include: (1) production of stable nanoparticles,
(2) biocompatible coating on the nanoparticles’ surface which provides additional active surface area
for interaction in the biological environment, (3) no hazardous byproduct formation, (4) additional
reduction or stabilizing agents are not required, which ultimately makes the process economical
(Figure 1) [23,24]. The stability and biocompatibility of green nanoparticles corresponds to their
capping layer, which usually form during synthesis of biogenic nanoparticles, and originates from
the corresponding biological extracts used for synthesis. This layer affects the biological activity of
nanoparticles and is useful in long-term stability. Huang et al. demonstrated that nanoparticles formed
from microorganisms through nucleation and surface growth could be entrapped by the additional
surface (capping layer), often exhibiting excellent stability [25]. Despite the fact that biogenic metallic
nanoparticles are biocompatible in nature with high stability and amenable for biomedical applications,
a balance between price, process, and scalability is still a considerable challenge. Especially for
microorganisms involved in biogenic nanoparticles production, there is a requirement of sophisticated
instruments throughout the process for the maintenance, production, and purification of nanoparticles.
For instance, freezers are required for microorganisms’ preservation, incubators with temperature and
shaking control are required for nanoparticle production, and centrifuges are required for purification
of nanoparticles. All these heavy instruments required for the complete process of nanoparticle
production and purification make the methodology comparatively expensive [26,27]. In the case
of plants, the requirement of natural resource management, which includes plant culturing and
maintenance, is an important issue that needs to be addressed [28,29]. However, the advantages of
biogenic metallic nanoparticles over physiochemically-obtained nanoparticles cannot be over looked
for future research and commercialization in the field of antimicrobial applications.
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In this review, we focused on conventional antibiotics, developing drug resistance, nanoparticle
development, and overcoming drug resistance problems. We also focused on the biogenicity of metallic
nanoparticles and their future perspectives.
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2. Microbial Resistance to Antimicrobial Drugs

2.1. Conventional Antibiotics

Penicillin was the first antibiotic to be discovered in 1928, which marked the beginning of the
modern era of antibiotics [6]. Antibiotics can be classified on the basis of their mode of action, spectrum
of action, or their chemical structure. For example, antibiotics can either be bactericidal (lethal to
bacteria) or bacteriostatic (causing growth inhibition of bacteria). The broad-spectrum antibiotics
target both the Gram-negative and Gram-positive bacteria, while the narrow spectrum antibiotics
target only one of them [30]. Based on their molecular structures, antibiotics can be classified as
β-lactams, macrolides, tetracyclines, quinolones, aminoglycosides, sulphonamides, glycopeptides,
and oxazolidinones [1].

The β-lactam antibiotics interfere with the cell wall synthesis in bacteria by binding to penicillin
binding protein (PBP). The function of PBPs is to cross-link the peptide units in the peptidoglycan
layer. Binding of β-lactams to PBPs leads to the inhibition of the latter, and subsequently cell
lysis. The β-lactam antibiotics are further divided into penicillins, cephalosporins, monobactams,
and carbapenems. In the late 1960s, the emergence of penicillin-resistant bacteria was observed.
These bacteria were able to synthesize β-lactamases, enzymes that could degrade β-lactam antibiotics.
The discovery of carbapenems circumvented this problem, as this new class of β-lactams was
insensitive to the β-lactamases. Amongst all the known β-lactams, carbapenems exhibit the broadest
spectrum of activity [1]. Unfortunately, the emergence of carbapenem resistance was also reported
in bacteria [31]. Glycopeptides also target the bacterial cell wall synthesis, but in addition to
blocking the PBPs, they also inhibit peptidoglycan synthesis [1]. A detailed account of recent
developments in glycopeptide antibiotics has been published elsewhere [32]. The macrolides,
tetracyclines, aminoglycosides, and oxazolidinones inhibit the bacterial growth by targeting protein
synthesis in the cells. Macrolides bind to the 50S ribosomal subunit and inhibit the elongation of
mRNA during translation, thus halting protein synthesis [1]. Oxazolidinones also bind to the 50S
ribosomal subunit, but unlike the macrolides, inhibit protein synthesis by impeding the formation
of 70S translation initiation complex [33]. Together, these two classes form the 50S inhibitors group.
Tetracyclines and aminoglycosides, the 30S inhibitors group, bind to the 30S ribosomal subunit
denying aminoacyl-tRNAs access to the ribosome and subsequently inhibiting protein synthesis.
While macrolides and tetracyclines are typically bacteriostatic, aminoglycosides are broadly bactericidal
in their mode of action [1]. Nucleic acid (DNA and RNA) synthesis is fundamental to a cell’s survival.
Quinolones inhibit bacterial growth by blocking the action of DNA helicases, which are indispensable
for unwinding the double helical structure of DNA prior to DNA replication or repair. Additionally,
quinolones also interfere with the functions of topoisomerase II and topoisomerase IV in bacteria
leading to a negative effect on RNA polymerase, thereby inhibiting RNA synthesis [1]. Sulfonamides
structurally mimic para-aminobenzoic acid (PABA), a substrate for the synthesis of folic acid in
bacterial cells. Folic acid is indispensable for nucleic acid (DNA) synthesis, thus by competing with
PABA and blocking folic acid synthesis; sulfonamides inhibit cell division and cause growth inhibition
in bacteria. Unfortunately, resistance to these conventional antibiotics has been reported in bacteria,
making it difficult to treat the infections caused by these bacteria [34].

2.2. Developing Resistance to Antimicrobials

Recently-developed multidrug resistant (MDR) microorganisms includes: vancomycin resistant
Staphylococcus aureus and Enterococcus sp. such as E. faecalis and E. faecium [35], penicillin resistant
Streptococcus pneumonia, multidrug resistant Mycobacterium tuberculosis, Salmonella enterica, Pseudomonas
aeruginosa, Vibrio cholera, Acinetobacter baumannii, and carbapenem resistant Enterobacteriaceae [9].
Broadly speaking, bacteria develop drug resistance by acquiring the drug resistance genes, which
is followed by the expression of these resistance genes, and selection of the cells expressing the
resistance genes. The acquisition of resistance genes can occur via horizontal gene transfer (HGT) by
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transduction, transformation, or conjugation [36]. Another possibility of acquiring the resistance genes
is by spontaneous mutation in the existing genes [37]. When a microbe, which already has a drug
resistance gene, acquires another type of drug resistance gene, such microbes then become multi drug
resistant (MDR). Next, the acquired resistance genes are expressed when the microbes possessing them
are exposed to antimicrobial drugs. Finally, a selection pressure for microbes expressing a resistance
gene leads to a widespread resistance towards that antimicrobial. This could happen when the
microbes are not eliminated completely upon exposure to the drug, resulting in a positive selection
pressure for the drug resistant microbes. For example, a positive selection pressure for microbes
expressing resistance genes occurs when a patient misses a scheduled dose of the antimicrobial or takes
an insufficient number of doses (poor patient compliance). Consequently, the microbes get exposed to
the drug but are not completely eliminated. Poor patient compliance plays an even more significant
role in developing drug resistance against drugs with short elimination half-lives. Because the time
required for removal of these drugs from the host body is short, it is necessary to replenish the drug in
short intervals accompanied by a higher number of doses for complete eradication of the microbe [12].

However, administration of an appropriate number of doses at appropriate intervals does not
eliminate the positive selection pressure for drug resistance. The clinical outcomes of time-dependent
antibiotics are measured as a function of t > MIC (minimum inhibitory concentration), which is defined
as the time duration, between the doses, for which the drug concentration in plasma is more than its
MIC. Thus, persistent plasma concentration of a time-dependent antibiotic between zero and its MIC
for a long time can lead to the development of resistance against the drug. This especially concerns
antibiotics with long elimination half-lives such as β-lactams, tetracyclines, and clindamycin [5].
The clinical outcomes of concentration dependent antibiotics are measured as a function of Cmax/MIC,
which is defined as the ratio of maximum drug concentration in plasma to its MIC, per dosing interval.
Thus, a drop in Cmax/MIC value below a target threshold during a dosing interval can lead to the
development of resistance against the drug, independent of its elimination half-life. Vancomycin,
aminoglycosides, and quinolones are some examples of the concentration-dependent antibiotics [5].

2.3. Mechanisms of Drug Resistance to Antimicrobials

2.3.1. Decreased Uptake and Efflux Pumps

Decreased uptake and increased efflux of a drug does not allow for accumulation of the drug
inside the cell to a concentration that is lethal to cells. For this purpose, various bacteria possess
resistance genes for specific types of antibiotics. For example, both Gram-positive and Gram-negative
bacteria possess the genes for tetracycline efflux pumps TetA, TetB, and TetK. The tetA gene is not
expressed under native conditions owing to its repression by the repressor protein TetR. Tetracycline
binds to TetR, thus inactivating it, which in turn leads to the expression of the tetA gene. The TetA efflux
pump then flushes out tetracycline, thereby conferring resistance to the bacteria against tetracycline.
Other examples of resistance due to increased efflux include resistance against fluoroquinolones in
Gram-negative bacteria and resistance against macrolide in Gram-positive bacteria [5]. Examples of
decreased uptake of antibiotics include aminoglycoside resistance in Gram-negative bacteria. One of
the known vancomycin resistance mechanisms is a thickening of the cell wall [5].

2.3.2. Alteration of Antimicrobial Target

Bacteria can also develop resistance by expressing genes that code for an alternate version of
the antibiotic target. These altered substrates usually have lower binding affinity to the antibiotic
as compared to the wild type versions, thus decreasing the activity of the antibiotic. For example,
resistance against β-lactams in methicillin resistant Staphylococcus aureus (MRSA) conferred by mecA,
which codes for an altered PBP known as PBP2A. The β-lactams have lower binding affinities
towards PBP2A than PBP, and therefore, mecA confers resistance against all the β-lactams [5,38,39].
Another example is resistance against glycopeptides conferred by the resistance gene vanA expressing
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the enzyme D-alanine-D-lactate ligase. This enzyme modifies the terminal D-ala-D-ala domain of
peptidoglycan precursor (target of vancomycin) to D-ala-D-lactate. The affinity of vancomycin towards
this modified precursor is about 1000 times lower than the wild type version, thus making the cells
expressing vanA resistant towards vancomycin [5,40]. Other examples that use this mechanism
to develop drug resistance include resistance to sulfonamides in Escherichia coli, Streptococcus
pneumoniae, Neisseria meningitidis, resistance to quinolones in Gram-positive and Gram-negative
bacteria, and resistance to macrolides, aminoglycosides, and tetracyclines [5,41].

2.3.3. Modification of Antimicrobial Drugs

Bacteria have also been observed to express resistance genes coding for antibiotic modifying
enzymes. For example, ACT N-acetyltransferase which catalyzes the acetylation of an NH2 group
of aminoglycoside, the APH O-phosphotransferase which catalyzes the phosphorylation of an OH
group of aminoglycoside, and ANT O-adenyltransferase which catalyzes the adenylation of an OH
group of aminoglycoside. In all these cases, modification of the antibiotic leads to its decreased
binding affinity towards its target, the 30S ribosomal subunit, consequently reducing its antimicrobial
activity. Modification and inactivation of chloramphenicol by acetyltransferases is the most common
mechanism of developing chloramphenicol resistance. Other antibiotics for which such mechanisms
of developing drug resistance are observed include β-lactams, tetracyclines, macrolides, quinolones,
and streptogramins [5,42].

2.3.4. Production of Competitive Inhibitor

Antibiotic resistance is also acquired by producing a competitive inhibitor of the drug.
For example, S. aureus and N. meningitides produce an increased amount of PABA that competes
with sulfonamide for its target, dihydropteroate synthetase, and thus conferring resistance against
sulfonamide drugs [5].

2.3.5. Persister Cells

When a small fraction in bacterial population randomly stops or slows down their metabolic
activity by expressing the toxin-antitoxin (TA) genes, they become more tolerant to the antimicrobial
drug. These cells are known as persisters. Upon exposure to antibiotics, most of the bacterial population
is wiped out, leaving behind the persisters. These persistors can cause recurrence of the infection when
they resume their metabolic activity [5,36].

2.3.6. Biofilm Formation

Biofilms are formed when bacterial cells immobilize themselves by attaching to a surface such as
human tissues and medical implants. It is very difficult to treat the infections associated with biofilms
because of the extracellular polymeric substance (EPS) matrix present around the bacterial cells.
The EPS matrix is extremely tolerant towards various antibiotics, thus leading to chronic infections
in humans [5,43]. The EPS matrix forms a barrier between antibiotics and bacterial cells. The EPS
matrix acts a sieve and molecules above a certain size, including antibiotics, cannot pass through it.
The antibiotics also get trapped in the EPS matrix because of its negative charge. Furthermore, the EPS
matrix contains enzymes that can modify antibiotics and rip them off their antimicrobial activity. It has
also been suggested that by reducing the antibiotic concentration below their MIC (and above 0),
the EPS matrix could help in development of antibiotic resistance in the bacterial cells [5,44]. Although
some antibiotics, such as rifampicin and vancomycin, have been shown to penetrate the EPS matrix,
they could not eradicate the slow growing bacterial cells, especially the persister cells [43].
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2.3.7. Swarming

Swarming is a type of multicellularity observed in many bacterial species. It happens when
groups of highly differentiated cells (swarm cells) come together as a single unit on semisolid surfaces.
The planktonic cells become elongated and develop multiple flagella. These swarm cells remain in
each other’s vicinity and migrate together, like a raft. The swarm cells have been shown to be highly
resistant to multiple antibiotics. However, sub culturing the swarm cells in liquid medium causes
them to revert back to planktonic cells, as well as restoring their antibiotic susceptibility [5,38].

2.3.8. Intracellular Microbes

Being inside the host cell, the intracellular microbes are shielded from the antimicrobial drugs
because of the limited capacity of the drugs to enter the host cell [5].

In recently published reviews, a more detailed account on the mode of action of antibiotics and
different mechanisms of resistance against antibiotics is available [34,45].

3. Promising Biogenic Metallic Nanoparticles for Antibacterial Applications

As discussed above, metallic nanoparticles due to their shape-and-size-dependent tunable
properties became central focus for many biomedical applications including antimicrobial. Metallic
nanoparticles such as silver, copper, titanium, zinc, and iron can be used against MDR microorganisms
due to their antimicrobial nature [11,46]. Importantly, biogenic nanoparticles are mainly utilized for
antimicrobial applications due to their long-term stability and biocompatibility. The mechanisms
behind the antimicrobial effect of these nanoparticles are oxidative stress, metal ion release,
and non-oxidative stress occurring simultaneously (Figure 2) [47]. There are several examples where
green metallic nanoparticles obtained from microorganisms have been explored for antimicrobial
applications against many pathogenic microorganisms. For instance, biogenic AgNPs obtained from
Brevibacterium frigoritolerans DC2 [48], Sporosarcina koreensis DC4 [49], and Bhargavaea indica DC1 [18],
showed antimicrobial activity against Vibrio parahaemolyticus, Salmonella enterica, Bacillus anthracis,
Bacillus cereus, Escherichia coli, and Candida albicans. Copper nanoparticles (CuNPs) obtained from
Sida acuta showed antimicrobial activity against Escherichia coli, Proteus vulgaris, and Staphylococcus
aureus [50]. In addition, these nanoparticles showed enhancement in the antimicrobial efficacy of
conventional antibiotics such as lincomycin, oleandomycin, vancomycin, novobiocin, penicillin G,
and rifampicin, when applied together. Research on zinc oxide also revealed its antibacterial
activity against S. aureus, E. coli, and P. aeruginosa [51]. Thus, the findings suggest that combining
the current antibiotics with green metallic nanoparticles can be further helpful for enhancing
their antimicrobial activity. Moreover, a comparative study between biological and chemical
nanoparticles demonstrated that the biological nanoparticles exert higher antimicrobial effect than
the chemically synthesized nanoparticles. For example, Sudhasree et al. proposed that the biological
synthesized nickel nanoparticles from Desmodium gangeticum are more monodispersed and have
higher antioxidant, antibacterial, and biocompatible activities in LLC PK1 (epithelial cell lines) than
chemically synthesized nanoparticles. Specifically, in terms of antibacterial activity, they tested
both the nanoparticles against S. aureus, K. pneumonia, P. aeruginosa, V. cholerae, and Proteus vulgaris,
and found that chemically synthesized nickel nanoparticles were not at all active against K. pneumonia,
P. aeruginosa and P. vulgaris, whereas biological nanoparticles showed antimicrobial activity against
these microorganisms. For S. aureus, chemical nanoparticles were less active than the biological ones.
However, in the case of V. cholerae, chemical nanoparticles were more effective [52]. Mohammed et al.
also described how biologically synthesized zinc nanoparticles have more antimicrobial potential
against Salmonella typhimurium ATCC 14028, B. subtilis ATCC 6633, and Micrococcus luteus ATCC 9341
compared with chemically synthesized zinc nanoparticles [23]. Table 1 provides an overview of several
types of biogenic nanoparticles, their source, and any reported antimicrobial activity.
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However, this list is not exhaustive, and only a few seminal studies are mentioned here. From past
few decades, nanoparticles, especially coating of nanosilver, are being used in bone prostheses,
dental implants and surgical instruments as an antibacterial preventive measure and as coating
on wound dressing to combat the microorganisms in wounds [53,54]. These nanoparticles target
the bacterial cells and disturb the crucial function of cell membrane such as membrane respiration
and membrane permeability [55,56]. Furthermore, they react with intracellular components such as
proteins and nucleic acids, and inhibit cell division and gene transfer [55,56]. There are many reports
showing the antimicrobial activity of various nanoparticles, mainly silver, zinc, copper, titanium,
magnesium, and gold [57,58]. The mechanism of action of nanoparticles and antibiotics seems to be
similar in the case of interference in the synthesis of DNA, RNA, and protein, as well as membrane
disruption [2,53,55]. However, most of these metallic nanoparticles exhibit antimicrobial activity
through multiple mechanisms, which decrease the possibility of development of resistance against
them in microorganisms [56]. To develop resistance towards such nanoparticles, microbial cells would
need to acquire multiple simultaneous gene mutations, which is not very probable. Furthermore,
synthesizing such nanoparticles by using the green way would result into proteins, polysaccharides,
and small bioactive compounds binding to the nanoparticles, which further enhance their antimicrobial
activity towards the MDR microorganisms. In this section, we discuss a few metallic nanoparticles
that are synthesized by green method(s) and their effect on different pathogenic microorganisms.

3.1. Gold Nanoparticles (AuNPs)

One of the most widely studied biogenic nanoparticles are gold nanoparticles (AuNPs).
Predominantly, the shape of the AuNPs is spherical [59], triangular [60], and hexagonal [61], though
rod-shaped nanoparticles were also reported in various studies. AuNPs are synthesized either
from the whole plant or by the combination of various components that act as reducing agents.
Interestingly, the type of extracts that are used as bioreductants defines the size and shape of
synthesized nanoparticles. AuNPs synthesized from Galaxaura elongate is one important example
where a wide range of size (4–77 nm) and shapes (spherical, rod, triangular, hexagonal) of nanoparticles
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were obtained [62]. Another important discovery is the effect of pH on the size of AuNPs. It was
reported that nanoparticles with core size 6 nm and 18 nm were obtained at pH 9 and pH 2 respectively,
from mango peel extract [63]. AuNPs are known for their biocompatibility to microbial cells with
no bacteriostatic or bactericidal activity. However, antibiotics integrated AuNPs are shown to have
strong bactericidal effect against the drug resistant bacteria. The ampicillin bound AuNPs has been
shown to damage ampicillin resistant bacteria, including MRSA, P. aeruginosa, Enterobacter aerogenes,
and E. coli K-12 sub-strain DH5-alpha [64] by multiple mechanisms. AuNPs-AMP can overwhelm
the high concentrations of beta-lactamase expressed by these bacteria and in addition, AuNP-AMP
inhibits the transmembrane pump that catalyzes drug efflux from the bacterial cell [64].

3.2. Silver Nanoparticles (AgNPs)

AgNPs have remarkable bactericidal and fungicidal properties, that have been exploited in
pharmaceutical industry, paints, ointments, food, fabrics, and packaging industries [65]. Large-scale
green synthesis of different shapes and sizes of AgNPs from plants, bacteria, fungi, and yeast has
been studied extensively [23]. The basic antibacterial mechanism of AgNPs has been shown to be
either due to the release of silver ions or due to the intracellular deposition of nanoparticles [58,66].
The detailed mechanism mainly involves cell membrane damage, disruption of energy metabolism,
generation of oxidative stress due to ROS formation, and inhibition of transcription. Silver ions
released from AgNPs have been shown to interact with sulfur- and phosphorus-containing groups of
proteins in the cell wall and plasma membrane of bacteria [67]. The initial interaction of silver ions
with microbial cells starts with the binding of cationic silver with the negatively charged microbial cell,
which leads to the formation of multiple pores in the cell membrane and outflow of the intracellular
contents. This also causes an electrochemical imbalance in the cells and allows the silver ions to
pass through the plasma membrane into the cytoplasm of the bacterial cell and interact with the
intracellular components resulting in permanent cell damage [55]. Silver ions also have been shown to
inhibit the activity of proteins and enzymes that are essential for ATP production, inhibit respiratory
enzymes leading to the production of ROS, damage RNA and DNA, and destabilize and disrupt
the outer membrane. Nanoparticles, owing to their small size with large surface area, have a high
possibility to cross the peptidoglycan and cell membrane [10,68]. This phenomenon has been described
as a rationale for the higher sensitivity of the Gram-negative bacteria towards nanoparticles, as
compared to the Gram-positive bacteria having a thicker peptidoglycan layer [19]. The thickness and
crosslinking of peptidoglycan in the Gram-positive bacterial cell wall provide more resistance against
the penetration of nanoparticles. Many reports with antibacterial activity of AgNPs have correlated
their toxicity with size and shape of the particles [69]. The nanoparticles with more surface area have
been shown to release silver ions at a higher rate, which is an important factor for high antibacterial
activity [70]. Antibacterial activity of AgNPs have been studied against the multidrug resistant bacteria
such as P. aeruginosa, E. coli, Streptococcus pyogenes, S. aureus, Klebsiella pneumoniae, Salmonella species,
and Enterococcus species [71,72]. This bactericidal effect, mostly, is attributed to the inhibition of cell
wall synthesis, protein synthesis mediated by the 30S ribosomal subunit, and nucleic acid synthesis.
Furthermore, AgNPs have also been shown to enhance the antimicrobial activity of antibiotics such
as penicillin G, amoxicillin, vancomycin, clindamycin, and especially erythromycin, against S. aureus
and E. coli [73]. In addition to that, silver carbene complexes encapsulated in nanoparticles have
been shown to be effective against multidrug resistant bacteria, including MRSA, multidrug resistant
A. baumannii (MRAB), P. aeruginosa, Burkholderia cepacia, and K. pneumoniae [74]. The strong bactericidal
effect of AgNPs against the multidrug resistant bacteria is mostly due to their multiple mechanisms
to disrupt microbial cells. Despite having multiple mechanisms for antibacterial effects, a recent
study involving a pretreatment of bacterial cells with sublethal concentration of AgNPs showed lesser
membrane damage, lowered levels of intracellular ROS and higher amount of intracellular ATP when
bacterial cells were further exposed to ampicillin. This suggests that the pretreatment of bacterial cells



Nanomaterials 2018, 8, 1009 10 of 19

with sub-lethal concentrations of AgNPs leads to long-lasting responses that enhance the antibiotic
stress resistance in bacteria at multiple levels [75].

3.3. Zinc Oxide Nanoparticles (ZnO-NPs)

Zinc oxide nanoparticles (ZnO-NPs) are synthesized using different biological resources as
reducing agents [76]. They are nontoxic, semiconducting material with good photocatalysis and
high transparency. ZnO-NPs are synthesized from different parts of plants such as leaves, roots,
rhizomes, fruits, flowers, and bark [77]. ZnONPs show a potential antibacterial activity [78] and
good photo degradation and have applications in drug delivery [79] and anticancer therapy [80].
ZnO-NPs are also widely tested metallic nanoparticles for their antimicrobial purpose. The wide range
of both Gram-positive and Gram-negative bacteria such as E. coli, Listeria monocytogenes, Salmonella,
and S. aureus have demonstrated sensitivity towards ZnO-NPs [81,82]. ZnO-NPs treatment of bacterial
cells leads to ROS generation, lipid peroxidation, membrane leakage of reducing sugars, proteins,
DNA, and cell viability [83]. ZnO-NPs has been shown to produce ROS such as super oxide anion and
hydrogen peroxide in cells [84,85]. ROS causes membrane leakage of proteins and nucleic acids by
enhancing lipid peroxidation on membrane. Additionally, Zn+2 ions released from the nanoparticles
also damage the cell membrane and interact with intracellular components [86,87]. Recently, ZnO-NPs
were shown to inhibit the growth of carbapenem-resistant A. baumannii by producing ROS and causing
membrane damage, suggesting that ZnO-NPs might be developed as an alternative to carbapenems
(beta-lactam) [83].

3.4. Copper Nanoparticles (CuO-NPs)

Cupric oxide nanoparticles (CuO-NPs) gained critical importance due to their applications in
anti-microbial activity, pharmaceutical industry, cosmetics, transport, power, and farming [88]. It is
relatively easy to produce CuO-NPs by chemical means, but with many disadvantages like low
potency, high toxicity, environmentally unfriendliness, and high expense. CuO-NPs are synthesized
from various biogenic means like polysaccharides such as pectin, chitosan, alginate, leaf extracts,
bacteria and so on. Unlike gold, silver, and other nanoparticles, it has been a challenge to produce
stable CuO-NPs due to their proneness to oxidation when exposed to an aqueous medium [89].
Though there are a few reports on CuO-NPs production under inert conditions [90] from copper salts,
there are very limited reports that suggest the synthesis of metallic CuO-NPs in noninert conditions.
Compared to other nanoparticles, the biogenic synthesis of CuO-NPs is relatively new and ways are
being explored to make it with ease and ecofriendly. The mechanism behind the antibacterial activity
of CuO-NPs is believed that electrostatic attraction between Cu+2 and plasma membrane helps in
damaging the membrane and killing cells [91,92]. The Cu+2 ions are energetically easier to move
across a lipid bilayer and upon being taken up by the cell, lead to ROS production, lipid peroxidation,
and protein oxidation [92]. CuO-NPs were shown to have strong antimicrobial activity against both
Gram-positive and Gram-negative bacteria [92,93]. The broad-spectrum antimicrobial efficacy of
CuO-NPs suggested the possible use in wound healing treatment, such as in bactericidal plasters
and bandages, due to its strong bactericidal effect and illegible sensibility of human tissues to copper
compounds [94,95].

3.5. Titanium Dioxide Nanoparticles (TiO2-NPs)

Titanium dioxide nanoparticles (TiO2-NPs) possess interesting optical, dielectric, antibacterial,
and catalytic properties that makes them interesting for their usage in various catalyst industry [96],
sensors [97], biosensors [98], solar cells [99], and as image-contrast agents in medical diagnostics [100].
TiO2-NPs with different morphologies like nanorods and nanotubes are commonly synthesized using
different reducing and stabilizing agents [101]. Hydrothermal processing is another approach due to
its cost effectiveness and simplicity [102], nevertheless, green routes need to be developed to have
a reliable supply in sufficient quantities without any harmful effects on the environment. TiO2-NPs
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are synthesized from plants [103], fungus [104], and piper betel leaf [105]. TiO2-NPs also exhibit
antimicrobial activity by multiple mechanisms suggesting that the possibility of development of
resistance by microbial cells against these nanoparticles is very low [10]. TiO2-NPs have been well
demonstrated to have bactericidal effect against E. coli, P. aeruginosa, S. aureus, and E. faecium [106,107].
One of the mechanisms by which TiO2-NPs kills microorganisms is by generating ROS with the
exposure of near to ultra-violet radiation [107]. The generated ROS disrupt the cell membrane
interfering with the oxidative phosphorylation, which leads to cell death. A recent report suggested
that exposing cells to TiO2 photocatalysis rapidly inactivates the regulatory signaling level, efficiently
decreases the coenzyme-independent respiratory chains, lowers ability to take up and transport iron
and phosphorous, and lowers the capacity for the biosynthesis and degradation of heme (Fe-S cluster)
groups [11,106].

3.6. Magnesium Oxide Nanoparticles

Like other nanoparticles, magnesium oxide nanoparticles (MgO-NPs) also generates the ROS
and is the major mechanism behind its antimicrobial activity [70]. Like other nanoparticles, MgO-NPs
physically interact with the cell’s surface and disrupt the membrane integrity leading to membrane
leakage [10]. In addition, they damage the cells by irreversible oxidation of intracellular biomolecules.
However, another study demonstrated that MgO-NPs exhibit excellent antibacterial activity in the
absence of ROS and lipid peroxidation. The authors suggested that antibacterial activity of MgO-NPs
is correlated with the interaction of nanoparticles with the microbial cell membrane, pH change,
and release of Mg+2 [108]. Furthermore, unlike other nanoparticles, the antimicrobial activity of
MgO-NPs has been demonstrated to be due to adsorbing halogen molecules onto the surface of
the MgO [10].

4. Concluding Remarks and Future Perspectives

In summary, we would like to conclude that due to poor diagnostics and overdose and incapability
of drugs, microorganisms are commonly able to develop resistance against antibiotics. The infections
caused by MDR microorganisms are a serious global healthcare issue. To address these problems,
biogenic metallic nanoparticles were developed and had proven strong efficacy against various
MDR pathogens, either individually or in combination with antibiotics. However, in order to use
these nanoparticles for therapeutic applications, some important facts that need to be considered are
nanoparticles distribution, their bioavailability, active targeting, and nanoparticles excretion from the
body if taken as drug carrier for treating site-specific infections [109].

Owing to the antimicrobial nature of metallic nanoparticles, the applications are not only
limited to the biomedical area, but can also be extended to water treatment, textiles, food packaging,
cosmetics, agriculture (nanopesticides and nanofertilizers), self-cleaning coatings on mobiles phones,
washing machines, and computer keyboards. However, the biogenic nanoparticles have not yet
been commercialized for these applications. The true challenge for biogenic nanoparticles is finding
the right balance between the production cost, scalability, and their applicability. Hence, in this
respect, a great deal of research will be required to focus on economical ways of biogenic nanoparticles
development which will make them easily available for all kinds of future applications relevant to
either antimicrobial era or other.
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Table 1. Overview of several types of biogenic nanoparticles, their source and reported antimicrobial activity.

Origin Plant NPs Type Shape of NPs Size Range of NPs (nm) Anti-Microbial Effect References

Phyllanthus amarus CuO Spherical 20 Anti-microbial against B. subtilis [110]
Geranium leaves Ag Quasilinear 40 Antimicrobial [111]

Avena sativa Au Rod-shaped 5–20 No data available [112]
Catharanthus roseus TiO2 No typical shape 25–110 No data available against bacteria [113]

Camellia Sinensis ZnO Triangular/spherical 30–40 Anti-bacterial [114]

Bacteria

Aeromonas
hydrophila ZnO Spherical 50–70 Aanti-bacterial against

P. aeruginosa and A. flavus [115]

Bacillus mycoides TiO2 Spherical 40–60 Supress aquatic biofilm growth [116]
Proteus mirabilis

PTCC1710 Au Spherical 10–20 No reported anti-bacterial activity [117]

Escherichia coli CdS Spherical 2–5 Anti-bacterial against
E. coli strain BW25113 [118]

Strains NS2 and
NS6 PbS 40–70 Bioremidiation [119]

Fungus and Yeast

Volvariella volvacea Au and Ag Spherical/hexagonal 20–150 Anti-bacterial [120]
Aspergillus flavus TiO2 Oval 60–74 Anti-bacterial against S. aureus [121]

MKY3 Ag Hexagonal 2–5 Anti-bacterial against S. aureus
and E. coli [122]
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